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ABSTRACT

We propose a constrained generalised method of moments (CGMM) for enhancing the efficiency
of estimators in meta-analysis in which some studies do not measure all covariates associated
with the response or outcome. Under some assumptions, we show that the proposed CGMM esti-
mators have good asymptotic properties. We also demonstrate the effectiveness of the proposed
method through simulation studies with fixed sample sizes.

1. Introduction

Because of the availability of multiple datasets, not
just summary statistics, from different studies in mod-
ern applications, meta-analysis has become an impor-
tant tool to gain efficiency in estimating a common
structural parameter vector of interest from all stud-
ies by appropriately using multiple datasets (Hartung,
Knapp, & Sinha, 2008; Higgins & Thompson, 2002;
Higgins, Thompson, Deeks, & Altman, 2003; Schmidt
& Hunter, 2014; Simonian & Laird, 1986). There
exists a rich literature on how to form optimal cal-
ibration equations for improving the efficiency of
parameter estimates within various classes of unbiased
estimators (Chen & Chen, 2000; Deville & Sarn-
dal, 1992; Lumley, Shaw, & Dai, 2011; Robins, Rot-
nitzky, & Zhao, 1994; Slud & DeMissie, 2011; Wu, 2003;
Wu & Sitter, 2001). The methodology for ‘model-
based’ maximum likelihood estimation has also been
studied previously in some special cases of this prob-
lem (Chatterjee, Chen, Maas, & Carroll, 2016). A
number of researchers have proposed semiparamet-
ric maximum likelihood methods for various types
of regression models, while accounting for complex
sampling designs (Breslow & Holubkov, 1997; Lawless,
Wild, & Kalbfleisch, 1999; Qin, Zhang, Li, Albanes,
& Yu, 2015; Rao & Molina, 2015; Scott & Wild, 1997).
One issue that has to be addressed with multiple
studies is that some studies may not measure all covari-
ates although all studies have the same responses (Chat-
terjee et al., 2016). Specifically, a past study only mea-
sured g of the p+q covariates measured in the current
study. Although unobserved covariate values in the past
study can be treated as missing covariate values, better
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statistical procedure may be derived because in each
study, a covariate is either observed or missing entirely,
which is referred to as systematic missing covariates.

To illustrate the idea, let us consider the special case
of two studies. Let Y be a response or outcome of
interest, U and X be p- and g-dimensional vectors of
associated covariates measured in study 1, and X be the
covariate vector measured only in study 2. We focus
on the situation where whether U is observed does not
affect the conditional means, i.e.,

E(Y|UX,8) =E(Y | U,X) and E(U|X,$)
= E(U | X), (1)

where § = k for study k = 1,2. In the missing data litera-
ture, the ‘missingness’ of U with property (1) is referred
to as missing at random, but not missing completely at
random.

Suppose that we are interested in the parameters in
the conditional mean E(Y | U, X), which can be called
structural parameters. From the first equation in (1),
estimation can actually be done using data from study
1. However, we want to make use of data from study
2, which is the purpose of meta-analysis. The second
equation, which will be referred to as bridge equation,
may enable us to obtain estimators based on data from
all studies that are more efficient than those using only
data from study 1.

In this article, we assume that the conditional means
in (1) follow linear models for both observation and
bridge equation. Although more complicated models
may be encountered in applications, the discussion
with linear models is a good start to this problem.
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In Section 2, we propose a constraint generalised
method of moments for estimation in the case of
two studies. Asymptotic distributions of the proposed
estimators are established, with which we illustrate
when more asymptotically efficient estimators can be
obtained. Simulation studies support our asymptotic
results and illustrate the magnitude of efficiency gain.
Our method can be extended to the case of more than
two studies. As an example of extension, in Section 3,
we consider the situation of three studies and supple-
mented with simulation results. The last section con-
tains some technical details.

2. Results for two independent studies

In this section, we consider two studies, indicated
by § € {1,2}, with independent datasets. Following
Section 1, we use Y, X, and U as the response of interest,
the covariate vector measured in both studies, and the
covariate vector measured only in study 1, respectively.

