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ABSTRACT
The Conservation Effects Assessment Project (CEAP) is a survey intended to quantify soil and
nutrient loss on cropland. Estimates of the quantiles of CEAP response variables are published.
Previous work develops a procedure for predicting small area quantiles based on amixed effects
quantile regression model. The conditional density function of the response given covariates
and area random effects is approximated with the linearly interpolated generalised Pareto dis-
tribution (LIGPD). Empirical Bayes is used for prediction and a parametric bootstrap procedure
is developed for mean squared error estimation. In this work, we develop two extensions of the
LIGPD-based small area quantile prediction procedure. One extension allows for zero-inflated
data. The second extension accounts for an informative sample design. We apply the proce-
dures to predict quantiles of the distribution of percolation (a CEAP response variable) in Kansas
counties.
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1. Introduction

Small area estimation procedures traditionally make
use of fully parametricmodels (Battese,Harter,&Fuller,
1988). When analyzing data, evidence of nonlinear-
ity, nonconstant variances, or outliers can make the
problem of specifying an appropriate parametric form
a challenging task. To address challenges in para-
metric modelling, several semiparametric small area
estimation procedures have been proposed. Opsomer,
Claeskens, Ranalli, Kauermann, and Breidt (2008) use
penalised spline regression for small area estimation.
Sinha and Rao (2009) consider outlier-robust estima-
tion. Chambers and Tzavidis (2006) use M-quantile
regression. See Rao andMolina (2015) for further back-
ground on the wide range of models used for small area
estimation.

Berg and Lee (2019a) develop a small area proce-
dure for estimating quantiles based on the semipara-
metric mixed effects quantile regression model of Jang
and Wang (2015). The model of Jang and Wang (2015)
approximates the conditional distribution of the
response given a covariate and a random effect using
a distribution that they term the linearly interpolated
generalised Pareto dentisy (LIGPD). The name for the
approximate density function (LIGPD) refers to the two
main aspects of the approach. First, for a fine grid of
interior quantiles, the LIGPD approximates the quan-
tile function corresponding to the distribution of the
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response given a covariate using linear interpolation
(LI). Second, an extreme value distribution, namely
the generalised Pareto distribution (GPD), is used to
model the distribution of the response for quantile lev-
els that exceed the lower and upper bounds of the inte-
rior grid. We define these two aspects of the LIGPD of
Jang and Wang (2015) more precisely in Section 1.2.
Jang and Wang (2015) use Bayesian methods to con-
duct inference for the parameters of the LIGPDmodel.
Berg and Lee(2019a) adopt the LIGPDmodel for small
area estimation. Their interest in using the LIGPD
for small area estimation stems from a survey called
the Convservation Effects Assessment Project (CEAP),
which is intended to measure different types of ero-
sion. A preliminary analysis of the CEAP data indi-
cated that finding a single parametric form to describe
the distributions of all CEAP response variables of
interest is difficult. As a consequence, semi-parametric
procedures are of interst. Further, the CEAP survey
publishes estimates of the quantiles of distributions
of erosion variables, which makes an estimation pro-
cedure based on quantile regression attractive. While
Jang and Wang (2015) use Bayesian methods for infer-
ence and focus on estimating the quantile regression
coefficients, Berg and Lee (2019a) define a frequen-
tist estimation procedure, an empirical Bayes predictor,
and a parametric bootstrap MSE estimator. Section 1.2
defines the Berg and Lee (2019a) procedure in
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more detail. Berg and Lee (2019a) restrict attention to a
continuous response variable and assume that the sam-
ple design is noninformative for the specified model.

We consider two extensions of the LIGPD SAE pro-
cedure developed in Berg and Lee (2019a). The first
is an extension to zero-inflated data. The second is an
extension to an informative sample design.

Existing small area estimation procedures for zero-
inflated data utilise fully parametric models. Pfef-
fermann, Terryn, and Moura (2008) and Chandra
and Sud (2012) consider linearmixed effectsmodels for
the non-zero component of the zero-inflated distribu-
tion. To ensure that the support of the distribution for
the nonzero component is positive, Dreassi, Petrucci,
and Rocco (2014) and Lyu (2018) consider gamma
and lognormal distributions, respectively, for the pos-
itive component. Outside the context of small area
estimation, quantile regression procedures for zero-
inflated data build on the concept underlying Tobit
regression. Such quantile regression procedures for
zero-inflated data typically assume that the observed
response variable is a truncated version of a partially
observed variablewith support on the real line (Buchin-
sky&Hahn, 1998; Powell, 1986). The partially observed
variable is assumed to satisfy a standard quantile regres-
sion model. We specify a zero-inflated quantile regres-
sion model for small area estimation in the spirit
of Dreassi et al. (2014) and Lyu (2018). We assume
that the positive component of the model satisfies a
modification of the quantile regression model of Berg
and Lee (2019a). We assume a logistic mixed effects
model for the probability of observing a zero.

Numerous small area procedures for an infor-
mative sample design have been developed. You
and Rao (2002) use inverse selection probabilities as
weights. Verret, Rao, andHidiroglou (2015) propose an
augmented model. Pfeffermann and Sverchkov (2007)
exploit relationships between the sample distribution,
the sample complement distribution, and the sur-
vey weights. We adapt the approach of Pfeffermann
and Sverchkov (2007) to the quantile regression frame-
work. To our knowledge, this is the first work to con-
sider estimation of small area quantiles when the sam-
ple design is informative for the small area model.

1.1. Overview of CEAP survey data

Our interest in small area estimation for zero-inflated
data under a complex sample design stems partly
from a survey called the Conservation Effects Assess-
ment Project (CEAP). The CEAP survey uses a multi-
phase design. The first phase is a longitudinal survey
called the National Resources Inventory (NRI) that col-
lects information on agriculture and natural resources
through visual interpretation of aerial photographs of
sampled segments. The CEAP survey collects more
detailed information for a subset of NRI locations

through farmer interviews. Primary response variables
in CEAP are measures of soil and nutrient loss that
result from processing farmer interview data through
a computer model called the Agricultural Policy Envi-
ronmental Extender (APEX). Berg and Lee (2019a)
analyze several CEAP response variables forWisconsin.
The model of Berg and Lee (2019a) is not appropriate
for data with a large proportion of zeros. Their model,
for example, would not be well suited to the percolation
variable for Kansas, where approximately 12% of the
sampled values are equal to zero. Berg and Lee (2019a)
also assume that the sample design is noninformative
for the specifiedmodel, an assumption that we examine
more rigorously in this paper.

1.2. Overview of LIGPD small area procedure

We provide an overview of the LIGPD model and esti-
mation procedure used in Berg and Lee (2019a). Fur-
ther detail is provided in Berg and Lee (2019a) and in
the supplementary document (Berg & Lee, 2019b). A
sample of ni elements is selected from the population of
Ni elements for area i, where i = 1, . . . ,D. Let yij denote
the variable of interest for unit j in area i, and assume yij
is observed only for sampled elements. We assume that
a vector of covariates xij is available for all Ni elements
in the population. Parameters of interest are quantiles
of {yij : j = 1, . . . ,Ni}.

