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1. General comment

Let me start by acknowledging Dr Jun Shao’s (the Edi-
tor of the journal) invitation to participate in the discus-
sion of the exciting review paper, and congratulations to
Dr Yichun Chi and Dr Jun Cai for their excellent work.
It is my honour to have the opportunity to present some
of my personal views on the topic of optimal reinsur-
ance design. Dr Chi and Dr Cai’s review paper provides
an informative summary of the main developments of
risk measure minimisation based optimal reinsurance
design over the last decade.

A typical optimal reinsurance design model includes
the following elements: (1) a risk or reward function
adopted as the objective to measure an insurer’s posi-
tion; (2) a principle used to calculate reinsurance pre-
mium; (3) an admissible set of ceded loss functions
(also called indemnification function). The complex-
ity of the resulting optimisation problem depends on
all the three elements. The adopted objectives in the
optimal reinsurance design literature include expected
utility maximisation, insolvency probably minimisa-
tion, variance minimisation, etc., in addition to risk
measure minimisation. Risk measure minimisation has
been the central paradigm in the literature over the last
decade, primarily due to the popularity of risk measures
in determining capital adequacy under various mod-
ern financial and insurance regulatory frameworks and
quantitative risk management paradigms.

From a technical point of view, the optimal rein-
surance is a challenging problem because it is an
infinite-dimensional optimisation problem, and often it
is highly nonlinear by its original form. As introduced
by Dr Chi and Dr Cai’s review paper, Cai et al. (2008) is
the first paper addressing the optimal solution among
a class of functions under the risk measures VaR and
CVaR. They constructed a subset of ceded loss func-
tions with an explicit representation and managed to

show that the subset is dense among the original admis-
sible set; they then focused on the subset for an opti-
mal solution. Because of the nature of the optimisation
problem, there is no structured method available for
one to follow to obtain optimal solutions for a gen-
eral optimal reinsurance design model. As I observe, so
far the construction method might be the most effec-
tive way to study solutions to a variety of reinsurance
models under risk measures such as VaR and CVaR.
The construction method entails an initial guess on the
shape of an optimal solution followed by a formal ver-
ification procedure to ensure that the initial guess is
indeed a correct optimal solution. Somehow one can
also view the method used in Cai et al. (2008) as a con-
struction method because it involves the construction
of candidate solutions followed by a formal verification
procedure. The major limitation of the construction
method lies in its impotence when there is no clue to
the shape of the optimal solutions.

In this note, I would like to bring up to readers’
attention two approaches for the study of optimal rein-
surance other than the construction method. The first
one is the marginal indemnity function (MIF) formula-
tion adopted by Zhuang et al. (2016),! and the empirical
approach proposed by Tan and Weng (2014) and Sun
et al. (2017).

2. MIF formulation

The MIF formulation is an effective way to explore
the optimal reinsurance among the admissible set
¢, (see Dr Chi and Dr Cai’s review paper for the
definition) under distortion risk measures. It is inter-
esting to consider the combination of the distortion
risk measure and the admissible set €,. On the one
hand, with any ceded loss functions from €,, both
the insurer’s retained loss and the ceded loss are
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nondecreasing functions of the underlying risk X. This
property is useful to discourage immoral behaviours
from both contract parties. On the other hand, distor-
tion risk measures are a broad set of risk measures in
the field of risk management and include both the VaR
and CVaR as special cases.

The MIF formulation is motivated by the observa-
tion that every function f € €, is absolutely continu-
ous, and thus, it is almost everywhere differentiable, i.e.,
there exists a Lebesgue integrable function 4 such that

flx) = /xh(z) dz, x>0. (1)
0

Here h(z) is the slope of the ceded loss function f at
z, and thus, we must have h(z) € [0, 1] for every z > 0.
The function h(z) can be interpreted as the ‘marginal
indemnification’ from an increase of the loss X. Thus,
the function h is referred to as a ‘marginal indem-
nification function (MIF)’. Obviously, two MIFs only
differing from each other over a Lebesgue null set result
in the same ceded loss function f everywhere.

With representation (1), it is sufficient to determine
an MIF in order to obtain an optimal ceded loss func-
tion among the admissible set ¢,. With the MIF formu-
lation, we can go with a more general set-up. Define

HE {h:[O,oo) — R|ho
< h < hj a.e., and h is Lebesgue measurable} ,

()

where hp and h; are two constants satisfying 0 < hy <
hy < 1.Let

F = {f: [0, 00) > [0,00) | f(x)

=/ h(z)dz,xZO,heH}. (3)
0

Using representation (1), it is easy to check that the
admissible set F can be equivalently written as

F £ {f:10,00) = [0,00) | f(0) =0,
ho- (x—y) <f) —f(») < hi-(x—y),
Vy < xwith0 <y,x < 0o}. 4)
If we set hg = 0 and h; = 1, the set F reduces to the set
<.