2.1. Constrained generalised method of moments

For illustration, we first consider a univariate U = U.
Assume (1) and linear models for two independent
studies as follows:

§=1 Y=B,U+B,'X+e 2)

§=2 Y=n"X+¢ (3)
Ny =Buyx+ B, (4

where €1, €3, and ¢, are independent with mean 0 and
variances o7, 07, and obz, respectively, B, B, Ny, and
Yy, are parameter vectors with appropriate dimensions,
and the superscript T denotes vector transpose. Mod-
els (2)-(4) assume that the structure parameters S,
B, and y, are the same for all studies, while the dis-
tributions of &’s can vary with studies, exhibiting the
heteroscedasticity of the data among different studies.

We are mainly interested in estimating §, and B,
in (2). Instead of using data from study 1 only, we try
to make use of data from study 2 to gain estimation
efficiency. Condition (4) is for bridging data in two
studies to gain efliciency by using the additional data
from study 2. It is not necessary. See our discussion in
Section 4.

Assume that we have two independent random sam-
ples with sizes n; and n, from studies 1 and 2, respec-
tively. We denote the total sample size from all studies
as n = ny + np. From (2)-(4), we construct estimat-
ing equations Eg(Z,0) = 0 and a constraint ¢(d) = 0,
where 0 is the vector of zeros, 6 = (ﬂu,ﬁz,yz, T,
@) =1, — Buvx — B Z=(Y,U,X",8)", ¢(Z,0) is
a column vector with elements of

I8 = D(n/m)(BU + B,"X — VU,
18 = 1)(n/m)(BuU + B,"X — V)X,

bridge U =7y!X+¢,

18 = 1)(n/n) (v, "X — U)X,
16 = 2)(n/m) (" X — V)X,

where I(A) is the indicator function of the event A.

Let z; = (y;, ui,xiT,éi)T, i=1,...,n, be observed
data from samples, where (y;, u,-,x?,éi)T with §; = k
are identically distributed as (Y, U, XT,8)T with s =k,
k=12,andletg(0) = n~1 Y1 | g(2:,0). The two step
constrained generalised method of moments (CGMM)
is applied as follows.

(1) Compute 0. = argmin[g(ﬂ)Tg(O)] over 6 with
constraint c(f) = 0.

(2) Compute the weight matrix W = n[Y" g(zi,0,)
8,07

(3) Compute the two step CGMM estimator
éc = arg min[§(0)TW§(0)] over @ with constraint
c(0) =0.

We now extend our idea to a multivariate U that is
observed in study 1 but not in study 2. Let U be p-
dimensional and U; be its jth component. Then, the
previous procedure can still be applied with U, 8,,, 8,U,
Yo €35 (n/n)I(E = D)(y, X" — U)X, and ¢(9) = 3, —
Buyx — By replaced by U, B, = (Burs - - . Bup) "> B4 U,
Vx> -+ > Vip)> e3=(e31,-..,83) ", (n/n)I
6 =D(yLx-Upxt,..., (y}l,x —UpXT), and

c®) =n,— B (v, .,yxp)T — B,), respectively.

2.2. Asymptotic properties

The general theory for the generalised method of
moment (GMM) is given in Hansen (1982). The
CGMM we proposed in Section 2.1 adds a constraint to
the GMM. For the purpose of testing hypotheses, Engle
and McFadden (1994) considered the CGMM. We now
establish an asymptotic result in a similar manner. For
simplicity, we consider only a univariate U.

Let 6 denote the true value of the parameter vector
0. For the CGMM estimator 9C defined in Section 2.1
with the constraint ¢(#) = 0, we have the following
result.

Theorem 2.1: Assume that models (2)-(4) hold; 0 is
the unique root of Eg(Z,0) = 0; both ny and n, diverge
to oo and ny/n — h with 0 < h < 1; and the matrices
Q = lim,,_, o Eg(Z,00)g(Z,00)", G = lim,, ., E[0g
(Z,0)/30"]19—p, Zx = EXXT), and A =[3c(0)/
907] lo=0, = (Vx> 1g> Buly —1g) are all of full rank,
where 1, is the identity matrix of order q. Then,

n'/2@. —85) — 4 N(0,B — BAT(ABAT)"'AB), (5)

where B = (G 'G)~! and — ; denotes convergence
in distribution as n — oQ.