The LIGPD model and estimator of Berg and Lee
(2019a) begins with specification of a mixed effects
quantile regression model. Let bi ∼ N(0, σ 2

b ) denote a
normally distributed random effect for area iwithmean
0 and variance σ 2

b . Assume the conditional distribu-
tion of yij given bi is absolutely continuous. Denote the
τ th quantile of the conditional distribution of yij given
xij and bi by qij(τ ). Specifically, qij(τ ) satisfies P(yij ≤
qij(τ ) | bi, xij) = τ . The model underlying the LIGPD
is a mixed effects quantile regressionmodel. Themodel
assumes that qij(τ ) satisfies

qij(τ ) = x′
ijβ(τ ) + bi, (1)

and that x′
ijβ(τ ) ≤ x′

ijβ(τ + δ) for δ ≥ 0. The criti-
cal assumption in (1) is that the area random effect
bi is constant across quantile levels. Because the area
random effect is fixed across quantile levels, qij(τ ) is
nondecreasing in τ for fixed (i, j) as long as x′

ijβ(τ ) ≤
x′
ijβ(τ + δ) for δ ≥ 0.
The LIGPD of Jang and Wang (2015) defines an

approximation to the density of the conditional distri-
bution of yij given xij and bi, denoted as fY(y | xij, bi, θ).
The approximation for the density derives from the
assumed quantile regression model (1). The quantile
function and the density function are related by

fY(qij(τ ) | xij, bi, θ) = lim
h→0

h
qij(τ + h) − qij(τ )

. (2)
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As explained in Jang and Wang (2015), the relation-
ship (2) motivates the LIGPD approximation for fY(y |
xij, bi) for a grid of interior quantiles. For extreme val-
ues, the conditional distribution of yij given xij and bi
is assumed to have a generalised Pareto distribution.
We now define the LIGPD approximation precisely.
Let 0 < τ1 < · · · < τK < 1 partition (0, 1) into K+1
evenly spaced subintervals. We use as our basis for
inference the approximate density function defined in
Jang and Wang (2015) by

fY(y | xij, bi, θ)

= I[y < qij(τ1)]τ1f�(y | ρ�, ξ�)

+ I[y ≥ qij(τK)](1 − τK)fu(y | ρu, ξu)

+
K−1∑
k=1

I[qij(τk) ≤ y < qij(τk+1)]
τk+1 − τk

qij(τk+1) − qij(τk)
,

(3)

where the vector of fixed parameters to be estimated is
θ = (β ′

K , σ ′
b, ρ�, ξ�, ρu, ξu)′,βK = (β(τ1)

′, . . . ,β(τK)′)′,
and fs(y | ρs, ξs) for s = �, u are densities of generalised
Pareto distributions defined as in Jang andWang (2015)
and in Berg and Lee (2019a). For interior quan-
tiles, the LIGPD approximates the density function
as a piecewise constant function on the intervals
[x′

ijβ(τj), x′
ijβ(τj+1)] for j = 1, . . . , J − 1. By the rela-

tionship (2), the approximation for the density function
as a piece-wise constant function corresponds to an
approximation for the CDF using linear interpolation.
The approximation for the quantile function through
linear interpolation is the inverse of the approximation
for the CDF.

Using the LIGPD for small area estimation requires
predicting the area random effect bi. An approxima-
tion for the conditional distribution of bi given the data
corresponding to (3) is given by

fb|y(bi | yi1, . . . , yini ; θ)

=
∏ni

j=1 f (yij | xij, bi, θ)fb(bi | σ 2
b )∫ ∞

−∞
∏ni

j=1 f (yij | xij, bi, θ)fb(bi | σ 2
b ) dbi

, (4)

where fb(bi | σ 2
b ) is the density function of a normal

distribution with mean zero and variance σ 2
b , and yi =

(yi1, . . . , yini)′. The density function (4) allows defining
a Bayes (minimum MSE) predictor of the area ran-
dom effect bi. Specifically, the Bayes predictor of bi (for
squared error loss) is given by

E[bi | yi; θ]

=
∫ ∞
−∞

∏ni
j=1 bif (yij | xij, bi, θ)fb(bi | σ 2

b ) dbi∫ ∞
−∞

∏ni
j=1 f (yij | xij, bi, θ)fb(bi | σ 2

b ) dbi
. (5)

With the predictor (5) of bi, a predictor of qij(τ )

is q̃ij(τ ) = x′
ijβ(τi) + E[bi | yi; θ]. The set of {q̃ij(τk) :

k = 1, . . . ,K; j = 1, . . . ,Ni} defines an approximation

for the distribution of the population of yij for j =
1, . . . ,Ni. The predictor q̃ij(τ ) requires an estimate of
the unknown β(τk) for k = 1, . . . ,K.

Berg and Lee (2019a) define an iterative procedure
to estimate β(τk). We summarise the critical aspects of
the estimation procedure and refer the reader to Berg
and Lee (2019a) and to the supplementary material
(Berg & Lee, 2019b) for details. The two critical com-
ponents of the estimation procedure involve (1) the use
of Koenker’s check function to estimate the quantile
regression coefficients and (2) the use of the distribu-
tion (4) to estimate σ 2

b and to predict bi. Koenker’s
check function (Koenker, 2005) is defined as

ρτ (u) = u(τ − I[u < 0]). (6)

Koenker’s check function is a standard objective
function for estimating quantiles because qij(τ ) =
argminaE[ρτ (yij − a) | xij, bi]. The estimation proce-
dure of Berg and Lee (2019a) alternates between opti-
misation of Koenker’s check function to estimate βK
and use of the distribution (4) to estimate σ 2

b and to pre-
dict bi. The estimates of the parameters of the extreme
value distribution are obtained using a procedure rec-
ommended in Jang andWang (2015). Note that the esti-
mates of the parameters of the extreme value distribu-
tion are required for the LIGPD approximation but are
not explicitly part of the specified quantile regression
model (1). In this sense, the estimates of the extreme
value distribution are less central than the estimates of
βK andσ 2

b .We define the estimator of the extreme value
distribution that we use for zero-inflated data precisely
in Section 2.

Given estimates β̂(τk) and σ̂ 2
b , one can construct pre-

dictors of small area parameters. A predictor of qij(τk)
is given by

q̂ij(τk) = x′
ijβ̂(τk) + E[bi | yi, θ̂],

where β̂(τk) is the estimator of β(τk). The {q̂ij(τk) :
j = 1, . . . ,Ni; k = 1, . . . ,K} approximates the distri-
bution of {yij : j = 1, . . . ,Ni}. We use {q̂ij(τk) : j =
1, . . . ,Ni; k = 1, . . . ,K} to define small area predictors,
as in Berg and Lee (2019a). Define a predictor of the τ th
population quantile for area i by

q̂i(τ ) = min{q̂ij(τk) : F̂yi(q̂ij(τk)) ≥ τ ;

j = 1, . . . ,Ni; k = 1, . . . ,K}, (7)

where F̂yi(t) = (NiK)−1 ∑Ni
j=1

∑K
k=1 I[q̂ij(τk) ≤ t].

1.3. Outline

We extend the LIGPD model and estimation proce-
dure outlined in Section 1.2 to zero-inflated data and
an informative sample design. In Section 2, we describe
the extension to zero-inflated data. In Section 3,
we describe the extension to the informative sample
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design. In Section 4, we illustrate the procedures using
the variable percolation for Kansas.

2. Zero-Inflatedmodel and estimation
procedure

We modify the LIGPD model and estimation proce-
dure of Section 1.2 for a case in which the support of yij
is [0,∞). As discussed in Section 1, several examples
in which small area estimates of a zero-inflated vari-
able are of interest exist in small area estimaton (SAE)
literature. For instance, yij may be grape production
as in Dreassi et al. (2014) or yij may be sheet and rill
erosion as in Lyu (2018). In Section 2.1, we describe
the extension of the LIGPD model to accommodate
zero-inflated data. In Section 2.2, we describe the pro-
cedure to estimate the parameters of the zero-inflated
model. Section 2.3 proposes a bootstrap MSE estima-
tor. The procedures are modifications of the estimation
and bootstrapMSE estimationmethods defined in Berg
and Lee (2019a).

Before describing the procedures in detail, we note
that the method described in Section 2 is one of many
possible ways to accommodate zero-inflated, positive
data. We adopt the approach described below for two
main reasons. First, the approach allows us to remain
within the framework of modelling quantiles. Second,
the estimation procedures require only minor modifi-
cations to the procedures in Berg and Lee (2019a)Berg
and Lee (2019a).

