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Graph-basedmultivariate conditional autoregressive models

Ye Liang
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ABSTRACT
The conditional autoregressive model is a routinely used statistical model for areal data that
arise from, for instances, epidemiological, socio-economic or ecological studies. Various multi-
variate conditional autoregressive models have also been extensively studied in the literature
and it has been shown that extending from the univariate case to the multivariate case is not
trivial. The difficulties lie in many aspects, including validity, interpretability, flexibility and com-
putational feasibility of the model. In this paper, we approach the multivariate modelling from
an element-based perspective instead of the traditional vector-based perspective. We focus on
the joint adjacency structure of elements and discuss graphical structures for both the spatial
and non-spatial domains. We assume that the graph for the spatial domain is generally known
and fixed while the graph for the non-spatial domain can be unknown and random.We propose
a very general specification for the multivariate conditional modelling and then focus on three
special cases, which are linked to well-known models in the literature. Bayesian inference for
parameter learning and graph learning is provided for the focused cases, and finally, an example
with public health data is illustrated.
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1. Introduction

Areal data, sometimes called lattice data, are usually
represented by an undirected graph where each ver-
tex represents an areal unit and each edge represents a
neighbouring relationship. A finite set of random vari-
ables on an undirected graph, where each vertex is a
random variable, is called a Markov random field if it
has the Markov property. Hence, the Markov random
field models are often used for the areal data. The uni-
variate conditional autoregressive (CAR) model, origi-
nated fromBesag (1974), is a GaussianMarkov random
field model, for which the joint distribution is multi-
variate Gaussian. Let u = (u1, . . . , uI)T be a vector of
random variables on I areal units (i.e., I vertices). The
zero-centred conditional autoregressivemodel specifies
full conditional Gaussian distributions

ui | u−i ∼ N

⎛
⎝∑

i′ �=i

bii′ui′ , τ 2i

⎞
⎠ , i = 1, . . . , I,

where u−i is the collection of ui′ for i′ �= i. The resulting
joint distribution, derived using Brook’s lemma, has a
density function as follows,

f (u | TCAR,BCAR) ∝ exp
{
−1
2
uTT−1

CAR(I − BCAR)u
}
,

where I is an identity matrix; BCAR is an I × I
matrix whose off-diagonal entries are bii′ and diagonal

entries are zeros, and TCAR = diag{τ 21 , . . . , τ 2I }. The
joint distribution is multivariate Gaussian if and only
if T−1

CAR(I − BCAR) is symmetric and positive defi-
nite. A further parameterization on BCAR and TCAR
is needed to reduce the number of parameters in the
model. Consider a so-called adjacency matrix CCAR
for the undirected graph, where the ii′th entry Cii′ =
1 if unit i and unit i′ are neighbours (denoted as
i ∼ i′) and Cii′ = 0 otherwise. One popular parame-
terization is to let bii′ = ρCii′/Ci+ and τ 2i = σ 2/Ci+,
where Ci+ is the ith row sum of CCAR, representing
the total number of neighbours of unit i. Let DCAR =
diag{C1+, . . . ,CI+}. When ρ is strictly between the
smallest and largest eigenvalues of D−1/2

CAR CCARD
−1/2
CAR ,

or sufficiently, when |ρ| < 1, and σ 2 > 0, the joint dis-
tribution of u is a zero-mean multivariate Gaussian
distribution: u ∼ N{0, σ 2(DCAR − ρCCAR)

−1}. This is
called the proper conditional autoregressive model in
the literature. When ρ = 1, it is called the intrinsic
conditional autoregressive model which is an improper
distribution due to the singular covariance matrix.

Turning to themultivariate case, consider J responses
(e.g., multiple diseases) on I areal units. Let U be an
I × J matrix-variate, where the ijth entry uij is a ran-
dom variable for the ith areal unit and jth response.
Each column of U is an areal vector for a single
response and hence can be modelled by the univariate
conditional autoregressive model. However, a multi-
variate model is desired for the matrix-variate U in
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order to simultaneously model the dependence across
responses. Initially proposed by Mardia (1988), the
multivariate conditional autoregressive model specifies
full conditional distributions on row vectors of U . Let
ui be the ith row vector of U . Following Besag (1974),
specify

ui | u−i ∼ N

⎛
⎝∑

i′ �=i

Bii′ui′ ,�i

⎞
⎠ , i = 1, . . . , I, (1)

where Bii′ and �i are J × J matrices needing a fur-
ther parameterization. To make the joint distribu-
tion for vec(UT) a multivariate Gaussian, Bii′ and �i
must satisfy certain conditions (Mardia, 1988). Gelfand
andVounatsou (2003) showed a convenient parameter-
ization, Bii′ = (ρCii′/Ci+)IJ and �i = �/Ci+. When
|ρ| < 1 and � is positive definite, vec(UT) has a zero-
mean multivariate Gaussian distribution: vec(UT) ∼
N{0, (DCAR − ρCCAR)

−1 ⊗�}. It is clear that this
multivariate specification is a Kronecker-product for-
mula where (DCAR − ρCCAR)

−1 models the covari-
ance structure across rows of U (spatial domain) and
� models the covariance structure across columns of
U (response domain). From the modelling perspec-
tive, Mardia’s specification has a difficulty with param-
eterization. It is usually difficult to have a meaningful
parameterization for Bii′ and �i unless one pursues
a simple formulation. It is arguable that the Mardia’s
specification presents a conflict, where the between
vector variation is specified through an inverse covari-
ance matrix, but the within vector variation is specified
through a covariance matrix. It seems more intuitive
to either work with the joint covariance or the joint
inverse covariance directly. Notice that most multivari-
ate spatial models for point reference data focus on
the joint covariance structure. In this paper, we focus
on the joint inverse covariance structure of elements
in the multivariate areal data. In particular, we con-
sider the joint adjacency structure of the lattice based
on graphical structures of both the spatial domain and
the response domain. We build a framework for graph-
based multivariate conditional autoregressive models
and discuss parameterizations under this framework.
The advantage is that this framework is very general
and we demonstrate it through multiple case exam-
ples. Furthermore, we allow graph learning formultiple
responses in suchmodels, which is potentially useful for
many modern applications.