If we do not use the constraint ¢(f) = 0, then the
unconstraint GMM (UGMM) estimator in our problem



described in Section 2.1 is the vector of the least square
estimators of 8, 8, and y, based on data in study 1
only and the least squares estimator of , based on data
in study 2 only. Let 8, be the UGMM estimator. Then

n'/2@y — 69) —4 N (0,B), (6)

which can be derived in the same manner as deriv-
ing (5) but with ¢(@) = 0.

Is the CGMM estimator asymptotically more effi-
cient than the UGMM estimator 8 because of utilising
two data sets? It follows from results (5) and (6) that
a component of 0. is asymptotically more efficient if
and only if the corresponding diagonal element of the
matrix BAT(ABAT) ! AB is positive.

To find out the magnitude of efficiency gains in using
CGMM, we need to address the issue that the limit 4 of
sample size ratio may be different from 1/2, and need to
derive more explicitly the asymptotic covariance matri-
ces in (5) and (6).

Note that the first 1429 components of 0., denoted
by Z,, estimates ¢ = (B, x,yx)T based on data from
study 1 with size n;, whereas the last ¢ components of
0., denoted by 1. estimates 7, based on data from
study 2 with size n. From the technical details in
Section 5, we obtain from (5) that

1/2
€. — %)
N
( I’Ié/z("xc nx) ) i

x (0,HBH — HBA"(ABA")"'ABH), (7)

where H is a diagonal matrix whose first 14-2¢q diag-
onal elements are h'/? and last g diagonal elements
are (1 — h)/2. For the special case where § and (U, X)
in (1) are independent (so that missing U is completely
at random), it is further shown in Section 5 that

ol/o} -—afvxT/%g
HBH — | ~0iYe/oi of(E ! +yyl/o))
0 0
0 0
0 0
0 0
U;Z;l 0 > (8)
0 03X ;!

where 0 denotes a column or row vector of zeros or a
matrix of zeros with an appropriate dimension, and that

1
HBAT(ABAT)"'ABH = X [g g] ) 9)
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where A = (1 — h)(of + 0}B%) + ho3 and

o1 —mE;!
D= 01 obﬂu(l nHx !
—o2oi[(1 — hh]V/2x !
afagﬁua — h)):;l
o, BE1 -z !
—o; obﬂu[(l —h)h]l/z): 1
i 02[(1 hh]V/2x !
—o; Gbﬁu[(l —h)h]l/z): 1 (10)
orhE !

Similarly, if £, and 7, denote the UGMM estimators
of ¢ and 7, then

( 1/2@0 %)

N(0,HBH). 11
7’12 (nxO_"x) )_>d ( ) ( )

We define the asymptotlc relative efficiency gain in
using CGMM estimator QCJ, the jth component of 0.,
with respect to the unconstraint GMM estimator «9()],
the jth component of 80, to be

the asymptotic variance of éoj
—the asymptotic variance of 6,

Ri = =
77 the asymptotic variance of

j=1,...,1+ 3q. From (7) and (11), we derive R;’s as
follows. First, R; = 0, i.e., there is no gain in estimat-
ing B,. Intuitively, this is because the data set in study 2
does not have information on U. Second, for estimating
g components of 8,

(1 —h)o}Bioti=b
Aoi(ofo =D + yi(j_l))

Rj= j=2,...,9+1,

where o (¥ is the tth diagonal element of the matrix X !
and yy; is the tth component of y,. Third, for estimating
q components of y,,

(1 — hyo} B2

P= , j= 2,0,
j A Jj=4q9+

29+ 1.

