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ABSTRACT
In this article, a new unit level model based on a pairwise penalised regression approach is pro-
posed for problems in small area estimation (SAE). Instead of assuming common regression
coefficients for all small domains in the traditional model, the new estimator is based on a sub-
group regression model which allows different regression coefficients in different groups. The
alternating direction method of multipliers (ADMM) algorithm is used to find subgroups with
different regression coefficients. We also consider pairwise spatial weights for spatial areal data.
In the simulation study, we compare the performances of the new estimator with the traditional
small area estimator. We also apply the new estimator to urban area estimation using data from
the National Resources Inventory survey in Iowa.
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1. Introduction

Small area estimation (SAE) is an important prob-
lem in survey sampling when the sample sizes are
not large enough to provide reliable estimates in small
domains or areas. See Rao and Molina (2015) and Pfef-
fermann (2013) for overviews and recent developments
in SAE. One of the model-based approaches for SAE
is the unit level model, which was first proposed by
Battese, Harter, and Fuller (1988). Unit level models
are specified for the individual elements of the popu-
lation and require the availability of unit level auxiliary
information.

Traditional unit level models typically assume a lin-
ear relationship between the variable of interest and the
auxiliary information, and all the areas share the same
regression coefficients to borrow information. Random
effects are also considered for each small area. However,
different relationships can exist in different areas. That
is, subgroups could exist for different areas such that
areas in one group have the same regression coefficient
and areas in different groups have different regression
coefficients.

In the linear regression setting, Ma and Huang
(2017), Ma, Huang, and Zhang (2016) developed
a method to obtain homogeneous groups based
on regression coefficients through the alternating
direction method of multiplier algorithm (ADMM,
Boyd, Parikh, Chu, Peleato, & Eckstein, 2011). In
the algorithm, they used pairwise concave penalties
based on the smoothly clipped absolute deviation
(SCAD) penalty (Fan & Li, 2001) and the minimax
concave penalty (MCP) (Zhang, 2010). Wang, Zhu,
and Zhang (2019) extended the problem to a regression

setting with repeated measures. They also considered
spatial weights in the pairwise penalties and showed
that spatial weights perform better than equal weights.
However, themodel cannot be applied to the SAE prob-
lems directly, since random effects are not considered.

In this article, we propose a new SAE estimator that
allows different regression coefficients in different sub-
groups under a linear mixed model framework at the
unit level. The ADMM algorithm is applied and the
variance parameters are also estimated in the algorithm.
As inWang et al. (2019), we use spatial pairwise weights
in the pairwise penalties based on the SCAD penalty.
In this algorithm, the number of groups and the group
structure are also determined.

The article is organised as follows. In Section 2,
we introduce the unit level model with areal regres-
sion coefficients and the algorithm to find subgroups.
In Section 3, we conduct several simulation studies to
compare the performance of the proposed estimator
with the traditional estimators. In Section 4, we apply
the proposedmethod to a real data set. Finally, Section 5
contains some conclusion and discussion.

2. Themodel and the algorithm

In this section, the unit level model with area
level regression coefficients and the corresponding
algorithm to estimate parameters are introduced.

2.1. The unit level model

Suppose there are M areas with known population
size Ni and ni is the sample size in area i for i =
1, . . . ,M. Let yih be the observation of unit h in area i
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for h = 1, . . . , ni, i = 1, . . . ,M. Let xih be the p dimen-
sion auxiliary information vector with area population
mean X̄i = 1/Ni

∑Ni
h=1 xih known. In the traditional

unit level model, that is Battese–Harter–Fuller (BHF)
model (Battese et al., 1988), different areas share the
same regression coefficient as in (1),

yih = xihTβ + vi + εih, (1)

where β is the unknown regression coefficient vector,
vi’s are i.i.d areal random effects with mean zero and
variance σ 2

v , and εih’s are i.i.d random errors with mean
zero and variance σ 2

ε . Let Ai be the set of observed
units and Ci be the set of unobserved units in area
i. The predictor for the finite population mean Ȳi =
1/Ni

∑Ni
h=1 yih in area i under model (1) for SAE given

in Battese et al. (1988) and the sae package (Molina
& Marhuenda, 2015) is

ˆ̄YBHF
i = 1

Ni

⎛
⎝∑

h∈Ai

yih +
∑
h∈Ci

(
xihTβ̂ + v̂i

)⎞⎠ , (2)

where β̂ is the estimate of β and v̂i is the empirical best
linear unbiased prediction of vi. In the simulation study,
we use the R package sae (Molina & Marhuenda, 2015)
to obtain the predictions.