We shall point out other recent work on multi-
variate conditional autoregressive models. Kim, Sun,
and Tsutakawa (2001) and Jin, Carlin, and Baner-
jee (2005) proposed conditional autoregressive mod-
els for bivariate areal data. Multivariate models were
considered by Gelfand and Vounatsou (2003), Jin,
Banerjee, and Carlin (2007), MacNab (2011, 2016),
Martinez-Beneito (2013), Martinez-Beneito, Botella-
Rocamora, and Banerjee (2017) among many others.

MacNab (2018) reviewed some recent developments
onmultivariate GaussianMarkov random fieldmodels.
Wewill show that someof the earlierwork can be recon-
structed in our proposed framework and some can be
extended to graphicalmodels. The paper is organised as
follows. Section 2 presents the general framework and
three special parameterizations. Section 3 presents a
real data example using the proposedmodels. Section 5
contains further discussions and remarks. Technical
details are given in the Appendices.

2. Graph-basedmultivariate conditional
autoregressive models

2.1. General framework

Instead of specifying full conditional distributions on
vectors like (1), we approach this problem from an
element-based perspective. Following Besag (1974),
specify full conditional distributions for each element
uij in the matrix-variate U as follows,

uij | u−{ij} ∼ N

⎛
⎝ ∑

{i′j′}�={ij}
b{ij},{i′j′}ui′j′ , τ 2ij

⎞
⎠ ,

i = 1, . . . , I and j = 1, . . . , J,

where {i′j′} �= {ij} means either i′ �= i or j′ �= j. In fact,
here we consider a lattice consisting of all elements in
U . Using Brook’s lemma, the resulting joint distribution
for vec(U) is

f (vec(U) | B,T) ∝ exp

×
{
−1
2
vec(U)TT−1(I − B) vec(U)

}
,

where I is an IJ × IJ identity matrix, T = diag{τ 211, . . . ,
τ 2I1, . . . , τ

2
1J , . . . , τ

2
IJ} and B can be expressed block-

wisely,

B =

⎛
⎜⎝
B11 · · · B1J
...

. . .
...

BJ1 · · · BJJ

⎞
⎟⎠ where

Bjj′ =

⎛
⎜⎝
b{1j},{1j′} · · · b{1j},{Ij′}

...
. . .

...
b{Ij},{1j′} · · · b{Ij},{Ij′}

⎞
⎟⎠ ,

and the diagonal elements b{ij},{ij} are zeros. The joint
distribution for vec(U) is multivariate Gaussian if and
only if T−1(I − B) is symmetric and positive definite.
It is desired that B and T are further parameterised
to reduce the number of parameters in the model. We
denote this general model MCAR(B,T) for later use.

Consider the adjacency structure of the undirected
graph for the lattice ofU . In the univariate situation, the
adjacency structure is determined by those geographi-
cal locations. Two areal units are connected by an edge
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if they are neighbours geographically. However, it is not
obvious which elements should be neighbours in U .
Consider that the J responses can be connected through
an undirected graph. Let C(s) be the adjacency matrix
for all I areal units and C(r) be the adjacency matrix for
all J responses. Both the spatial graph and the response
graph are then uniquely determined by C(s) and C(r),
respectively. Let C be the joint adjacency matrix for the
lattice of U . A general construction of C can be made
through C(s) and C(r),

C = C(r) ⊗ C(s) + C(r) ⊗ II + IJ ⊗ C(s). (2)

This construction connects uij with ui′∼i,j, ui,j′∼j and
ui′∼i,j′∼j, meaning its spatial neighbour, response neigh-
bour and interaction neighbour, respectively. One may
add edges for secondary neighbours or drop edges
in a specific modelling. For example, some reduced
constructions would be (i) C = IJ ⊗ C(s) (indepen-
dent conditional autoregressivemodels, no dependence
between responses); (ii) C = C(r) ⊗ II (independent
multivariate variables, no spatial dependence); and (iii)
C = C(r) ⊗ II + IJ ⊗ C(s) (drop edges for interaction
neighbours ui′∼i,j′∼j).

Let C{ij},{i′j′} denote entries in C, analogous to the
block-wise notation b{ij},{i′j′} for B. Let d

(r)
j be the jth

row sum inC(r) and d(s)i be the ith row sum inC(s). Then
the ijth row sum in C is dij = d(r)j d(s)i + d(r)j + d(s)i . Let

D(r) = diag{d(r)1 , . . . , d(r)J }, D(s) = diag{d(s)1 , . . . , d(s)I }
and D = diag{d11, . . . , dI1, . . . , d1J , . . . , dIJ}. With the
adjacency constructions and notations, we then explore
further parameterisation on B and T in the following
subsections, and specifically, we discuss three specifi-
cations made from this general framework, all of which
are linked to well-known models in the literature.

2.2. Model 1: nonseparablemultifold specification

Kim et al. (2001) developed a twofold conditional
autoregressive model for bivariate areal data (J = 2),
using different linkage parameters for different types of
neighbours. Those linkage parameters, in their work,
are called smoothing and bridging parameters, rep-
resenting the strength of information sharing. If we
extend their specification to an arbitrary J, we can
parameterise B and T in the following way (assuming
i �= i′ and j �= j′):

b{ij},{i′j} = λj

dij
C{ij},{i′j}, b{ij},{ij′} = ψjj′

dij

√
δj

δj′
C{ij},{ij′},

b{ij},{i′j′} = φjj′

dij

√
δj

δj′
C{ij},{i′j′}, τ 2ij = δj

dij
,

where λj, ψjj′ and φjj′ are linkage parameters and δj
are variance components. Linkage parameters are for
three types of neighbour: ui′∼i,j, ui,j′∼j and ui′∼i,j′∼j.