Note that A=1(1 —h) is a decreasing function of h.
Hence the CGMM estimators of components of 8, and
y, are increasingly more efficient when h decreases,
i.e., ny/n; increases, which means more information
can be borrowed from study 2. Finally, for estimating
g components of 3,

2
ho;

which increases when h increases.
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Table 1. Simulation variances of CGMM and UGMM estimators

Table 2. Simulation variances of CGMM and UGMM estimators

(p=qg=1). (p=1,q=2).
Parameter and its true value Parameter and its true value
n m  Method  fy=1  pfe=1  w=1 x =2 Method fu=1 Ba=1 Pa=1 ya=1 vya=1
100 100 UGMM  0.010158  0.020502 0.010518  0.010397 0 UGMM  0.010563 0.021218 0.020028 0.010662 0.010307
CGMM  0.010217  0.017443  0.007185  0.006881 CGMM  0.010788 0.018011 0.017978 0.007072 0.006917
100 400 UGMM  0.010787  0.019185 0.009858  0.002449 03 UGMM 0.010333 0.021848 0.022418 0.011316 0.011551
CGMM  0.010856  0.015174  0.005433  0.002112 CGMM  0.010543 0.018177 0.019034 0.007819 0.007521
400 100 UGMM  0.002446  0.005086  0.002434  0.010239 06 UGMM 0.010249 0.026688 0.027351 0.016678 0.017572
CGMM  0.002451  0.004723  0.0020617  0.003258 CGMM  0.010482 0.021604 0.022424 0.011010 0.011839

2.3. Simulation study

Two simulation studies are carried out to check the
empirical performance of the CGMM and UGMM esti-
mators with finite fixed sample sizes. In the first simula-
tion, we consider univariate U and X, i.e.,p=q=1.The
covariate is generated from the standard normal distri-
bution. The covariate U and response Y are generated
according to (2)-(4) with 1, &3, and &, independently
distributed as standard normal.

Based on 2000 simulations, Table 1 gives the sim-
ulation variances of estimators of univariate parame-
ters By, Bx> Vx> and 7y, for both CGMM and UGMM.
All simulation biases are less than 0.006 and thus not
reported. True values of parameters and different sam-
ple sizes are included in Table 1.

A few conclusions can be made from Table 1.

(1) When n; = ny = 100, the simulation relative effi-
ciency gain of CGMM over UGMM is (—0.58%,
14.92%, 31.69%, 33.82%) for estimating (B, Bx> Vx>
1x). This indicates that there is almost no improve-
ment in estimating B,, but there are substan-
tial gains in estimating other 3 parameters,
which supports our asymptotic result discussed in
Section 2.2. In fact, the vector of asymptotic rela-
tive efficiency gains in theory defined in Section 2.2
is (0,1/6,1/3,1/3), which is very close to the sim-
ulation relative gains.

(2) When n; = 100 and #n, = 400, more information
from study 2 can be borrowed to estimate parame-
ters in study 1. The simulation relative efficiency
gain vector is (—0.63%,20.91%, 44.99%, 13.76%).
We have more gains in estimating By and vy, but
less gain in estimating 7. The vector of asymp-
totic relative efficiency gains in theory defined in
Section 2.2 is (0,2/9,4/9, 1/9), which is very close
to the simulation relative gain.

(3) When n; = 400 and n, = 100, the simulation rela-
tive efﬁciency gain vector is (—0.2%, 7.14%, 15.32%,
68.18%). We have less gains in estimating fy
and yy, but more gain in estimating 7. the vec-
tor of asymptotic relative efficiency gains in the-
ory defined in Section 2.2 is (0,1/12,1/6,2/3),
which is very close to the simulation relative
gain.

Our second simulation considers a g=2 dimen-
sional X = (X1, X>)T, while U is still univariate. Data
are generated according to (2) — (4) with X being a two-
dimensional normal with zero marginal means, unit
marginal variances, and a correlation p.

Note that B, = (Bx1,Bx2) "> ¥x = (¥x1,¥x2) > and
N, = (Mx1 nx2) T are all 2-dimensional. Based on 2000
simulations, Table 2 gives the simulation variances
of estimators of B, By, Bx2> Yx1> and Yy for both
CGMM and UGMM. Results for the variances of esti-
mators of 1y, and 7,y are omitted. Again, all simula-
tion biases are less than 0.004 and thus not reported.
True values of parameters are included in Table 2. Sam-
ple size n; = n; =100 and p =0, 0.3, and 0.6 are
considered.