Instead of assuming all the areas have the same
regression coefficients β , we assume that there are K
mutually exclusive subgroups G = {G1, . . . ,GK}, which
is a partition of areas {1, 2, . . . ,M}. First we assume that
each area has its own regression coefficient,

yih = xihTβ i + vi + εih, (3)

where β i is the unknown regression coefficient vector
for area i. Let yi = (yi1, . . . , yini)T, xi = (xi1, . . . , xini)T
and β = (βT

1 , . . . ,β
T
M)

T. The weighted log likelihood
function is

l
(
β , σ 2

v , σ
2
ε

) = −1
2

M∑
i=1

1
ni

log |�i|

− 1
2

M∑
i=1

1
ni

(
yi − xTi β i

)T

×�−1
i

(
yi − xTi β i

)
, (4)

where�i is the covariance matrix based on the random
effect structure which has the following form:

�i = 1ni1
T
niσ

2
v + Iniσ

2
ε

and

�−1
i =

(
1ni1

T
niσ

2
v + Iniσ

2
ε

)−1

= 1
σ 2
ε

(
Ini − 1ni1

T
ni

σ 2
v

σ 2
ε + niσ 2

v

)
,

where 1ni is an ni × 1 vector with elements 1 and Ini is
an ni × ni identity matrix.

If area i and area j are in the same group, then
β i = β j. In order to find the estimated partition Ĝ =
{Ĝ1, . . . , ĜK̂} with the estimated number of groups K̂,
the following objective function is considered

Q
(
β , σ 2

v , σ
2
ε ; λ,ψ

)
= 1

2

M∑
i=1

1
ni

log |�i| + 1
2

M∑
i=1

1
ni

(
yi − xTi β i

)T

×�−1
i

(
yi − xTi β i

)
+

∑
1≤i<j≤M

pγ
(∥∥∥β i − β j

∥∥∥ , cijλ) , (5)

where ‖ · ‖ denotes the Euclidean norm, pγ (·, λ) is
a penalty function with a fixed value γ and a tun-
ing parameter λ ≥ 0. In the penalty function, pairwise
weights are considered associated with area i and area j.
In this paper, we use the SCAD penalty. In the context
of spatial SAE, we define cij as

cij = exp
(
ψ(1 − aij)

)
, (6)

where ψ is a tuning parameter and aij is the neigh-
bour order between area i and area j. As shown inWang
et al. (2019), pairwise spatial weights can help in spatial
areal data.

2.2. The ADMMalgorithm

For given λ and ψ , the solution of (5) is(
β̂ , σ̂ 2

v , σ̂ 2
ε

)
= argmin

β∈RMp,σ 2v ∈R+,σ 2ε ∈R+

Q
(
β , σ 2

v , σ
2
ε ; λ,ψ

)
. (7)

The ADMM algorithm is applied to solve (7). Let
δij = β i − β j, the objective function becomes

L0
(
β , σ 2

v , σ
2
ε , δ

)
= 1

2

M∑
i=1

1
ni

log |�i|

+ 1
2

M∑
i=1

1
ni

(
yi − xTi β i

)T
�−1

i

(
yi − xTi β i

)