2.1. Zero-Inflatedmixed effects quantile
regressionmodel

Assume the support of the response variable yij is
[0,∞). As for Section 1.2, assume yij is observed for a
sample Ai of ni elements in area i. Assume a vector of
covariates (x′

ij, z
′
ij)

′ is available for the full population
of Ni elements in area i. The parameters of interest are
quantiles of {yij : j = 1, . . . ,Ni}.

We specify amodel with two components. One com-
ponent is for the probability that yij is zero. We refer to
this component as the binary component. The second
component is a model for the quantile of the condi-
tional distribution given that yij > 0.We first define the
model for the binary component and then define the
model for the positive component. Finally, we explain
how these twomodels combine to form amodel for the
quantile of the conditional distribution of yij given the
covariates and area random effects.

First, we define themodel for the binary component.
Assume

P(yij = 0 | ui, zij) = (1 + exp(z′
ijγ + ui))−1

× exp(z′
ijγ + ui), (8)

where ui ∼ N(0, σ 2
u ). The model (8) is a standard

mixed effects logistic regression model for I[yij = 0].
We advise the reader to make note that the model (8)
is a model for the probability of observing a zero, and
P(yij > 0 | ui, zij) = 1 − P(yij = 0 | ui, zij).

Next, we define the model for the positive com-
ponent. Define qposij(τ ) to be the τ th quantile of the
conditional distribution of yij given yij > 0. Specifically,
qposij(τ ) satisfies P(yij ≤ qposij(τ ) | yij > 0, bi, xij) = τ .
We define a quantile regression model for qposij that is a
modification of the model (1) to respect the restricted
sample space for yij > 0. Define a model for qposij(τ ) by

qposij(τ ) = x′
ijβ(τ ) exp(bi), (9)

where x′
ijβ(τ + δ) ≥ xijβ(τ ) for δ > 0, x′

ijβ(τ ) > 0 for
all τ ∈ (0, 1), and bi ∼ N(0, σ 2

b ).
Finally, we combine (8) and (9) to define a model

the τ th quantile of the conditional distribution of yij
given xij, bi, zij, and ui. Precisely, the τ th quantile of the
conditional distribution of yij, denoted qij(τ ), satisfies
P(yij ≤ qij(τ ) | xij, bi, zij, ui) = τ . The models (8) and
(9) induce a model for qij(τ ). It is the induced model
for qij(τ ) that we would like to use for small area pre-
diction. The key idea to deriving the induced model for
qij(τ ) is the observation that for τ > P(yij = 0 | ui, zij),
qij(τ ) has the same functional form as qposij(τ ) but with
shifted quantile levels. To derive themodel for qij(τ ), let
t>0 satisfy P(yij ≤ t | bi, ui, xij, zij) = τ . Observe that

τ = P(yij = 0 | bi, ui, xij, zij)
+ P(yij ≤ t | yij > 0, bi, ui, xij, zij)P(yij

> 0 | bi, ui, xij, zij),
= P(yij = 0 | ui, zij) + τ ∗P(yij > 0 | ui, zij),

where qposij(τ ∗) = t. Solving for τ ∗ gives

τ ∗ = τ − P(yij = 0 | ui, zij)
1 − P(yij = 0 | ui, zij) . (10)

Then,

qij(τ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
if τ ≤ P(yij = 0 | ui, zij)
qposij

(
τ − P(yij = 0 | ui, zij)
1 − P(yij = 0 | ui, zij)

)
if τ > P(yij = 0 | ui, zij).

(11)

As a remark on the model for the positive compo-
nent, one can consider alternatives to the model (9)
for the quantile of the conditional distribution given
that yij is positive. For instance, a different approach
is to use a transformation of yij for yij > 0, as in Berg
and Lee (2019a). The relationship (11) holds for any
qposij(τ ) > 0. In the data analysis of Section 4, we con-
sider an expansion of the model (9).
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To construct small area predictors according to the
distribution (11), we require estimates of the model
parameters. In the estimation procedure defined below,
we first estimate qposij(τ ) and P(yij = 0 | ui, zij). We
then predict finite population quantiles of yij accord-
ing to (11). Details of the estimation and prediction
procedures are defined in Section 2.2.

2.2. Estimation procedure for zero-inflatedmodel

The estimation procedure consists of three main steps.
We first estimate the parameters of the model for
qposij(τ ). We then estimate the probability of a zero.
Finally, we combine the predictor of qposij(τ ) with the
predictor of the probability of a zero to obtain predic-
tors of population quantiles.

2.2.1. Estimator of positive component
We use the LIGPD of (Jang & Wang, 2015) to approx-
imate the conditional density function for yij given
that yij > 0. The approximation is analogous to the
approach outlined in Section 1.2, except that we use
the LIGPD to approximate the conditional density of yij
given that yij > 0. Define a sequence of quantile levels
by τk = k(K + 1)−1 for k = 1, . . . ,K, where K → ∞
as D → ∞. The approximate density function for the
conditional distribution of yij given yij > 0 and bi is
defined by

fY(y | yij>0, xij, bi, θ)= I[y < qposij(τ1)]τ1f�(y | ρ�, ξ�)

+ I[y ≥ qposij(τK)](1 − τK)fu(y | ρu, ξu)

+
K−1∑
k=1

I[qposij(τk) ≤ y < qposij(τk+1)]

× τk+1 − τk

qposij(τk+1) − qposij(τk)
, (12)

where θ = (β ′
K , σ 2

b , ρ�, ξ�, ρu, ξu)′, βK = (β(τ1)
′, . . . ,

β(τK)′)′ is the vector of fixed parameters to be esti-
mated, I[·] is the indicator function that is equal to
1 if the argument is true and zero otherwise, and
fs(y | ρs, ξs) for s = �, u are densities of generalised
Pareto distributions defined as follows. Letting uij =
0.5(x′

ijβ(τK) + x′
ijβ(τK−1)) and �ij = 0.5(x′

ijβ(τ1) +
x′
ijβ(τ2)),

fu(y | ρu, ξu) = 1 − 0.5(τK−1 + τK)

1 − τK
g(y − uij | ρu, ξu),

(13)
and

f�(y | ρ�, ξ�) = 0.5(τ1 + τ2)

τ1
g(−y + �ij | ρ�, ξ�), (14)

where

g(y | ρs, ξs) =
{

ρ−1
s (1 + ξsy/ρs)−(1+1/ξs), ξs 
= 0

ρ−1
s exp(−y/ρs), ξs = 0,

(15)
for s = �, u with y>0 for ξ ≥ 0, and 0 ≤ y < −ρ/ξ

for ξ < 0. The function (15) is a density func-
tion of a generalised Pareto distribution. The mul-
tipliers defining (13) and (14) are derived in Jang
and Wang (2015), and we summarise the motivation
in Jang and Wang (2015) for these multipliers for
internal consistency. We consider the density for the
upper extreme value distribution, fu, recognising that
the motivation for f� is completely analogous. By the
definition of uij,

P(Y > y | Y > uij, xij, bi, uij > 0)

= FY(y | xij, bi, y > 0) − 0.5(τK−1 + τK)

1 − 0.5(τK−1 + τK)
. (16)

Taking derivatives of both sides with respect to y
gives (1 − τK)fu(y | ρu, ξu) = [1 − 0.5(τK−1 + τK)]−1

fY(y | xij, bi, y > 0). Under the assumption that the gen-
eralised Pareto distribution describes the conditional
distribution of yij for yij > uij, g(y − uij | ρu, ξu) =
fY(y | xij, bi, y > 0)[1 − (τK−1 + τK)/2]−1. The form
for fu follows from setting (1 − τK)fu(yij | xij, bi, y >

0) = [1 − (τK−1 + τK)/2]g(y − uij | ρu, ξu).
Before proceeding with the prediction and estima-

tion procedure, we add a brief comment on the rela-
tionship between the model and the LIGPD approxi-
mation, particularly the role of the generalised Pareto
distribution. The assumed model for the positive com-
ponent is defined in (9). The density function (12) is
an approximation that provides a tool for defining pre-
dictors and estimators. The extreme value distributions
are adapted from Berg and Lee (2019a) and from Jang
and Wang (2015). Conceptually, the extreme value dis-
tribution for the lower tail can be improved for the case
of zero-inflated data. We retain the estimator defined
in step 3 of Section 2.2.1 largely for simplicity. Based
on past experiments with different estimators of the
extreme value distribution, we expect the choice of the
extreme value distribution to have little impact on the
efficiency of the predictors.