Table 2 shows similar results to those in Table 1. In
estimating B, the simulation relative gain of CGMM
over UGMM ranges from 10% to 20%, while there is
no gain in estimating B,,. Increasing the value of p, the
correlation between two components of X increases the
relative efficiency gain, but not substantially.

3. Results for three independent studies

The method and results in Section 2 can be extended
to various situations where the number of indepen-
dent studies is more than 2 and different covariates
are observed in different studies. We consider in this
section the case of three studies where the response Y
and covariates U, V, and X are observed according to
the following with sample sizes in three studies:

Study Observed Sample size
§=1 Y U V X n
§=2 Y U X "y
§=3 Y vV X 13

The total sample size from all studies is n = n; +
ny + ns.

3.1. CGMM

Similar to (1) and (2)-(4), we assume that

E(Y|U,V,X,8) =E(Y | U, V,X), (12)
E(V|U,X,8) =EV | U,X), (13)
E(U|V,X,8) = EU | V,X), (14)



§ =1,2,3, and that

§=1 Y=BIU+BIVv+BIX+¢ (15)
§=2 Y=nU+nX+s (16)
§=3 Y=1lV4+1lX+e;3 (17)
bridge U =1y, V +v,X +éb,

V=y,,U+y,X—¢p
with YurVvu =1 and YurVox T Vux =0

(18)
where pxgq  matrix e = Vuxts> - - - ,yuxp)T,
p x 1 matrix y,, = Y,1--- ,yuvp)T, I x g matrix

v = Pyxs - - - ’chl)T’ and | X p matrix y,,, = (V,u1>
<> Yyu) - Assume samples are independent and iden-

tically distributed within each study and independent
among studies and ¢’s are independent with mean zero.
By assumptions (12), (14), (15), (17), and the expres-
sion of U in (18), we have the following constraint
conditions:

T

T T T
ﬁuYuv + ﬂv =T,

and By + By =15 (19)

By assumptions (12), (13), (15), (16), and the expres-
sion of V in (18), we have the following constraint
conditions:

BL+ By, =n and Bly,+Br=nl. (20

Denote (ﬁ ﬂ ﬂT)T nl, DT, and (z1, D) Tby B, 1,
and 7, respectively. Models (15)-(18) assume that the
structure parameters 8, y,,, Y Y and y,,, are the
same for all studies, while the distributions of &’s can
vary with studies. We are mainly interested in estimat-
ing B in (15). Instead of using data from study 1 only, we
try to make use of data from studies 2 and 3 to gain esti-
mation efficiency. Condition (18) is needed for bridging
data among three studies; without this condition, it is
hard to gain any efficiency by using the additional data
from study 2 and 3.

Denote vec(M) a row vector contains all rows in
a matrix M. From (15)-(20), we construct estimat-
ing equations Eg(Z,0) =0 and a constraint c(f) =
0, where Z = (Y, UL, VI, XT, 5T, 0 = (7,57, <7,
VeC(Yuy), VeV )y vec(yy,), veey, ) (@) = (B,
yuv+ ﬂ;r - T;/F’ ﬂgyux + ﬂ}; - T};’ BZ + ﬂ;/ryvu - 7’};’
ﬂ:{yvx + ﬁ}; - 7’};’ Vec(yuvyvu - I)’ Vec(yuv?vx +
yux))T, g(Z,0) is a column vector with elements of

166 = D(n/n)[B,U + B,V + BLX — Y]

% (UT, VT, X1,
16 = 2)(n/n)[n U + 91X — Y](UT,XDT,
18 = 3)(n/n3) [V + 71X — Y)(VT,X)T,
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166 = D(n/n)(yh, V + yoaX — UD(VEXD), ...,
X VapV + VipX — U (VE X)),

166 = D(n/n) (L, U +yL, X — vt xh,...,
X (VU + v, X = VDU X))

Let z; = (y,,u v x T, i=1,...,n, be indepen-
dent samples, where (y,,ui,v;F, xiT,éi)T with §; =
k are identically generated from the distribution
of (Y,UT, VT, XT,§)T with § =k, k=1,2,3. Define
20)=n"1>" ¢(Z;,0). The two step CGMM is

applied as follows.