Having this specification, the conditional mean of uij
essentially is

E(uij | u−{ij}) = 1
dij

⎛
⎝λj ∑

i′∼i

ui′j + ψjj′
∑
j′∼j

√
δj

δj′
uij′

+ φjj′
∑
i′∼i

∑
j′∼j

√
δj

δj′
ui′j′

⎞
⎠ ,

which is a weighted average of all its neighbours in C.
This specification generalises (Kim et al., 2001)’ twofold
model and hence could be called a multifold specifica-
tion. It can be shown that, for this parameterisation, the
joint precision matrix is

T−1(I − B) = (�−1/2 ⊗ II)
{
D −�⊗ C(s)

−(� ◦ C(r))⊗ II − (� ◦ C(r))⊗ C(s)
}

× (�−1/2 ⊗ II), (3)

where � = diag{δ1, . . . , δJ}, � = diag{λ1, . . . , λJ}, �
and � are J × J symmetric matrices with entries ψjj′
and φjj′ , respectively, and the operator ◦ means an
element-wise product. A derivation of (3) is given in
Appendix 1. Note that only nonzero entries of � and
� are parameters in the model, the number of which
depends on C(r).

In order to make (3) positive definite, constraints
on λj, ψjj′ and φjj′ are needed, assuming that δj > 0.
In general, it is difficult to find a sufficient and nec-
essary condition for the positive definiteness of (3).
Kim et al. (2001)’s solution to this problem was a suffi-
cient condition: max{|λj|, |ψjj′ |, |φjj′ |; ∀j, j′} < 1, under
which the matrix (3) is diagonally dominant and hence
is positive definite. Though their proof was under
J = 2, it is true for any J by the same arguments. The
advantage of this condition is that it is simple and
implementable. However, this is not a necessary con-
ditionmeaning that it is impossible to reach all possible
positive definite structures for the model under such a
condition. In a Bayesian model, priors on parameters
λj,ψjj′ and φjj′ can be chosen based on their actual con-
straints. In our case, a uniform prior Unif(−1, 1) is ade-
quate for these linkage parameters. Priors on the vari-
ance components δj can be weakly-informative inverse
gamma priors IG(aj, bj). Inference and computation
under this model are given in Appendix 2.

2.3. Model 2: separable specification with
homogeneous spatial smoothing

Gelfand and Vounatsou (2003)’s Kronecker-product
model is a convenient parameterisation of Mar-
dia (1988)’s model. In our framework, this specification
can be obtained and extended by having the follow-
ing parameterisation for B and T (assuming i �= i′ and
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j �= j′):

b{ij},{i′j} = ρ

d(s)i
C{ij},{i′j}, b{ij},{ij′} = −ωjj′

ωjj
C{ij},{ij′},

b{ij},{i′j′} = ρωjj′

d(s)i ωjj
C{ij},{i′j′}, τ 2ij = 1

d(s)i ωjj
,

where ρ and ωjj′ are linkage parameters, and 1/ωjj are
variance components. This parameterisation does not
seem straightforward, but is much clearer in the form
of conditional mean:

E

(
uij − ρ

d(s)i

∑
i′∼i

ui′j

∣∣∣∣ u−{ij}

)

= −
∑
j′∼j

ωjj′

ωjj

(
uij′ − ρ

d(s)i

∑
i′∼i

ui′j′

)
. (4)

Note that for a single response, the univariate con-
ditional autoregressive model specifies E(ui|u−i) =
ρ
∑

i′∼i ui′/d
(s)
i . In themultivariate setting,ρ

∑
i′∼i ui′j/

d(s)i is no longer the conditionalmean for uij | u−{ij} and
their conditional difference is regressed on other dif-
ferences through ωjj′ . This parameterisation yields the
joint precision matrix

T−1(I − B) =
{
� ◦ (IJ + C(r))

}
⊗ (D(s) − ρC(s))

= �C(r) ⊗ (D(s) − ρC(s)), (5)

where � is a symmetric J × J matrix with entries ωjj′ .
A derivation of (5) is given in Appendix 1. The link-
age parameter ρ is interpreted as a spatial smooth-
ing parameter and � controls the dependence across J
responses. It is noteworthy that only nonzero entries in
� are parameters in the model and we denote �C(r) =
� ◦ (IJ + C(r)) for simplicity. The notation�C(r) , com-
monly used in graphical models, means the precision
matrix restricted by graph C(r). The model (5) is a
natural extension of Gelfand and Vounatsou (2003)’s
model. When C(r) is the complete graph (any two
vertices are connected), �C(r) is free of zero entries.
Then let � = �−1 and (5) is equivalent to Gelfand
and Vounatsou (2003)’s specification. We call this a
completely separable specification because the Kro-
necker product completely separates the spatial domain
and the response domain. This complete separation is
often not desirable because itmakes the spatial smooth-
ing common for all j. We call this homogeneous spatial
smoothing because the linkage ρ is the same for any i
and i′ which distinguishesModel 2 fromModel 3 in the
next section.