We recognise that the use of the same notation for
θ in the model for the zero-inflated response that we
use in Section 1.2 is a slight abuse of notation. We use
the same notation θ in defining the model for qposij(τk)
that we use in defining the general LIGPD in Section 1.2
for simplicity. We recognise that the θ in (12) is dif-
ferent from the θ for the unconditional distribution of
Section 1.2.

An important distribution used to define estimators
and predictors is the conditional distribution of bi given
the data. An expression for the conditional distribution
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of bi given the data corresponding to the LIGPD is

fb|ypos(bi | yposi; θ)

=

∏
{j∈Ai:yij>0} fY(yij | yij

> 0, xij, bi, θ)φ(bi/σb) dbi∫ ∞
−∞

∏
{j∈Ai:yij>0} fY(yij | yij

> 0, xij, bi, θ)φ(bi/σb) dbi

, (17)

where φ is the density function of a standard nor-
mal distribution, and yposi = {yij : j ∈ Ai, yij > 0}. If the
area has no sampled units, then the conditional den-
sity of bi is that of a normal distribution with mean
zero and variance σ 2

b . One can calculate expectations
with respect to (17) to obtain Bayes predictors under
squared error loss. For an integrable function h(·), the
Bayes preditor of h(bi) for squared error loss is defined
as

E[h(bi) | yposi; θ]

=

∫ ∞
−∞

∏
{j∈Ai:yij>0} h(bi)fY(yij | yij

> 0, xij, bi, θ)φ(bi/σb) dbi∫ ∞
−∞

∏
{j∈Ai:yij>0} fY(yij | yij

> 0, xij, bi, θ)φ(bi/σb) dbi

. (18)

In particular, for h(b) = exp(b), we obtain the Bayes
predictor of exp(bi). The Bayes predictor of qposij(τ ) for
squared error loss corresponding to the approximate
density function (12) and the model (9) is

qBij(τ ) = x′
ijβ(τ )E[exp(bi) | yposi; θ]. (19)

A predictor of the form (19) will provide the basis of
the small area predictors for zero-inflated data. How-
ever, the predictor (19) is unattainable because (19) is a
function of the unknown θ .

We next define an estimator of θ . The estimator is a
modification of the iterative estimation procedure used
in Berg and Lee (2019a) to account for the zero-inflated
nature of the data. The iteration involves optimisa-
tion of Koenker’s check function (6) and calculation of
conditional moments according to (17).

Begin with the initial estimator θ̂
(0)

defined in
Appendix 1. Form = 1, 2, . . . ,M, alternate between the
following steps.

(1) Define the updated estimator of σ 2
b by

σ̂
2(m)

b = (D − p)−1
D∑
i=1

E[b2i | yposi; θ̂
(m−1)

],

(20)

where p is the dimension of xij. Define predictors
of bi and exp(bi) in themth step by

b̂(m)
i = E[bi | yposi; θ̂

(m−1)
], and

ê(m)

bi = E[exp(bi) | yposi, θ̂
(m−1)

].

To approximate the integrals defining the condi-
tional expectations, we use a Riemann sum, as
described in Berg and Lee (2019a). Themotivation
for the estimator σ̂

2(m)

b is from the EM algorithm
for a linear mixed effects model with normally dis-
tributed random terms (Searle, Casella, & McCul-
loch, 1992, p. 300).

(2) We use the method of Koenker and Ng (2005)
to update the estimator of βK to maintain the
monotonicity restriction. The motivation for the
estimator of β(τk) is that for known bi, x′

ijβ(τ ) =
argminaE[ρτ (yij exp(−bi) − a) | yij > 0, bi], where
ρτ (u) is the check function defined in (6). The esti-
mates of β(τj) are obtained sequentially to enforce
the monotonicity condition. First, define

β̂
(m)

(τ1) = argminβ

D∑
i=1

∑
{j∈Ai:yij>0}

ρτ1(yij exp(−b̂(m)
i ) − x′

ijβ), (21)

subject to the restriction that x′
ijβ̂

(m)
(τ1) > c0,

where c0 is a specified constant. For k = 2, . . . ,K,
define

β̂
(m)

(τk) = argminβ

D∑
i=1

∑
{j∈Ai:yij>0}

ρτk(yij exp(−b̂(m)
i ) − x′

ijβ) (22)

subject to the restriction that x′
ijβ̂

(m)
(τk)

≥ x′
ijβ̂

(m)
(τk−1) for j = 1, . . . ,Ni and i = 1, . . . ,D.

To enforce the monotonicity restrictions, we
implement the constrained optimisation method
of Koenker and Ng (2005) using the method fn
in the R function rq.

(3) Next, we estimate ρs and ξs for s = �, u, the param-
eters of the generalised Pareto density. The esti-
mators are minor modifications of the procedures
used in Jang and Wang (2015) to account for the
zero-inflated nature of the data. Specifically,

ρ̂
(m)
� = 0.5(τ1 + τ2)

D∑
i=1

∑
{j∈Ai:yij>0}

×
q̂(m)
ij (τ2) − q̂(m)

ij (τ1)

n(τ2 − τ1)
,

ρ̂(m)
u = [1 − 0.5(τK + τK−1)]

D∑
i=1

∑
{j∈Ai:yij>0}

×
q̂(m)
ij (τK) − q̂(m)

ij (τK−1)

n(τK − τK−1)
,

(23)
where q̂(m)

ij (τk) = x′
ijβ̂

(m)
(τk)ê

(m)

bi , and n = ∑D
i=1∑ni

j=1 I[yij > 0]. Holding ρ̂
(m)
� and ρ̂

(m)
u fixed, the
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estimator of ξs is the maximum likelihood esti-
mator using only {yij < �̂

(m)
ij } for s = � and {yij >

û(m)
ij } for s=u, where �̂

(m)
ij = 0.5(x′

ijβ̂
(m)

(τ1) + x′
ij

β̂
(m)

(τ2))ê
(m)

bi and û(m)
ij =0.5(x′

ijβ̂
(m)

(τK) + x′
ijβ̂

(m)

(τK−1))ê
(m)

bi . Precisely,

ξ̂
(m)
� = argmaxξ

∏
{(ij):0<yij<�̂

(m)
ij }

g(−(yij − �̂
(m)
ij )) |

× ρ̂
(m)
� , ξ), (24)

and

ξ̂ (m)
u = argmaxξ

∏
{(ij):yij>û(m)

ij >0}

g(yij − û(m)
ij | ρ̂(m)

u , ξ). (25)

Let θ̂ = ((β̂K)′, σ̂ 2
b , ρ̂�, ξ̂�, ρ̂u, ξ̂u)′ denote the estima-

tor of θ obtained in the final step of the iteration.