(1) Compute éc = argmin[g(ﬂ)Tg(O)] over 0 with
constraint c(f) = 0.

(2) Compute the weight matrix W = n[Y " g(zi,0,)
8(zi,0)T]! R

(3) Compute the two step CGMM estimator 0, =
arg min[g(O)TWg(O)] over @ with constraint
c(0) =0.

Asymptotic property of CGMM estimator 6 can be
established similarly to Theorem 2.1.

3.2. Simulation study

In this section, we consider univariate U and V, i.e.,
p=I1=1.Then B,, B, N, Tv: Vs> Vi and & reduce to
scalars By, Bv> Nu> Tvs Yvu> Yur> and &p, respectively. Two
simulation studies are carried out to check the empiri-
cal performance of the CGMM and UGMM estimators
with finite fixed sample sizes. In the first simulation,
we consider univariate X, i.e., g=1. Then B,, 5,, Tx,
Y. and 'y, reduce to scalars By, nx, Ty, Yux> and yyx,
respectively. The covariate X and V are independently
generated from the standard normal distribution. The
covariate U and response Y are generated according
to (15)-(18) with &1, €2, €3, and &p, independently dis-
tributed as standard normal.

Based on 2000 simulations, Table 3 gives the simula-
tion variances of estimators of parameters 8, 8,, and By
for both CGMM and UGMM. Results for the variances
of estimators of other parameters are omitted. All sim-
ulation biases are less than 0.007 and thus not reported.
True values of parameters and different sample sizes are
included in Table 3.

It can be seen that messages provided by Table 3
are very similar to those from Table 1. When n; =
ny = n3 = 100, the simulation relative efficiency gain
of CGMM over UGMM is (83.04%, 62.05%, 54.97%)
for estimating (B, By, Bx). When n; =100, ny =
100 and n, = 400, more information from study 3
can be borrowed to estimate parameters in study 1,
and the simulation relative efficiency gain vector is
(85.11%, 65.35%, 63.08%) for estimating (By, By, Bx)-
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Table 3. Simulation variances of CGMM and UGMM estimators

Parameter and its true value

m ny ny Method Bu=1 By=1 Bx=2
100 100 100 UGMM 0.010464 0.020405 0.020696
CGMM 0.001775 0.007744 0.009319
100 100 400 UGMM 0.010181 0.020822 0.021421
CGMM 0.001516 0.007215 0.007908
100 400 100 UGMM 0.009943 0.020654 0.019776
CGMM 0.001147 0.006557 0.008078

=231 =2, Vox Vox Yo V) = (=1,1,1,1)

Table 4. Simulation variances of CGMM and UGMM estimators
(p=I1=1,q=2).

Parameter and its true value

P Method Bu=1 By =1 Ba =2 Bra =2
0 UGMM 0.010922 0.021232 0.021002 0.021755
CGMM 0.001465 0.005598 0.008043 0.008337
0.3 UGMM 0.011040 0.022697 0.023520 0.023184
CGMM 0.001534 0.007043 0.008896 0.009251
0.6 UGMM 0.010087 0.020480 0.027241 0.025991
CGMM 0.001797 0.008067 0.011927 0.011524

n= (2,3,1)T,Tr =213, Yo = Yo =1
Yux = (_1:1) Y = (11_1)

When n; = 100, n, = 400 and n, = 100, more infor-
mation from study 2 can be borrowed to estimate
parameters in study 1, and the simulation relative effi-
ciency gain vector is (88.46%, 68.25%, 59.15%) for esti-
mating (B, By, Bx)-

Our second simulation considers a g=2 dimen-
sional X = (X, X)T, while U and V are still univariate.
Data are generated according to (15)-(18) with X being
two dimensional normal with zero marginal means,
unit marginal variances, and a correlation p.