+
∑

1≤i<j≤M
pγ
(∥∥δij∥∥ , cijλ)

subject to β i − β j − δij = 0,

where δ = (δTij , i < j)T. The augmented Lagrangian is

L
(
β , σ 2

v , σ
2
ε , δ, v

) = L0
(
β , σ 2

v , σ
2
ε , δ

)
+
∑
i<j

〈
vij,β i − β j − δij

〉

+ ϑ

2

∑
i<j

‖β i − β j − δij‖2,
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where v = (vTij , i < j)T are Lagrange multipliers and ϑ
is the penalty parameter. Let τ = (σ 2

v , σ 2
ε ). Given τm,

δm and vm, β , τ , δ and v are updated as follows:

βm+1 = argmin L
(
β , τm, δm, vm

)
,

τm+1 = τm + [I (τm)]−1 s
(
βm+1, τm) ,

δm+1 = argmin L
(
βm+1, τm+1, δ, vm

)
,

vm+1
ij = vmij + ϑ

(
βm+1
i − βm+1

j − δm+1
ij

)
.

Let y = (yT1 , . . . , y
T
M)

T, X = diag(x1, x2, . . . , xM) and
� = diag(1/n1�−1

1 , . . . , 1/nM�−1
M ). The update ofβ is

βm+1 =
(
XT�mX + ϑATA

)−1

×
(
XT�my + ϑvec

((
�m − ϑ−1Υ m)D)) ,

where A = D ⊗ Ip, ⊗ is the Kronecker product, D =
{(ei − ej)}T with ei anM × 1 vector with ith element 1
and other elements 0,�m = (δmij , i < j)p×M(M−1)/2 and
Υ m = (vmij , i < j)p×M(M−1)/2. When updating τ , I(τ )
is the expected second-order derivative of−l in (4) and

s
(
βm+1, τm) =

(
∂ l
∂σ 2

v
,
∂ l
∂σ 2

ε

)T ∣∣∣
β=βm+1,τ=τm

.

The details of s(·, ·) and I are in the appendix. In
this step, τ can be updated several times within one
iteration.

Updating δij is based on the result of SCAD penalty.
Let ςm

ij = (βm+1
i − βm+1

j )+ ϑ−1vmij , then the solution
is

δm+1
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S
(
ςm
ij , λcij/ϑ

)
if
∥∥∥ςm

ij

∥∥∥ ≤ λcij + λcij/ϑ ,
S
(
ςm
ij ,γ λcij/((γ−1)ϑ)

)
1−1/((γ−1)ϑ) if λcij + λcij/ϑ <

∥∥∥ςm
ij

∥∥∥ ≤ γ λcij,

ςm
ij if

∥∥∥ςm
ij

∥∥∥ > γλcij,

where γ > cij + cij/ϑ and S(w, t) = (1 − t/‖w‖)+w
and (t)+ = t if t>0, 0 otherwise.

Remark 2.1: The convergence criteria is based on that
given in Boyd et al. (2011). The primal residual and
dual residual are defined as rm+1 = Aβm+1 − δm+1

and sm+1 = ϑAT(δm+1 − δm). The stopping criterion
is ∥∥rm∥∥2 ≤ εpri,

∥∥sm∥∥2 ≤ εdual,

where

εpri =
√
M (M − 1)

2
pεabs

+ εrel max
{∥∥Aβm∥∥ , ∥∥δm∥∥} ,

εdual = √
Mpεabs + εrel

∥∥∥ATvm
∥∥∥ ,

where εabs is an absolute tolerance and εrel is a relative
tolerance. In the simulation study and the application,
we use εabs = 10−4 and εrel = 10−2.

2.3. The proposed small area estimator

As in Zhu, Zou, Liang, and Zhu (2016), two small area
estimators can be defined. Let ȳi = 1/ni

∑ni
h=1 yih and

x̄i = 1/ni
∑ni

h=1 xih be the sample mean of the variable
of interest and auxiliary information, respectively. The
first one is based on the predictions of random effects,
which is defined as

ˆ̄Y(1)i = X̄T
i β̂ i + v̂i, (8)

where β̂ i is the estimate of β i from the proposed
algorithm,

v̂i = γ̂i

(
ȳi − x̄Ti β̂ i

)
,

and γ̂i = σ̂ 2
v /(σ̂

2
v + σ̂ 2

ε /ni).
In the second estimator, the unobserved values in

each area are predicted based on the model, which is
given by

ˆ̄Y(2)i = 1
Ni

⎛
⎝∑

h∈Ai

yih +
∑
h∈Ci

ŷih

⎞
⎠

= fiȳi +
(
X̄i − fix̄i

)T
β̂ i +

(
1 − fi

)
v̂i, (9)

where ŷih = xTihβ̂ i + v̂i and fi = ni/Ni. If fi is small, then
the predictor in (9) is nearly identical to the predictor
in (8).