2.2.2. Estimator of Binary component
One can use standard software to estimate the parame-
ters of the logistic mixed effects model (8). To estimate
σ 2
u and γ , we use a Laplace approximation, as imple-

mented in the R function glmer. Let σ̂ 2
u and γ̂ be the

resulting estimates of σ 2
u and γ .We use penalised quasi-

likelihood (Breslow & Clayton, 1993), as implemented
with the predict method for glmer objects to pre-
dict ui, and we let ûi be the resulting predictor. We then
define a predictor of the probability that yij is zero by

p̂z(ûi, zij) = (1 + exp(z′
ijγ̂ + ûi))−1 exp(z′

ijγ̂ + ûi).
(26)

2.2.3. Predictors of quantiles
Given estimates of parameters θ , γ , and σ 2

u , as well as
predictors of ui and exp(bi), the next step is to con-
struct small area predictors. The small area prediction
procedure involves two main steps. First, we define an
approximation for the population. The approximation
for the population is similar in structure to the method
of Berg and Lee (2019a), except that the unconditional
distribution (11) is used to accommodate the zero-
inflated nature of the data. The second step is to use the
approximation for the population to define estimates of
small area quantiles.

The details of the two steps of the small area pre-
diction procedure are as follows. For i = 1, . . . ,D, j =
1, . . . ,Ni, and k = 1, . . . ,K, define a predictor of the
τkth conditional quantile for yij > 0 by

q̂posij(τk) = E[exp(bi) | yposi, θ̂]x′
ijβ̂(τk),

where the expectation is approximated using the Rie-
mann sum defined in Berg and Lee (2019a). Then,

define a predictor of the unconditional quantile by

q̂ij(τ ) =

⎧⎪⎨
⎪⎩
0 if τ ≤ p̂z(ûi, zij)

q̂posij
(

τ − p̂z(ûi, zij)
1 − p̂z(ûi, zij)

)
if τ > p̂z(ûi, zij).

(27)
The {q̂ij(τk) : i = 1, . . . ,D; j = 1, . . . ,Ni; k = 1, . . . ,K}
defines an approximation for the population.We define
a predictor of the τ th population quantile by

q̂i(τ ) = min{q̂ij(τk) : F̂yi(q̂ij(τk))
≥ τ ; j = 1, . . . ,Ni; k = 1, . . . ,K}, (28)

where F̂yi(t) = (NiK)−1 ∑Ni
j=1

∑K
k=1 I[q̂ij(τk) ≤ t].

2.3. BootstrapMSE estimation

We modify the parametric bootstrap MSE estimator of
Berg and Lee (2019a) to account for the zero-inflated
nature of the data. The main idea of the bootstrap
simulation procedure is to use the probability integral
transform to simulate from the conditional distribu-
tion of yij given xij and bi. First, a b∗

i is generated from
the estimated marginal distribution of bi. Then, linear
interpolation is used to approximate the quantile func-
tion corresponding to the conditional distribution of yij
given xij and b∗

i . The probability integral transform is
then used to simulate a new variable, y∗

ij from this lin-
ear approximation to the conditional quantile function.
Finally, the estimation procedure is repeated using the
original sample and the new simulated y∗

ij.
To define a bootstrap MSE estimator, repeat the fol-

lowing steps for t = 1, . . . ,T.

(1) First, generate a bootstrap approximation for
the population. Generate b∗(t)

i ∼ N(0, σ̂ 2
b ), and

define q∗(t)
posij(τk) = x′

ijβ̂(τk) exp(b
∗(t)
i ) . Generate

u∗(t)
i ∼ N(0, σ̂ 2

u ), and define p̂∗(t)
zij = exp(z′

ijγ̂ +
u∗(t)
i )(exp(z′

ijγ̂ + u∗(t)
i ) + 1)−1. Define

q∗(t)
ij (τk) =

⎧⎪⎪⎨
⎪⎪⎩
0 if τ ≤ p̂∗(t)

zij

q̂posij

⎛
⎝τ − p̂∗(t)

zij

1 − p̂∗(t)
zij

⎞
⎠ if τ > p̂∗(t)

zij .

(29)
Define a bootstrap version of the τ th population
quantile by

q∗(t)
i (τ ) = min{q∗(t)

ij (τk) : F̂∗(t)
yi (q∗(t)

ij (τk))

≥ τ ; j = 1, . . . ,Ni; k = 1, . . . ,K}, (30)

where F̂∗(t)
yi (t) = (NiK)−1 ∑Ni

j=1
∑K

k=1 I[q
∗(t)
ij

(τk) ≤ t].
(2) Generate a bootstrap sample as follows. Generate

v∗(t)
ij

iid∼ Unif(0, 1) for i = 1, . . . ,D, and
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j = 1, . . . ,Ni. Define y
∗(t)
ij = y∗

ij(θ̂ , b
∗(t)
i , v∗(t)

ij ) by

y∗(t)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q∗(t)
ij (τk∗(t)

ij
)

+(v∗(t)
ij − τk∗(t)

ij
)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q∗(t)
ij (τk∗(t)

ij +1)

−q∗(t)
ij (τk∗(t)

ij
)

τk∗(t)
ij +1 − τk∗(t)

ij

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

p̂∗(t)
zij < v∗(t)

ij < τK

0, v∗(t)
ij ≤ p̂∗(t)

zij

q∗(t)
ij (τK), v∗(t)

ij ≥ τK ,
(31)

where k∗(t)
ij = max{k : τk ≤ v∗(t)

ij }. Define the boot-
strap sample to be {y∗(t)

ij : (i, j) ∈ A}, where A
denotes the original sample. Note that the opera-
tion in the first line of (31) defines a linear interpo-
lation of the estimated quantile function.

(3) Repeat the estimation procedure of Section 2
using {y∗(t)

ij : (i, j) ∈ A} to obtain q̂∗(t)
i (τ ). As in

Berg and Lee (2019a), we simplify the estima-
tion procedure to reduce the computational bur-
den. Rather than estimate the quantile regression
coefficients sequentially to enforce themonotonic-
ity constraint, as in (A6)-(A7), we simultaneously
minimise Koenker’s check function for all quantile
levels and then sort the estimates of the quantiles
to obtain a nondecreasing quantile function (Cher-
nozhukov, Fernandez-Val, & Galichon, 2009) for
element (i, j). Amore specific definition of the rear-
rangement operation is defined following (A3) of
Appendix 2.

Define the bootstrap MSE estimator for q̂i(τ ) by

ˆMSEi(τ ) = 1
T

T∑
t=1

(q̂∗(t)
i (τ ) − q∗(t)

i (τ ))2. (32)

The bootstrap MSE estimator is similar to bootstrap
MSE estimators for small area predictors for parametric
models developed in Lahiri, Maiti, Katzoff, and Par-
sons (2007) and inHall andMaiti (2006). TheMSE esti-
mator (32) is an estimator of E[(q̂∗(t)

i (τ ) − q∗(t)
i (τ ))2]

and does not account for a possible bias of the estimator
of the leading term due to estimating θ . In a simulation
study, Berg and Lee (2019a) evaluate the quality of an
MSE estimator similar to (32) for the quantile regres-
sion model with no modification for zero-inflated data.
Because the MSE estimator (32) is similar in structure
to the MSE estimator of Berg and Lee (2019a), we do
not present further simulation results here. Instead, we
focus on an application of (32) to the data presented in
Section 4 in this manuscript.

3. Modification for an informative design

The development of Section 2 assumes that the sam-
ple design is noninformative for the quantile regression
model. In this section, we consider an informative sam-
ple design. Assume all areas are included in the sample,
and assume that a subset of elements is selected from
area i. Let πij = P(Iij = 1 | yij, xij, zij, bi, ui), where Iij
is the sample inclusion indicator for element (i, j).
We adapt the approach of Pfeffermann and Sver-
chkov (2007) to the quantile regression setting in order
to modify the predictors to account for unequal selec-
tion probabilities. Pfeffermann and Sverchkov (2007)
develop small area predictors for a fully paramet-
ric model under an informative sample design. Their
approach exploits relationships between the sample
distribution and the sample complement distribution.
They construct predictors relative to the population
distribution using estimates of the parameters of the
sample distribution. For the fully parametric model
considered in Pfeffermann and Sverchkov (2007), a
closed form expression for the small area predictor is
available. For the quantile regression model, a closed-
form expression relating the sample distribution to
the sample complement distribution is not available.
Nonetheless, the basic idea of the Pfeffermann and Sver-
chkov (2007) approach applies easily to the quantile
regression framework. Below, we use importance sam-
pling to simulate from the sample complement distri-
bution.