The joint precision matrix (5) is positive definite
if |ρ| < 1 and �C(r) is positive definite. Let M

+(C(r))
be the cone of symmetric positive definite matrices
restricted by C(r) and then �C(r) ∈ M+(C(r)). In a
Bayesian model, a widely used prior on �C(r) is the

G-Wishart distribution (Atay-Kayis & Massam, 2005;
Letac & Massam, 2007). The G-Wishart distribution is
a conjugate family for the precision matrix of a Gaus-
sian graphical model, whose density function is given
by

p(�C(r) | b,V) = IC(r) (b,V)
−1 ∣∣�C(r)

∣∣(b−2)/2 exp

×
{
−1
2
tr(V�C(r) )

}
1�C(r)∈M+(C(r)),

where b>2 is the number of degrees of freedom; V
is the scale matrix and IC(r) (·) is the normalising con-
stant. It is practically attractive because of its conjugacy.
That said, for a prior distribution GWis(b,V) and a
given sample covariance matrix S of sample size n, the
posterior distribution of �C(r) is GWis(b + n,V + S).
Inference and computation under this model are given
in Appendix 2.

2.4. Model 3: separable specification with
heterogenous spatial smoothing

Dobra, Lenkoski, and Rodriguez (2011) introduced a
multivariate lattice model by giving Kronecker-product
G-Wishart priors to thematrix-variateU . In our frame-
work, B and T can be parameterised in the following
way (assuming i �= i′ and j �= j′):

b{ij},{i′j} = −ω
(s)
ii′

ω
(s)
ii

C{ij},{i′j}, b{ij},{ij′} = −
ω
(r)
jj′

ω
(r)
jj

C{ij},{ij′},

b{ij},{i′j′} = −
ω
(s)
ii′ ω

(r)
jj′

ω
(s)
ii ω

(r)
jj

C{ij},{i′j′}, τ 2ij = 1

ω
(s)
ii ω

(r)
jj

,

which is equivalent to the version of conditional mean

E

(
uij − 1

ω
(s)
ii

∑
i′∼i

ω
(s)
ii′ ui′j

∣∣∣∣ u−{ij}

)

= −
∑
j′∼j

ωjj′

ωjj

(
uij′ − 1

ω
(s)
ii

∑
i′∼i

ω
(s)
ii′ ui′j′

)
. (6)

Comparing (6) with (4), instead of a homogeneous
spatial smoothing with ρ, it has a heterogeneous spec-
ification with ω(s)ii′ . This is hence more flexible in the
spatial domain. The resulting joint precision matrix is

T−1(I − B) =
{
�(r) ◦ (IJ + C(r))

}
⊗

{
�(s) ◦ (II + C(s))

}
= �C(r) ⊗�C(s) , (7)

where�(r) is a symmetric J × Jmatrix with entriesω(r)jj′
and �(s) is a symmetric I × I matrix with entries ω(s)ii′ .
A derivation of (7) is given in Appendix 1. We again
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use�C(r) and�C(s) for simplicity. In model (5), the spa-
tial part is the conventional conditional autoregressive
model while in model (7), it is modelled by a more
flexible one�C(s) .

The precision matrix (7) is positive definite if both
�C(r) and �C(s) are positive definite. In a Bayesian
model, both can have G-Wishart priors. The specifica-
tion has an obvious problem of identification: �C(r) ⊗
�C(s) = z�C(r) ⊗ (1/z)�C(s) , where z is an arbitrary
constant scalar. Following Wang and West (2009), one
can impose a constraint �C(r),11 = 1 and add an auxil-
iary variable z. Then specify a joint prior on (z, z�C(r) ):

p(z, z�C(r) | b(r),V(r)) ∝ pGWis(z�C(r) | b(r),V(r)) · 1,
(8)

where pGWis(·) is the density of G-Wishart distribu-
tion. Transform this joint density to (z,�C(r) ) and
we obtain the desired joint prior. There is no addi-
tional constraint imposed on �C(s) and let �C(s) ∼
GWis(b(s),V(s)). Inference and computation under this
model are given in Appendix 2.

2.5. Priors for the graph

The two types of graphs used in this modelling frame-
work should be treated differently. On one hand,
the spatial graph should be treated known and fixed
because the geographical locations and their neigh-
bouring structure is fixed in most scenarios. On the
other hand, the response graph should be treated
unknown because we often know little about the rela-
tionship between multiple responses. In the literature
of Gaussian graphical model determination, usually
the unknown graph is assumed random and a prior
on the graph is assigned. The Markov chain Monte
Carlo (MCMC) sampling scheme, such as the reversible
jump MCMC (Green, 1995), is often used to sample
graphs from the posterior distribution. In this paper,
we adopt and slightly modify existing MCMC algo-
rithms for the graph determination (Dobra et al., 2011;
Wang & Li, 2012), with computational details given in
Appendix 2, for each aforementioned model. For the
prior choice of C(r), consider

P(C(r)) ∝ B(a + size(C(r)), b + m

− size(C(r)))/B(a, b), (9)

where B(·, ·) is the beta function, m is the total num-
ber of possible edges

(J
2
)
, size(C(r)) ∈ {0, 1, . . . ,m}, and

a and b are given hyperparameters. More details about
this prior can be found in Scott and Berger (2006) and
Scott and Carvalho (2009). The following prior is often
used as well (Dobra et al., 2011):

P(C(r)) ∝ π size(C(r))(1 − π)m−size(C(r)), (10)

where π ∈ (0, 1) is a given hyperparameter. Sparser
graphs can be favoured by choosing a small value for

π . The prior (9) can be obtained by integrating π out
with a hyperprior Beta(a, b) on π .