3. Simulation study

The simulation setup is designed based on the fea-
tures of theNational Resources Inventory (NRI) survey,
which monitors status and trend of natural resources
characteristics. One of the characteristic is the area of
land uses, such as cropland, pastureland and urban
(Nusser &Goebel, 1997). Each state is divided into ‘seg-
ments’ with size of 160 acres. From 1982 to 1997, the
full NRI sample was observed in 5-year intervals (1982,
1987, 1992 and 1997) with 300,000 segments. In 2000,
the NRI transitioned to an annual sample design with
about 70,000 segments.

For the simulation, we construct an artificial pop-
ulation composed of 300,000 segments in 99 counties.
The number of counties in the simulated population is
the same as the number of counties in Iowa. We treat
counties as areas and segments as unit level observa-
tions. In the population for the simulation, the num-
ber of segments in each county for the 99 counties is
between 2210 and 5412. These numbers are the popula-
tion sizes of segments in counties used in the simulation
study. This simulated population maintains features of
the NRI data for Iowa. There are around 6000 seg-
ments selected in the full sample and around 1500 seg-
ments selected in the annual sample in the original NRI
design. In the annual sample, fewer segments are sam-
pled, so the accuracy of the estimates is reduced. Thus
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Figure 1. Group information.

auxiliary information should be considered to improve
the estimator.

We compare the performances of the proposed esti-
mators to the BHF estimator based on 100 simulations.
Tuning parameters are selected based on the following
modified BIC (Wang, Li, & Tsai, 2007):

BIC = −2l + CM log(M)(K̂p), (10)

where l is defined in (4) and CM is a positive
number which can depend on M. Here we use
CM = c0 log(log(Mp + 2)) with c0 = 0.2 as in Wang
et al. (2019).

In the simulation study, simple random sampling is
used in each county to select segments. As mentioned
before, the population size of segments in each county
is between 2210 and 5412. Two sampling rates are con-
sidered in each area, 1% and 0.5%.When sampling rate
is 1%, there are 3067 selected segments in the whole
state and the number of segments in each county is
between 22 and 54. When sampling rate is 0.5%, there
are 1537 selected segments in the whole state and the
range of the number of segments in each county is from
11 to 27. xih = (1, xih)T with xih’s simulated from a nor-
mal distribution with mean 1 and standard deviation 1
and vi’s are simulated from a standard normal distri-
bution, that is σ 2

v = 1. The assumed group structure in
Iowa is shown in Figure 1 with three groups. The three
groups are aggregated based on the districts available on
https://www.nass.usda.gov/Charts_and_Maps/Crops_
County/boundary_maps/indexpdf.php

We consider three different sets of parameters.

• Case I: β i = (0.5, 0.5)Tif i ∈ G1, β i = (2, 2)T if i ∈
G2 and β i = (3.5, 3.5)T if i ∈ G3.

• Case II: β i = (0.5, 0.5)Tif i ∈ G1, β i = (1.5, 1.5)T if
i ∈ G2 and β i = (2.5, 2.5)T if i ∈ G3.

• Case III: β i = (0.5, 0.5)Tif i ∈ G1, β i = (1, 1)T if i ∈
G2 and β i = (1.5, 1.5)T if i ∈ G3.

Figure 2. RMSE under Case I.