3.1. Procedure to account for informative design

First, we introduce the definitions of the popula-
tion, sample, and sample complement distributions
more formally. Let fp(yij | bi, xij, ui, zij) be the den-
sity/mass function corresponding to the population
distribution of yij. Let fs(yij | bi, xij, ui, zij) = fp(yij |
bi, xij, ui, zij, Iij = 1) denote the corresponding sample
distribution. From Pfeffermann and Sverchkov (2007;
also see Kim & Yu, 2011 for a related result in the con-
text of nonignorable nonresponse), the sample comple-
ment distribution is of the form

fc(yij | bi, ui, xij, zij) ∝ Es[π−1
ij (1 − πij) |

yij, xij, zij, bi, ui]fs(yij | bi, xij, ui, zij), (33)

where Es[·] denotes expectation with respect to the
sample distribution, and fc(yij | bi, ui, xij, zij) = fp(yij |
bi, xij, ui, zij, Iij = 0). (We refer the reader to Pfeffer-
mann & Sverchkov, 2007 for further background on
the concepts of the sample distribution and the sample
complement distribution.)

We obtain estimates of fs(yij | bi, xij, ui, zij) and
of Es[π−1

ij (1 − πij) | yij, xij, zij, bi, ui] using the sample
data. We use the quantile regression procedure defined
in Section 2 to obtain an estimate of the quantiles of
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the distribution of fs(yij | bi, xij, ui, zij). Let q̂ij(τk) for
k = 1, . . . ,K be the estimated quantiles based on the
sample for evenly spaced quantile levels, obtained using
the procedure of Section 2. Denote the estimate of
Es[π−1

ij (1 − πij) | yij, xij, zij, bi, ui] based on the sample
by

ω̂ij(yij) = Es[π−1
ij (1 − πij) | yij, xij, zij, bi, ui]. (34)

A variety of models and procedures may be used to
obtain the estimates ω̂ij(yij). We use a weight model
similar to that of Pfeffermann and Sverchkov (2007). In
this section, we first define themethod to simulate from
the population distribution for an arbitrary definition
of ω̂ij(yij). We then define the procedure that we use to
estimate Es[π−1

ij (1 − πij) | yij, xij, zij, bi, ui].
We simulate from the population distribution using

the relationship (33). Let q̂ij(τk) for k = 1, . . . ,K be
the estimated quantiles based on the sample for evenly
spaced quantile levels, obtained using the procedure
of Section 2. Let ω̂ij(yij) be an estimate of Es[π−1

ij (1 −
πij) | yij, xij, zij, bi, ui] based on the sample. Define a
simulated population by sampling from {q̂ij(τk) : k =
1 . . . ,K} with probabilities proportional to ω̂ij(q̂ij(τk)).
For r = 1, . . . ,R, let

q̃(r)
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q̂ij(τk) with probability

ω̂ij(q̂ij(τk))∑K
k=1 ω̂ij(q̂ij(τk))

if (i, j) /∈ A

q̂ij(τk) with probability K−1 if (i, j) ∈ A.
(35)

The {q̃(r)
ij : i = 1, . . . ,D; j = 1, . . . ,Ni; r = 1, . . . ,R}

defines an approximation for the population.We define
a predictor of the τ th population quantile by

q̂i(τ ) = min{q̂ij(τk) : F̂(R)
yi (q̂ij(τk))

≥ τ ; j = 1, . . . ,Ni; r = 1, . . . ,R}, (36)

where F̂(R)
yi (q̂ij(τk)) = (NiR)−1 ∑Ni

j=1
∑R

r=1 I[q̃
(r)
ij ≤ t].

This simulation procedure is essentially the ‘weighted
bootstrap method’ defined in Section 3.2 of Smith
and Gelfand (1992). The quantile regression model
lends itself naturally to a procedure such as (35)
to simulate from the sample complement distribu-
tion. Because the quantile estimates are already com-
puted, one only needs to obtain the importance weight
ω̂ij(q̂ij(τk)).

Implementation of (35) and (36) requires amodel for
Es[π−1

ij (1 − πij) | xij, zij, yij, bi, ui]. We assume

Es[π−1
ij (1 − πij) | xij, zij, yij, bi, ui]

= exp(α0 + x̃′
ijα1 + yijα2 + δi), (37)

where δi ∼ N(0, σ 2
δ ), and x̃ij may contain elements of

xij or zij. To estimate Es[π−1
ij (1 − πij) | xij, zij, yij, bi, ui]

we use a working model defined by

log(π−1
ij (1 − πij)) = α0 + x̃′

ijα1 + yijα2 + δi + rij,

i = 1, . . . ,D; j ∈ Ai, (38)

where δi ∼ N(0, σ 2
δ ), and rij ∼ N(0, σ 2

r ). Themodel (38)
is implicitly specified conditional on Iij = 1 (i.e., a sam-
ple distribution model) and is defined only for sampled
elements. Because we require an estimate of the mean
of π−1

ij (1 − πij) with respect to the sample distribution
as defined in (37), we can estimate the parameters of
the model (38) using only the sample data, as in Pfef-
fermann and Sverchkov (2007). We estimate α0, α1, α2,
and σ 2

δ using restricted maximum likelihood (REML)
applied to the sample data. We denote the REML esti-
mates by α̂0, α̂1, α̂2, and σ̂ 2

δ . We define the estimator of
Es[π−1

ij (1 − πij) | xij, zij, y, bi, ui] by

ω̂ij(y) = exp(α̂0 + x̃ijα̂1 + yα̂2 + δ̂i),

where δ̂i is the EBLUP of δi. As mentioned above,
other possible models for πij are possible. We use the
model (38) primarily for mathematical simplicity. The
model (38) is similar to that of Pfeffermann and Sver-
chkov (2007), which has been vetted in the literature,
and permits a computationally simple estimation pro-
cedure.

3.2. Simulation study for informative sampling
modification

We conduct a limited simulation study to vet the mod-
ification for the informative sample design. The aim
of the simulation is to verify that the modification for
informative sampling reduces a bias in the predictor
that ignores the survey weights when the sample design
is informative for the specified model.

To focus attention on the informative sampling
procedure, we do not use a zero-inflated model for
the simulation. We use one of the simulation models
from Berg and Lee (2019a). The simulation model is
defined by

yij = β0 + β1xij + bi + eij, (39)

where xij
iid∼ N(0, 1), β0 = −1.5, β1 = 0.5, bi ∼

N(0, 0.5), and eij = (1 + 0.1xij)(e∗ij − 2)/2, and e∗ij ∼
χ2

(2). We generate D=60 areas with (Ni, ni) = (143, 5)
for 20 areas, (Ni, ni) = (286, 10) for 20 areas, and
(Ni, ni) = (571, 20) for 20 areas. The MC sample size
for each simulation is 200. The population quantile
is qi(τ ) = min{yij : Fyi(yij) ≥ τ : j = 1, . . . ,Ni}, where
Fyi(y) = N−1

i
∑Ni

j=1 I[yij ≤ y].
A sample is selected using systematic probability

proportional to size sampling. The inclusion probability
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Table 1. Comparison of MC bias and MCMSE for LIGPD predic-
tors.