Based on 2000 simulations, Table 4 gives the sim-
ulation variances of estimators of 8, By, Bx1, and Bx2
for both CGMM and UGMM. Results for the variances
of estimators of other parameters are omitted. Again,
all simulation biases are less than 0.004 and thus not
reported. True values of parameters are included in
Table 4. Sample size n; = ny = n3 = 100 and p =0,
0.3, and 0.6 are considered. The results show substantial
improvement of CGMM over UGMM, and the effect of
p is not substantial.

Different from Tables 1 and 2, the simulation relative
efficiency gain in estimating B, is not zero in Tables 3
and 4. This is because that the additional independent
study 8§ = 2 provides more information for CGMM in
estimating B,. The same conclusion can be made for
estimating B, .

4. Discussion

We have proposed a CGMM estimator for using infor-
mation from datasets in different studies. An asymp-
totic theorem is established in the case of two studies
to illustrate that the CGMM estimator is more efficient
than the UGMM estimator using data from one study

only. Our simulation studies show that the CGMM
estimators can achieve major efficiency gains over the
UGMM estimators in cases with two or three studies.

Comparing results for three studies with those for
two studies, we conclude that the conclusions are sim-
ilar, but the CGMM procedure is more complicated
with three studies. This is still true if we encounter
more studies. The improvement of the CGMM over
the UGMM (which basically uses within-study data)
increases as the number of studies increases, since more
datasets are involved when more studies are considered.
However, the derivation of CGMM may be messy when
there are many studies and datasets.

We consider linear models for data in both observa-
tion and bridge patterns. This is not necessary and can
be extended. For example, assumptions (3) and (4) may
be replaced by a more general assumption on E(U | X),
either parametric or nonparametric. More research is
needed to extend the framework and to explore meth-
ods that can handle more general model assumptions.

5. Technical details

Proof of Theorem 2.1: Note that g(y) is a sample
average of ii.d. random vectors with mean zero and
finite covariance matrix 2. Then the Lindeberg-Levy
central limit theorem implies

T, = @ 2 n2g(00) — 4 N(0,I143,). (21)

Define a Lagrangian for éc :Ly(0,0)= Q,(0)— c(6)TA,
where Q,(0) = §(0)TW§(0). In this expression, A is
a column vector of undetermined Lagrangian mul-
tipliers; these are non-zero when the constraints are
binding. The first-order conditions for solution of the
constrained optimisation problem are

[0} _ n1/2Van(0)|0:@C - VGC(O)T|0=96n1/2)”
0| —nl/zc(éc) .

(22)

Let G,(0) =n"' Y"1 \/, g(z:,0). Since 0, is a con-
sistent estimator of 8y, G,(0,) — G = 0p(1) and W —
Q= 0,(1), where 0,(1) denotes a sequence of ran-
dom vectors converging to zero in probability. Using
these results and Taylor expansions, we have

n'/?g(@c) = n'/*g(80) — G, (B)n' > @ — bo)

= Q'2T, — Gn'*(8. — 00) + 0p(1),
n'2c@c) = n'/*c(80) + An'/2(B. — 00) + 0p(1)

= An'2(@. — 89) + 0p(1)
and

n'299Qu®)lg_p = G'R'n'*Z@B,) + 0p(1).



Substituting these into the first-order conditions in (22)
yields

n2@. - 00 _[G'®'G¢ AT ' [G¢Te ' T,
nl/2 - A 0 0

+ 0,(1). (23)

Applying the formula for the inverse of partitioned
matrix (Lu & Shiou, 2002) to (23) and the fact that
B = (G"R7'G)! yields

n'/2(@. —6,)] _[B— BAT(ABAT)"'AB
n'/2) - (ABAT)"'AB

x GV, 4+ 0,(1).  (24)

Note that B = (GTR7'G)~! and B = BT yield

{[B—BA"(ABA")"'AB]G"'Q /%
x {[B— BAT(ABA")"1AB]G'@ /3T
= [B— BAT(ABAT)"'AB|B™!
x [B— BAT(ABAT)"1AB]”
= [I — BAT(ABAT)"'A][B — BAT(ABAT)"'AB]
— B—2BAT(ABA")"'AB
+ BAT(ABAT)"'ABAT(ABAT)"'AB
= B— BAT(ABAT)'AB.