3. An application

We illustrate the proposed models with a real exam-
ple of disease mapping. It is known that smoking is
linked with multiple diseases in the population, of
which leading diseases include lung diseases and heart
diseases. The dataset under consideration here includes
six variables, among which four variables are related
to the smoke exposure and the other two are diseases.
Obtained from the 2011 Missouri County Level Sur-
vey, the four smoke exposure variables are: Current
Cigarette Smoking, Current Smokeless Tobacco Use,
Current Other Tobacco Use, Exposure to Secondhand
Smoke. Data are binary responses to the survey ques-
tionnaires (Yes or No), aggregated to each county level.
The other two variables, obtained from the Surveil-
lance, Epidemiology and End Results (SEER) program,
are the Lung Cancer Mortality and the Heart Diseases
Mortality, both of which are counts for each county
within a specified time period. To summarise, we have
I = 115 counties and J = 6 response variables. Let
ni1, . . . , ni4 be the numbers of respondents in the sur-
vey and let Ei5 and Ei6 be the age-adjusted expected
mortality for the two diseases. Then, the proportions
yij/nij, j = 1, . . . , 4 are empirical estimates of the preva-
lences of the survey variables, and the proportions
yij/Eij, j = 5, 6 are standardised mortality ratios of the
diseases.

Consider a Bayesian hierarchical model for yij.
We use the binomial-logit model and the Poisson-
lognormal model (Banerjee, Gelfand, & Carlin, 2004)
for yi,1−4 and yi,5−6, respectively, i.e.,

yij ∼ Bin(nij, pij), logit(pij) = βj + uij,

i = 1, . . . , 115 and j = 1, . . . , 4;

yij ∼ Poi(Eijηij), log(ηij) = βj + uij,

i = 1, . . . , 115 and j = 5, 6.

For simplicity, we do not consider other covariates in
this example. The primary interest here is to model
the random effects uij, which are expected to be cor-
related in both the spatial domain and the response
domain. To complete the model specification, spec-
ify a weakly-informative normal prior for the inter-
cepts βj and a multivariate conditional autoregressive
model MCAR(B,T) for the random effects U = {uij}.
We apply the three proposed versions of MCAR(B,T)
here. Hyperparameters for prior distributions are spec-
ified as follows. For the graph, noticing that the choice
of π in (10) can influence the posterior inference, we
consider the prior (10) with both π = 0.2 in favour
of a sparse graph and π = 0.5 as no preference. All
other priors are chosen to be only weakly-informative
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Figure 1. Data analysis: convergence of the log-joint posterior log p(θ | data) under the threemodels (first 50,000 iterations), where
θ represents the collection of all parameters.

and have little impact on the posterior inference. In
Model 1, we specify hyperparameters in the inverse
gamma prior as aj = bj = 0.5. In Model 2, we spec-
ify hyperparameters in the G-Wishart prior as b = 3
and V = I. In Model 3, we specify hyperparameters
in the two G-Wishart priors as b = 3,V = I, b(s) =
24 and V(s) = (b(s) − 2)(D − 0.95C)−1, which implies
a prior mode at a proper conditional autoregressive
model. For each model, we perform the Markov chain
Monte Carlo for 150,000 iterations with a burn-in size
of 50,000. Posterior results are based on the remain-
ing samples. Figure 1 shows the convergence of the
log-joint-posterior and notice that they all converge
quickly.

Table 1 shows the posterior edge inclusion probabil-
ities for the response graph C(r). First, all three models

seem to agree on the link between Cigarette Smoking
and Secondhand Smoke Exposure, as well as the link
between Lung Diseases Mortality and Heart Diseases
Mortality. There is a moderate agreement on the links
between Secondhand Smoke Exposure and Lung Dis-
eases Mortality, and between Cigarette Smoking and
Lung Diseases Mortality. In general, Model 1 tends to
be a sparser graph, which is possibly due to the diagonal
dominance condition. Model 2 is the simplest model
as reflected by its pD, the effective number of parame-
ters but has the largestDIC. Model 3 is the most flexible
model among the three, and the inferred graph tends to
be denser than the other two. It is as expected that its pD
is larger but the overall criterion DIC is much smaller
than the other two. Second, the edge inclusion proba-
bilities are in general higher whenπ = 0.5, as expected,
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Table 1. Data analysis: Posterior edge inclusion probabilities for the response graph and deviance information criterion for Models
1–3, respectively.

Cigarette Smokeless Other Secondhand Lung Heart pD DIC

Model 1
Cigarette 0 0.165 0.963 0.276 0 460.8 5766.5
Smokeless 0 0.181 0 0 0.002
Other 0.258 0 0.032 0.014 0.005
Secondhand 0.983 0 0.062 0.453 0
Lung 0.301 0 0.040 0.544 0.533
Heart 0.005 0 0.039 0.007 0.772 460.2 5765.0

Model 2
Cigarette 0.213 0.919 1 0.756 0.373 445.1 5813.8
Smokeless 0.340 0.207 0.281 0.249 0.706
Other 0.872 0.316 0.390 0.346 0.898
Secondhand 1 0.527 0.475 0.732 0.343
Lung 0.584 0.407 0.412 0.871 1
Heart 0.352 0.942 0.838 0.400 1 447.2 5812.6

Model 3
Cigarette 0.268 0.328 0.827 0.541 0.436 543.3 5630.4
Smokeless 0.249 0.417 0.692 0.515 0.726
Other 0.317 0.403 0.534 0.453 0.510
Secondhand 0.819 0.694 0.531 0.936 0.801
Lung 0.521 0.500 0.435 0.941 0.997
Heart 0.411 0.732 0.508 0.805 0.998 543.1 5629.2

Notes: Inclusion probabilities higher than 0.5 are in bold. The upper-right panel is for π = 0.2 and the lower-left panel is for π = 0.5.

Figure 2. Data analysis: posterior means of spatial random effects uij under Model 1.

but it has little material impact on the final inferred
graph. TheDIC has little changewith differentπ values.
Lastly, Figures 2–4 show the maps of spatial random
effects uij for the three models, respectively, and for a
problem of disease mapping, this is often the eventual
output for practitioners.