Figure 3. RMSE under Case II.

https://www.nass.usda.gov/Charts_and_Maps/Crops_County/boundary_maps/indexpdf.php
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For each set of parameters, σε = 0.5, 1, 2 are

considered and εih
iid∼ N(0, σ 2

ε ). For the proposed esti-
mator, we consider both the equal weight (cij = 1) and
the spatial weight selected based on the modified BIC.
Different estimators are compared by

RMSE
( ˆ̄YE

i

)
=
√√√√ 1

B

B∑
b=1

( ˆ̄Yi(b)E − Ȳi(b)

)2
,

where ˆ̄YE
i(b) is the estimated population mean in area

i and Ȳi(b) is the population mean in the bth simula-
tion, ‘E’ is the index of estimators which can be 1 or 2,
andB=100. All the simulations are implemented in the
Owens clusters of Ohio supercomputer centre (Ohio
Supercomputer Center, 2016).

Figures 2, 3 and 4 show the results of the three sets
of parameters when the sampling rate is 1% for 99
areas. ‘direct’ represents the direct estimator, which is

Figure 4. RMSE under Case III.

Figure 5. RMSE under Case I.

Figure 6. RMSE under Case II.
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Figure 7. RMSE under Case III.

the sample mean for simple random sampling. ‘BHF’
is calculated using the sae package provided in (1).
Under two differentweights, we consider two small area
estimators described in Section 2.3. ‘equal1’ and ‘sp1’
represent the estimator in (8) with equal weights and
spatial weights, respectively. ‘equal2’ and ‘sp2’ repre-
sent the estimator in (9) with equal weights and spatial
weights, respectively.

When σε is large, the proposed new estimator has
the similar performance to the BHF estimator when the
group difference is small. As σε becomes smaller, the
performance gain of the proposed new estimator is bet-
ter than the classical BHF estimator. Besides that, the
estimator with spatial weights performs better than the
estimator with equal weights. Since the sampling rate
is small, thus fi is small, there is not much difference
between the two estimators in (8) and (9).

Figures 5, 6 and 7 show the results when the sam-
pling rate is 0.5%. When the sample sizes become
smaller and σε is large, the proposed estimator with
equal weights can be worse than the BHF estimator.
But the estimator based on spatial weights is still com-
parable. Similarly to the case with sampling rate 1%,
the proposed estimator performs better when the group
difference is large or the value of σε is small.

4. Real data analysis

In this section, we apply the proposed method to the
NRI Iowa urban data in 2015. The auxiliary informa-
tion used is based on the Landsat data (Li et al., 2018).
The Landsat data is matched to the segment level data
in the NRI based on segments’ locations. The number
of segments per county is from 7 to 56. We try differ-
ent starting values and select the best one with spatial
weights. After finding the estimated group structure, we
refit themodel with known group structure and find the
regression coefficients in all groups and then obtain the
estimates in each county. Figure 8 shows the estimated
group map. And Figure 9 shows the estimated popula-
tion mean of urban in each county with a comparison
with the sample mean and the BHF estimator. The

Figure 8. Estimated group structure.

Figure 9. Estimated population mean of urban in each county.

proposed estimates are close to the estimates based on
BHF, but with larger variations among different coun-
ties due to the fact that more than one groups are used
in the estimates.

5. Summary and conclusion

In this article, we propose a new unit level small area
estimator based on a penalised regression approach.
In the new estimator, we can find subgroups of areas
and also borrow information from both auxiliary
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information and areas. Besides that, spatial informa-
tion is also used in the algorithm. We use simulation
studies to compare the performance of the new estima-
tor to traditional estimators under several simulation
settings, which show that the proposed estimator can
improve the estimates.

Variance estimator is also important in survey sam-
pling. A future work is to develop the variance estima-
tor for the proposed new estimator. Another potential
future work is to find subgroups for both regression
coefficients and random effects together.
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Appendix

In this appendix, details of partial derivative are provided.

∂ l
∂σ 2

v
= −1

2

m∑
i=1

1
ni
tr
(
�−1

i
∂�i

∂σ 2
v

)

− 1
2

m∑
i=1

1
ni

(
yi − xTi β i

)T ∂�−1
i

∂σ 2
v

(
yi − xTi β i

)
,

∂ l
∂σ 2

ε

= −1
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