Then, result (5) follows from (21) and (24). [

Proofs of (7)-(10). Let H,, be a diagonal matrix whose
first 14-2q diagonal elements to be hy/* and last q diag-
onal elements to be (1 — h,,)'/2. Then H,, — H, which
together with (5) imply result (7).

To complete the proof, we now give derivations of (8)
- (10). Write

[ Q1 2 23
Q= QT Qn 93|,

QT @Ty Q5

[ Gi1 G Gis
G=|G", Gn Gy,

G'is G Gs

where 11 is (1 + ¢q) x (1 4+ g), 222 and 233 are both
g X g, and the dimension of Gj; is the same as that of
Q;;. By h, — h # 0, and the definitions of £ and g,

2
2, = lim E["—Zz(a — 1)(B.U
n— 00 nj

+8,"X - VA(U.XHTWU, X" |
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= h™2E[(e1)?]E[I(8 = DIE[(U, XH)T(U,XT)]

_of [ E(U»  EWUXD)
~ n |EwxHT ExxY
2 T 2 T
g . Vi XxVx + 05 VyXx
= —K withK= """ ""b ‘x ,
h [ P Xy ]

where the second equation follows from the assump-
tion that § and (U,X) are independent and &; is
independent of (8, U, X), the third equation follows
from E[I(§ =1)] = h and ¢; has variance o7, and
the last equation follows from (4) and the assumption
that &, with mean zero is independent of X so that
E(UXT) = E(pIXXT + £,XT) = yI'Z, and E(U?) =
E((yiX + )?) = yI Zyy, + of. Similarly, by E[I(8 =
1)] = h and the assumption that § and (U, X) are inde-
pendent, we have

2
@, = lim E [”—21(5 =1)(y, X - U)ZXXT]
n—00 ny
2
o
= TbEX)

2
Q3 = lim E ["—21(3 = 2)(n,TX — Y)ZXXT}
n—00 ns

2
n

Q, = lim E [—21(5 =1D)(BU+B,'X—-Y)
n—00 n

x(p,7X — U)(U, XT)TXT]

— h™'Ee Elep(U, X1)TX"] = 0,

where the last equation is guaranteed by the assumption
that Ee; =0. Since I((S = 1)[(8 = 2) =0, 913 and 923
are 0. Thus,

- . _
—2K 0 0
0;
—1 —1
Q= 0 _ZEX 0
O
1—h__,
0 0 3
L 0, _
1 1 —yT
Wlth K_l = — |: 2 1 x T
Ug —Vx Oy Zx +yxyx

By the definitions of G and g, partial derivatives corre-
sponding to blocks other than diagonal blocks in G are
zero, i.e., Gz, G13, and Gy3 are 0. By E[I(6 = 1)] = h,
the assumptions that i, — h # 0,and § is independent
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of (U, X), we have

G, = lim E| 216 = 1)(U,XT)T(U,XT)] —K,
ni

n—00

. [ n T

G22 = lim E —1(3 = I)XX = Zx,
n—00 ny

Gy = lim E| 2106 = 2)XXT} =3,
L 12

n— 00

Combining these results, we obtain that

B=(G'e'G)!

2
%K‘l 0 0
_ th -1 (25)
= 0 72,( 0 -
2
0 0 % 31
1—h "

By (25) and the definition of H, we have the explicit
form of HBH in (8).

Note that A = [y,, I, Bulg, —1,]. the explicit form
of HBAT(ABAT)~'ABH in (9) - (10) follows from (25),
the definition of H, and

HBA" = (0,h 262 i 260,21,
_ (1 _ h)_l/ZGZZZ;I)T,

ABAT = [hlo? + Y (opB)* + (1 — by Loz L.
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