4. Simulation

To validate the proposed algorithms, we perform a
simulation study on a 7 × 7 regular grid (I = 49 area
units) with J = 4 response variables. Consider the true

response graph with two edges C(r)13 and C(r)24 . In this
simulation study, we do not consider the scenario with
misspecified models, and therefore, data are generated
under each of the three models and the correct model
is then used for inference. The parameter settings are
given as follows. For Model 1, λj = 0.95, φjj′ = ψjj′ =
0.9, δj = 1 and βj = 1. For Model 2, ρ = 0.9, ωjj = 4,
ω13 = ω24 = −3.2 and βj = 1. For Model 3, param-
eters are the same as Model 2 but �C(s) is generated
from GWis(10, 8(D − 0.9C)−1). We repeat the sim-
ulation and inference process for L = 50 times and
for each time, the MCMC iteration number is 5000.
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Figure 3. Data analysis: posterior means of spatial random effects uij under Model 2.

Figure 4. Data analysis: posterior means of spatial random effects uij under Model 3.

We consider three measures for validating and com-
paring the three algorithms. The first measure is the
mean inclusion probability matrix with standard devi-
ations. We call the second measure the error rate of
mis-identified edges. If we use 0.5 as the threshold
for identifying an edge in the graph, for each replica-
tion, we obtain an inferred graph and then compare
with the true graph to record a proportion of wrong
edges/non-edges. The error rate is the average pro-
portion of L replications. The third measure is the

mean absolute error (MAE) of random effects in the
model,

MAE = 1
L
1
J
1
I

∑
l

∑
j

∑
i

∣∣∣∣ ûijl − uijl
uijl

∣∣∣∣
where uijl is the true value and ûijl is the posterior
mean.

Simulation results are given in Table 2. For all three
models, the algorithms can correctly identify the true
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Table 2. Simulation: Mean posterior edge inclusion probabilities (stan-
dard deviations in parentheses), error rates of mis-identified edges, and
the mean absolute errors of random effects.

Var 2 Var 3 Var 4 Error Rate MAE

Model 1
Var 1 0.128 (0.214) 0.664 (0.358) 0.088 (0.107) 0.15 3.167
Var 2 0.100 (0.148) 0.615 (0.352)
Var 3 0.087 (0.155)

Model 2
Var 1 0.211 (0.108) 1 (0) 0.200 (0.086) 0.02 2.153
Var 2 0.213 (0.134) 1 (0)
Var 3 0.199 (0.107)

Model 3
Var 1 0.246 (0.037) 0.961 (0.051) 0.292 (0.054) 0.07 2.218
Var 2 0.438 (0.092) 0.996 (0.008)
Var 3 0.426 (0.083)

Note: True edges are in bold.

edges. The algorithm forModel 1 appears to be unstable
as the standard deviation is large and tends to underes-
timate inclusion probabilities, while the algorithm for
Model 3 tends to overestimate inclusion probabilities
for non-edges. The algorithm for Model 2 presents the
smallest error rate and MAE. Note that this simulation
study validates the proposed algorithms under correct
model specifications and hence the result cannot imply
that Model 2 is the best model for a real dataset. In fact,
as shown in the data analysis, Model 2 is the simplest
specification and is the least preferred model in that
case according to DIC.

5. Further discussion

In this paper, we proposed a modelling framework for
multivariate areal data from a graphical model per-
spective. We rebuilt three well-known models in our
framework and developed Bayesian inference tools for
the proposed models. It is our perspective that this
framework is very general and can contain other mod-
els that are beyond the cases discussed in the paper.
For example, Jin et al. (2007) specified a co-regionalised
areal data model, in which their Case 3 is a very
general specification. We show that this specification
can be reproduced and extended in our framework.
Consider the Cholesky decomposition � = AAT . Jin
et al. (2007)’s Case 3 specification of the joint covari-
ance matrix is (A ⊗ II)(IJ ⊗ D(s) −�⊗ C(s))−1(A ⊗
II)T whose inverse is then

(AAT)−1 ⊗ D(s) − (A−1)T�A−1 ⊗ C(s) (11)

where � is a symmetric J × J matrix. Let � = �−1 =
(AAT)−1 and Q = (A−1)T�A−1. Obviously it is one-
to-one from (A,�) to (�,Q). Specification (11) is
hence equivalent to

�⊗ D(s) − Q ⊗ C(s), (12)

where Q is a symmetric J × J matrix with entries
qjj′ . To reproduce this specification in our framework,

parameterise B and T as follows (assuming i �= i′ and
j �= j′):

b{ij},{i′j} = qjj
d(s)i ωjj

C{ij},{i′j}, b{ij},{ij′} = −ωjj′

ωjj
C{ij},{ij′},

b{ij},{i′j′} = qjj′

d(s)i ωjj
C{ij},{i′j′}, τ 2ij = 1

d(s)i ωjj
.

This parameterisation leads to the joint precision
matrix

T−1(I − B) =
{
� ◦ (IJ + C(r))

}
⊗ D(s)

−
{
Q ◦ (IJ + C(r))

}
⊗ C(s)

= �C(r) ⊗ D(s) − QC(r) ⊗ C(s). (13)

The expression (13) reduces to (12) which is equiva-
lent to Jin et al. (2007)’s (11) when C(r) is a complete
graph. A derivation of (13) is given in Appendix 1.
The validity of this model relies on the positive def-
initeness of (13). Jin et al. (2007) showed that it is
positive definite if � is positive definite and eigenval-
ues of � = ATQA are between 1/ξmin and 1/ξmax,
reciprocals of the smallest and largest eigenvalues of
D(s)−1/2C(s)D(s)−1/2, which are known constants. The
graphical version (13) must also satisfy this condi-
tion, that is, 1/ξmin ≤ λ(�−1

C(r)
QC(r) ) ≤ 1/ξmax, where

λ(M) is any eigenvalue of M. Considering that both
�C(r) and QC(r) are restricted by the underlying graph,
the eigenvalue condition is not easy to implement in
computations. This matter is worth investigating in the
future.