τ Criterion Predictor ni = 5 ni = 10 ni = 20

0.25 MSE SRS 0.0403 0.0229 0.0166
0.25 MSE Inf 0.0316 0.0146 0.0077
0.25 Bias SRS −0.0954 −0.0935 −0.0965
0.25 Bias Inf −0.0166 −0.0145 −0.0174
0.50 MSE SRS 0.0636 0.0453 0.0387
0.50 MSE Inf 0.0349 0.0173 0.0095
0.50 Bias SRS −0.1740 −0.1720 −0.1756
0.50 Bias Inf −0.0322 −0.0301 −0.0338
0.75 MSE SRS 0.1656 0.1446 0.1352
0.75 MSE Inf 0.0546 0.0316 0.0204
0.75 Bias SRS −0.3442 −0.3472 −0.3508
0.75 Bias Inf −0.0654 −0.0686 −0.0725

Notes: SRS: predictors ignoring sampling weights. Inf: predictors that incor-
porate the modification for informative sampling defined in Section 3.1.

for element j in area i is

πij = nizij∑Ni
j=1 zij

, (40)

where

log(zij) = −yij/3 + β0/3 + β1xij/3 + ui/15. (41)

Table 1 contains the average Monte Carlo (MC)
MSE and average MC bias of two predictors, where
the average is across areas of the same sample size.
The predictor denoted ‘SRS’ is the predictor of Berg
and Lee (2019a), which ignores the unequal selec-
tion probabilities. The predictor denoted ‘Inf’ uses
the modification (35) to account for the informative
design. The bias for the SRS procedure that ignores
the weights is negative because the probability of selec-
tion increases as yij decreases. Incorporating the survey
weights through the procedure of Section 3.1 reduces
the average MC MSE and absolute average MC bias of
the predictor.

4. Illustration for Kansas CEAP data

We illustrate the procedures using data collected from
the 2003–2006 CEAP surveys in Kansas. We consider
the response variable, percolation. Approximately 12%
of the sampled values of percolation are zero for Kansas.
A preliminary analysis shows that the conditional dis-
tribution of the percolation variable given the covariates
that we considered violates the assumptions of sim-
ple parametric models, such as the linear mixed effects
model (Battese et al., 1988) and the lognormal mixed
effects model (Berg & Chandra, 2014). Therefore, the
percolation variable provides a realistic candidate for
demonstrating the quantile regression procedures.

We apply the procedures of Sections 2 and 3
above to obtain county level predictors of the quan-
tiles of the percolation variable for Kansas. We use
M=2 steps of the iterative estimation procedure and
T=100 bootstrap samples. For the informative sam-
pling modification, we use R = 100 to obtain a simu-
lated approximation for the population. As a covariate,

we use a rainfall erosion index (RFACT). The covari-
ate RFACT is defined geographically, as in Wischmeier
and Smith (1978, p. 11), for the full population. We
obtain the RFACT from the NRI survey data. For this
illustration, we treat the NRI as a population.

4.1. Model and estimators for CEAP data analysis

The rainfall factor is used as the univariate covariate
in all components of the model. We consider an exten-
sion of the model (9) for the CEAP data analysis. The
extendedmodel for the conditional quantile of yij given
that yij > 0 is

qposij(τ ) = xη
ijβ(τ) exp(bi), (42)

where xij is the rainfall factor, and the power η is con-
stant across quantile levels. We chose to expand the
model to include the power η after exploratory work
indicated a nonlinear association between xij and yij for
yij > 0.We provide an overview of the estimator of η in
this section and relegate details to Appendix 2.

To estimate η, we add a step to the iterative estima-
tion procedure defined in Section 2.2.1. After step 3 of
Section 2.2.1, we implement the following step 4:

Define

L̃(m)(η) =
∫ ∞

−∞

∏
{j∈Ai:yij>0}

fY(yij | yij > 0, xη
ij, bi, θ̂

(m)
)

φ(bi/σ̂
(m)

b ) dbi,

and define η̂(m) = argmaxηL̃
(m)(η).

The objective function, L̃(m), has an interpretation
similar to a profile likelihood. We replace xij with

xη̂(m−1)

ij when implementing steps 1-3 of the proce-
dure with estimated η. In each step m of the iteration,
we restrict xη̂(m−1)

ij β̂(m)(τ ) such that xη̂(m−1)

ij β̂(m)(τ ) is

nondecreasing in τ and xη̂(m−1)

ij β̂(m)(τ ) > 0.001. We
use 0.001 as the lower bound because 0.001 is the
smallest possible nonzero value for percolation. In the
model for the probability of a zero, zij = (1, xij)′. In
the model for the survey weights, x̃ij = (1, xij)′. For
the bootstrap, we use the simulation procedure defined
in Section 2.2 with q∗(t)

posij(τk) = xη̂
ijβ̂(τ ), where η̂ is the

final estimator of η. We estimate η for each bootstrap
sample, and define a bootstrap standard error for η̂

as
√

(B − 1)−1 ∑B
b=1(η̂

(b) − η̄)2, where η̂(b) is the esti-
mate of η obtained in bootstrap sample b, and η̄ =
B−1 ∑B

b=1 η̂(b).

4.2. Results for CEAP data analysis

The rainfall factor is positively correlated with percola-
tion. Among units with a positive value for percolation,
the correlation between the rainfall factor and perco-
lation is 0.49, and the variance of percolation tends to
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Figure 1. Black: predictors of quartiles and themedian based on the zero-inflated quantile regressionmodel. Top left: 25 percentile.
Top right:median. Bottom: 75 percentile. Solid black line: predictors do not use samplingweights. Dashed black line: predictors incor-
porate the sampling weights through the preocedure of Section 3.1. Green and red: upper and lower endpoints of 95% prediction
intervals.

increase with the rainfall factor. The estimate of the
slope for the rainfall factor in the model for the prob-
ability that percolation is zero is γ̂ = −0.0139, with a
standard error of 0.0035. The estimate of η is η̂ = 1.075,
and the bootstrap standard error is 0.014. An approx-
imate t−statistic for the null hypothesis that η = 1 is
given by

t = η̂ − 1√
(B − 1)−1 ∑B

b=1(η̂
(b) − η̄)2

= 5.4, (43)

suggesting that η differs significantly from 1.
In Figure 1, county level estimates of the quartiles

and the median are plotted along with normal the-
ory 95% prediction intervals. The prediction intervals
are calculated for the predictors that ignore the sam-
pling weights. The intervals are defined as q̂i(τ ) ±
1.96

√
ˆMSEi(τ ), where ˆMSEi(τ ) is defined in (32), and

the lower interval endpoint is truncated at zero. The
solid lines correspond to the procedure that ignores the
sampling weights. The estimates that account for the
sample design, as described in Section 3, are depicted
with a dashed line.

For this data set, the estimates that account for the
informative sample design are nearly indistinguish-
able from the estimates that ignore the survey weights.
Figure 2 shows the estimates for the informative design
plotted on the horizontal axis with the corresponding
estimates that ignore the sampling weights plotted on
the vertical axis. The two sets of estimates nearly lie on
the 45 degree line through the origin.

Figure 3 contains square roots of the estimatedMSEs
plotted against the sample sizes for the areas. The vari-
ation in the widths of the intervals is due partly to
variation in the sample sizes. The use of the multi-
plicative lognormal distribution for bi in (42) also con-
tributes to the variation in the estimated root MSEs.
The estimated MSEs from a model with an additive
normal random effect show less variation than the esti-
mated MSEs in Figure 3. Because the additive nor-
mal model does not preserve the parameter space
for the zero-inflated data, we prefer the multiplicative
model (42).

We also compare the estimates with estimated η

to the estimates with η = 1. The absolute differences
between the predictions obtained from the model with
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Figure 2. Comparison of predictors that incorporate themodification for informative sampling (x-axis) to predictors that do not use
the sampling weights (y-axis). Top left: 25 percentiles. Top right: median. Bottom: 75 percentile.

Figure 3. Estimated root mean squared errors plotted against county sample sizes. Estimated mean squared errors are defined
in (32).
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estimated η and the predictions from the model with
η = 1 are less than the estimated standard errors of the
predictors with η = 1 for all but one area. We present
results for estimated η because the t−statistic defined
in (43) indicates that η 
= 1. For this data set, estimating
η is of little practical significance.