In general, flexible models are desired for mod-
elling multivariate areal data because overly simplistic
models may misspecify the true underlying covariance
structure. However, there is almost always a trade-off
between the simplicity and the flexibility of a model. It
is probably reasonable to allow certain flexibilities for
specific purposes, such as in this paper, for learning a
graphical relationship between multiple responses. It is
usually the practitioner’s choice whether a more flexi-
ble but complicated model is needed for the problem at
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hand, especially when the performance improvement is
negligible.
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Appendices

Appendix 1. Derivations

A.1 Derivation of Equation (3)

With the parameterisation in Model 1, we have T =
D−1(�⊗ II) and

B = (�1/2 ⊗ II)D−1
{
�⊗ C(s) + (� ◦ C(r))⊗ II

+ (� ◦ C(r))⊗ C(s)
}
(�−1/2 ⊗ II).

Then immediately we have expression (3) for T−1(I − B).

A.2 Derivation of Equation (5)

With the parameterisation in Model 2, we have T =
(diag(�)⊗ D(s))−1 and

B = ρIJ ⊗ D(s)−1C(s) −
(
diag(�)−1� ◦ C(r)

)
⊗ II

+ ρ
(
diag(�)−1� ◦ C(r)

)
⊗ D(s)−1C(s).

Then

T−1(I − B) = diag(�)⊗ D(s) − ρdiag(�)⊗ C(s)

+ (� ◦ C(r))⊗ D(s) − ρ(� ◦ C(r))⊗ C(s)

=
{
� ◦ (IJ + C(r))

}
⊗ D(s)

−
{
� ◦ (IJ + C(r))

}
⊗ ρC(s)

=
{
� ◦ (IJ + C(r))

}
⊗ (D(s) − ρC(s)),

which is expression (5).

http://orcid.org/0000-0002-6513-8962
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A.3 Derivation of Equation (7)

With the parameterisation in Model 3, we have T =
(diag(�(r))⊗ diag(�(s)))−1 and

B = −IJ ⊗
(
diag(�(s))−1�(s) ◦ C(s)

)
−

(
diag(�(r))−1�(r) ◦ C(r)

)
⊗ II

−
(
diag(�(r))−1�(r) ◦ C(r)

)
⊗

(
diag(�(s))−1�(s) ◦ C(s)

)
.

Then

T−1(I − B) = diag(�(r))⊗ diag(�(s))+ diag(�(r))

⊗ (�(s) ◦ C(s))

+ (�(r) ◦ C(r))⊗ diag(�(s))+ (�(r) ◦ C(r))

⊗ (�(s) ◦ C(s))

=
{
�(r) ◦ (IJ + C(r))

}
⊗

{
�(s) ◦ (II + C(s))

}
,

which is expression (7).

A.4 Derivation of Equation (13)

With the parameterisation in Model 4, we have T =
(diag(�)⊗ D(s))−1 and

B = diag(�)−1diag(Q)⊗ D(s)−1C(s)

− diag(�)−1� ◦ C(r) ⊗ II

+ diag(�)−1Q ◦ C(r) ⊗ D(s)−1C(s).

Then

T−1(I − B) = diag(�)⊗ D(s) − diag(Q)⊗ C(s)

+� ◦ C(r) ⊗ D(s) − Q ◦ C(r) ⊗ C(s)

=
{
� ◦ (IJ + C(r))

}
⊗ D(s)

−
{
Q ◦ (IJ + C(r))

}
⊗ C(s),

which is expression (13).

Appendix 2: Bayesian computations

A.5 A hierarchical generalised linearmodel

For illustration, we now assume a full Bayesian hierarchi-
cal model and give computational details for this model.
Assume binomial counts yij/nij for J responses and I areal
units. Specify a Bayesianmodel as follows, for i = 1, . . . , I and
j = 1, . . . , J,

yij | pij ∼ Bin(nij, pij), logit(pij) = βj + uij,

βj ∼ N(0, τ 20 ), U | B,T ∼ MCAR(B,T),

where τ 20 is a given constant,U is thematrix-variate of uij, and
priors for B and T depend on the specific parameterisation.
This section is organised as follows: we first give details of
updating effects parameters βj and uij, and then, separately
for each model, details of updating parameters of MCAR and
updating the random response graph C(r).

A.6 Updating effects parameters

Our experience has shown that the convergence is poor if
we directly update βj and uij. We apply the hierarchical cen-
tring technique (Gelfand, Sahu, & Carlin, 1995) and block
sampling. Let γij = βj + uij and γ = vec[(γij)I×J] has a non-
centred MCAR prior. We update (γij,βj) instead of (uij,βj).
The full conditional distribution of γij is

p(γij | ·) ∝ eyijγij

(1 + eγij)nij
exp

{
− 1
2τ 2ij

(
γij − βj

−
∑

{i′j′}�={ij}
b{ij},{i′j′}(γi′j′ − βj′)

⎞
⎠
⎫⎬
⎭ .

We useMetropolis-Hastings algorithm to sample γij from this
conditional density. We block sample β in the following way.
For now denoteM = T−1(I − B), the joint precision matrix.
Let γ ∗ = Mγ and γ ∗∗ be a J × 1 vector such that γ ∗∗

1 is the
sum of the first I elements in γ ∗, γ ∗∗

2 is the sum of the second
I elements in γ ∗ and so on. PartitionM into J × J blocks and
define

H =

⎛
⎜⎝
1TM111 · · · 1TM1J1

...
. . .

...
1TMJ11 · · · 1TMJJ1,

⎞
⎟⎠

where 1 is the all-one vector. Then the full conditional distri-
bution for the vector β is

(β | ·) ∼ N
[
(H + 1/τ 20 I)

−1γ ∗∗, (H + 1/τ 20 I)
−1] .

A.7 Model 1: updating δj, λj,ψjj′ , φjj′ andC(r)

Given the current graph C(r), parameters are updated
through Gibbs sampling. Recall priors on these parameters:
δj ∼ IG(aj, bj) andλj,ψjj′ ,φjj′ ∼ Unif(−1, 1). Letuj be the jth
column vector of U , j = 1, . . . , J and Dj be the jth diagonal
block of D. The full conditional distribution of δj is given by

p(δj | ·) ∝ δ
−I/2−aj−1
j exp

{
− 1
2δj

uTj (Dj − λjC(s))uj

+
∑
j′∼j

1√
δjδj′

uTj (ψjj′II + φjj′C(s))uj′ − bj
δj

⎫⎬
⎭ .

It can be shown that the transformed one (
√
1/δj | ·) is log-

concave when I + 2aj − 1 > 0. Thus, we use the adaptive
rejection sampling to update δj.

Let W be an I × J matrix, where vec(W) = (�−1/2 ⊗
II) vec(U) and wj be the jth column vector of W. Let M =
D −�⊗ C(s) − (� ◦ C(r))⊗ II − (� ◦ C(r))⊗ C(s) as in
(3). Then λj, ψjj′ and φjj′ are sequentially updated through
following full conditional distributions,

p(λj | ·) ∝ ∣∣M(λj)∣∣1/2 exp
(
1
2
λjwT

j C
(s)wj

)
,

p(ψjj′ | ·) ∝ ∣∣M(ψjj′)
∣∣1/2 exp (ψjj′wT

j wj′
)
,

p(φjj′ | ·) ∝ ∣∣M(φjj′)∣∣1/2 exp (φjj′wT
j C

(s)wj′
)
.

We use Metropolis-Hastings algorithm to update these
parameters. Note that evaluating the sparse |M| could be
computationally intensive. An efficient algorithm, usually
based on the Cholesky decomposition, on sparse matrices is
helpful.

The graph C(r) is updated through a simple reversible
jump MCMC algorithm. Propose a new graph C(r)∗ by only
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adding or deleting one edge from C(r). Without loss of gen-
erality, suppose that one edge {j0, k0} is added to the new
graph. Dimension has been changed by 2 from (C(r),� ,�) to
(C(r)∗,�∗,�∗). Propose u1 ∼ U(−1, 1) and u2 ∼ U(−1, 1),
and let ψ∗

j0,k0 = u1 and φ∗
j0,k0 = u2. The Jacobian from

(� ,�, u1, u2) to (�∗,�∗) hence is 1. Choose a Bernoulli
jump proposal with odds q(C(r)∗,C(r))/q(C(r),C(r)∗) =
p(C(r))/p(C(r)∗) and systematically scan through the graph
for updating. Accept the move from C(r) to C(r)∗ with prob-
ability min{1,α} where

α = |M∗|1/2
|M|1/2 exp

{
−1
2
vec(W)(M∗ − M) vec(W)

}
.

A.8 Model 2: updating ρ,�C(r) andC
(r)

Given the current graph C(r), parameters are updated
through Gibbs sampling. Recall priors on these parame-
ters:ρ ∼ U(−1, 1) and�C(r) ∼ GWis(b,V). UseMetropolis-
Hastings algorithm to update ρ. It can be shown that the full
conditional distribution for ρ is

p(ρ | ·) ∝
∣∣∣D(s) − ρC(s)

∣∣∣J/2 exp
×

{ρ
2
vec(U)T(�C(r) ⊗ C(s)) vec(U)

}
.

Let W1 be an I × J matrix, where vec(W1) = [IJ ⊗ (D(s) −
ρC(s))1/2] vec(U) and w1,j be the jth column vector of W1.
Let S be an J × J matrix with sjj′ = wT

1,jw1,j′ . Then the full
conditional distribution of�C(r) is

p(�C(r) | ·) ∝ ∣∣�C(r)
∣∣(b+I−2)/2 exp

×
[
−1
2
tr
{
�C(r) (V + S)

}]
1�C(r)∈M+(C(r)),

which is GWis(b + I,V + S). For sampling from the G-
Wishart distribution, we use the block Gibbs sampler,

given the set of maximum cliques, introduced by Wang
and Li (2012).

The graphC(r) is updated using (Wang&Li, 2012)’s partial
analytic structure algorithm (p. 188, Algorithm 2).

A.9 Model 3: updating�C(r) ,�C(s) andC
(r)

Given the current graph C(r), parameters are updated
through Gibbs sampling. Recall that we impose a constraint
and use a joint prior (8) on (z, z�C(r) ) and have �C(s) ∼
GWis(b(s),V(s)). Let both W(r) and W(s) be I × J matri-
ces, where vec(W(r)) = (IJ ⊗�

1/2
C(s) ) vec(U) and vec(W

(s)) =
(�

1/2
C(r) ⊗ II) vec(U). Letw

(r)
j be the jth column vector ofW(r)

and w(s)i be the ith row vector of W(s). Then let S(r) be J × J
with s(r)jj′ = w(r)Tj w(r)j and S(s) be I × I with s(s)ii′ = w(s)Ti w(s)i .
With these notations, we have

(z | ·) ∼ Ga(az , bz),

where az = J(b − 2)/2 + ν(C(r)) and bz = tr(�C(r)V
(r))/2;

(�C(r) | ·) ∼ GWis(b(r) + I, zV(r) + S(r))

and
(�C(s) | ·) ∼ GWis(b(s) + J,V(s) + S(s)).

The graph C(r) is updated using (Wang & Li, 2012)’s partial
analytic structure algorithm (p. 188, Algorithm 2).
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