5. Summary and future work

Wedevelop two extensions to themixed effects quantile
regression small area procedure outlined in Section 1.2.
One extension accommodates zero-inflated data. The
second extension accounts for an informative sample
design. To illustrate the procedures, we obtain predic-
tors of quantiles of percolation for Kansas counties,
using data from CEAP.

For this data analysis, incorporating the survey
weights has only a minor effect on the estimates and
estimated rootmean squared errors. For this reason, we
prefer the simpler predictors that do not use the sam-
pling weights. In other applications, the effects of the
sampling weights on the predictors may be important.
For such situations, amean squared error estimator that
accounts for the modification for informative sampling
would be desirable. Extending the bootstrap procedure
of Pfeffermann and Sverchkov (2007) to estimation of
quantiles is an area for future work.

For several counties, the estimated root mean
squared errors are undesirably large. Expanding the
model to incorporate additional covariates or spatial
dependence is a possible future direction. A different
approach for modelling the zero-inflated data would
be to use a censored quantile regression model, as dis-
cussed in Section 1.
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Appendices

Appendix 1: Initial Estimators

We define an initial estimator of b = (b1, . . . , bD)′ by

b̂
(0) = argminb

D∑
i=1

∑
{j∈Ai :yij>0}

ρ0.5(log(yij) − bi), (A1)

where−∑D−1
i=1 b̂(0)

i = b̂(0)
D . Let V̂1(b̂

(0)
1 ), . . . , V̂D−1(b̂

(0)
D−1) be

estimates of the variance of the asymptotic distribution of
(b̂(0)

1 , . . . , b̂(0)
D−1), estimated with the option se = "ker"

in the R function summary.rq. To define an initial estima-
tor of σ 2

b , define the area-level Fay-Herriot model,

b̂(0)
i = bi + ai, (A2)

where ai has a distributionwithmean 0 and variance V̂i{b̂(0)
i },

and bi has a distribution with mean 0 and variance σ 2
b for

i = 1, . . . ,D − 1. The initial estimate of σ 2
b , denoted by σ̂

2(0)
b ,

is obtained by applying the estimation procedure of Wang,
Fuller, and Qu (2008) to the area level model (A2). The
preliminary estimate of β(τk) for k = 1, . . . ,K is defined by

β̂
(0)

(τk) = argminβ

D∑
i=1

∑
{j∈Ai :yij>0}

ρτk(yij/ exp(b̂
(0)
i ) − x′

ijβ).

(A3)
We rearrange {x′

ijβ̂
(0)

(τk) : k = 1, . . . ,K} for every (i, j) to
obtain a nondecreasing quantile function (Chernozhukov
et al., 2009). The estimate q̂(0)

ij (τk) is the kth order statistic of

{x′
ijβ̂

(0)
(τk) exp(b̂

(0)
i ) : k = 1, . . . ,K}. Given the initial esti-

mates of the quantile function, we use the procedure in Step
3 of Section 2.2 to obtain estimates ρ̂

(0)
s and ξ̂

(0)
s for s = �, u.

Appendix 2: Details on Estimation of the Power
η for the CEAP Data Analysis

Define an initial estimator of θ as in Appendix 2. Define an
initial estimator of η as η̂(0) = argmaxηL̃

(0)(η), where

L̃(0)(η) =
∫ ∞

−∞

∏
{j∈Ai:yij>0}

fY(yij | yij > 0, xη
ij , bi, θ̂

(0)
)

φ(bi/σ̂
(0)
b ) dbi. (A1)

Form = 1, . . . ,M, repeat the following:

(1) Define the updated estimator of σ 2
b by

σ̂
2(m)

b = (D − 1)−1
D∑
i=1

E[b2i | yposi; θ̂
(m−1)

]. (A4)

Define a predictor of bi in themth step by

b̂(m)
i = E[bi | yposi; θ̂

(m−1)
].

Also, define ê(m)

bi = E[exp(bi) | yposi, θ̂
(m−1)

]. The con-
ditional expectation for estimated η is defined as

E[h(bi) | yposi; θ]

=

∫ ∞
−∞

∏
{j∈Ai :yij>0} h(bi)fY(yij | yij > 0,

xη̂(m−1)

ij , bi, θ̂
(m−1)

)φ(bi/σ̂
(m−1)
b ) dbi∫ ∞

−∞
∏

{j∈Ai :yij>0} fY(yij | yij > 0,

xη̂(m−1)

ij , bi, θ̂
(m−1)

)φ(bi/σ̂
(m−1)
b ) dbi

. (A5)

To approximate the integrals defining the conditional
expectations, we use the Riemann sum described in
Appendix 1.

(2) We use the method of Koenker and Ng (2005) to
update the estimator ofβK tomaintain themonotonicity
restriction. First, define

β̂(m)(τ1) = argminβ

D∑
i=1

∑
{j∈Ai :yij>0}

ρτ[1](yij exp(−b̂(m)
i )

− xη̂(m−1)

ij β), (A6)

subject to the restriction that xη̂(m−1)

ij β̂(m)(τ1) > c0,
where c0 is a specified constant. For k = 2, . . . ,K,
define

β̂(m)(τk) = argminβ

D∑
i=1

∑
{j∈Ai :yij>0}

ρτk(yij exp(−b̂(m)
i )

− xη̂(m−1)

ij β) (A7)

subject to the restriction that xη̂(m−1)

ij β̂(m)(τk)

≥ xη̂(m−1)

ij β̂(m)(τk−1) for j = 1, . . . ,Ni and i = 1, . . . ,D.
To enforce the monotonicity restrictions, we imple-
ment the constrained optimisation method of Koenker
and Ng (2005) using the method fn in the R function
rq.

(3) We modify the method of Jang and Wang (2015) to
estimate ρs and ξs for s = �, u. Specifically,

ρ̂
(m)
� = 0.5(τ1 + τ2)

D∑
i=1

∑
{j∈Ai :yij>0}

×
q̂(m)
ij (τ2) − q̂(m)

ij (τ1)

n(τ2 − τ1)
,

ρ̂(m)
u = [1 − 0.5(τK + τK−1)]

D∑
i=1

∑
{j∈Ai :yij>0}

×
q̂(m)
ij (τK) − q̂(m)

ij (τK−1)

n(τK − τK−1)
, (A8)

where q̂(m)
ij (τk) = xη̂(m−1)

ij β̂(m)(τk)ê
(m)

bi , and n = ∑D
i=1∑ni

j=1 I[yij > 0]. Holding ρ̂
(m)
� and ρ̂

(m)
u fixed, the
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estimator of ξs is the maximum likelihood estimator
using only {yij < �̂

(m)
ij } for s = � and {yij > û(m)

ij } for

s=u, where �̂
(m)
ij = 0.5(xη̂(m−1)

ij β̂(m)(τ1) + xη̂(m−1)

ij β̂(m)(τ2))ê
(m)

bi

and û(m)
ij = 0.5(xη̂(m−1)

ij β̂(m)(τK) + xη̂(m−1)

ij β̂(m)

(τK−1))ê
(m)

bi . Precisely,

ξ̂
(m)
� = argmaxξ

∏
{(ij):0<yij<�̂

(m)
ij }

× g(−(yij − �̂
(m)
ij )) | ρ̂

(m)
� , ξ), (A9)

and

ξ̂ (m)
u = argmaxξ

∏
{(ij):yij>û(m)

ij >0}
g(yij − û(m)

ij | ρ̂(m)
u , ξ).

(A10)

(4) Define anupdated estimator ofη as η̂(m) = argmaxηL̃
(m)

(η), where

L̃(m)(η) =
∫ ∞

−∞

∏
{j∈Ai :yij>0}

fY(yij | yij > 0, xη
ij , bi, θ̂

(m)
)

× φ(bi/σ̂
(m)

b ) dbi.
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