Let us consider the following set of distortion risk
measures:

= {g:[0,1] — [0,1] | g(¢) is non — decreasing and
left continuous, g(0) = 0 and g(1) = 1}.

As showed in Lemma 2.1 of Zhuang et al. (2016), given
any g € G and f € F, there exists h € H, independent
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of g, such that

fx) = /Xh(z) dz, Vx>0
0
and
Pe(FX)) = /0 g - Fx@)h@ds  (5)

where py is a distortion risk measure with the distortion
function g.

If we consider the admissible set F, which is more
general than €, because the constants kg and h; can be
exogenously given, the constrained problem discussed
in Section 5 of Dr Chi and Dr Cai’s review paper writes:

inf g, (T7(X)
st. (14 Q)pgz(f(X)) < m,

where g and g» are two distortion functions from G,
7o > 0is a constant denoting the reinsurance premium
budget. Using representation (5), the objective in Prob-
lem (6) can be rewritten into

M
P (Ty) = p¥'(X) —/0 ¥ (Fx(2)h(z) dz,  (7)

where

t € [0,1].
(8)

vt =a1—1—-10+0)g0—1),

Since pg, (X) is a constant, it suffices to analyse the term
fOM ¥ (Fx(z))h(z)dz for optimal solutions of Problem 6.
As a consequence, Problem 6 can be transformed into
an MIF formulation as follows:

M
sup / ¥ (Fx(2)h(z) dz
heH 0

y ©)
s.t. / 2 (1 — Fx(2)) h(z) dz < my,
0

where 11 = (110/(1 4 0)) € [hop# (X), h1p% (X)].
The MIF formulation brings much convenience to
study optimal reinsurance contracts:

(1) MIF formulation (9) is alinear programming prob-
lem and, thus, much technically convenient to
study the optimal solution. As shown by Zhuang
et al. (2016), with the MIF formulation, it becomes
feasible to discuss the existence and uniqueness
of a solution to the optimal reinsurance model.
In contrast, the construction method is impo-
tent to determine whether the solution obtained is
unique.

(2) With the MIF formulation, one does not need to
develop a conjecture on the shape of optimal rein-
surance in solving the problem but one needs to do
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so by the construction method. As demonstrated
by Zhuang et al. (2016), a Lagrangian method com-
bined with a pointwise optimisation procedure can
be applied to discuss the optimal solution under
the MIF formulation. Such a procedure does not
require any pre-analysis on the shape of an optimal
solution.

(3) By the definition of the admissible set F, the MIF
formulation allows us to consider a more general
setup for the optimal reinsurance contracts. In par-
ticular, by choosing the constants hy > 0and h; >
0, one can ensure that both the resulting reinsur-
ance indemnity and the insurer’s retain loss are
strictly increasing in the underlying risk X. As
pointed by Balbas et al. (2015), in practice, rein-
surers rarely accept a contract which leads to the
lack of incentives of the insurer to verify claims. To
rectify this, Balbas et al. (2015) proposed to impose
a strictly positive lower bound on the derivative of
admissible retained loss functions, which is equiv-
alent to imposing an upper bound on the derivative
h of the admissible ceded loss functions. Further-
more, the analysis in Zhuang et al. (2016) can
be extended by varying lower and upper bounds
ho and h;, i.e. when hg and h; are two ordered
functions with values within [0, 1].

(4) Last but not least, if we adopt the empirical for-
mulation which we will introduce in the next
section, the MIF formulation yields a linear pro-
gramming problem in finite dimension, and thus,
itis extremely convenient to use various softwares
to obtain an optimal empirical solution.

3. Empirical approach

Dr Chi and Dr Cai have pointed out the uncertainty of
the underlying distribution in practice when we con-
sider the problem of optimal reinsurance design. They
put in Section 8 of their paper that ‘In most of optimal
reinsurance problems, it is assumed that the distribu-
tions of the insurer’s risks are given or known. However,
in practice, the exact distributions of the insurer’s risks
are difficult to be obtained.” As a remedy, it is appeal-
ing to consider the empirical approach adopted by Tan
and Weng (2014) and Sun et al. (2017). The empiri-
cal approach formulates an optimal reinsurance model
directly on the available data, and thus statistical anal-
ysis enters to play a role. Statistical analysis is very
scarce in the literature of optimal reinsurance while
it is necessary to make an optimal reinsurance model
legitimate for practical use; thus, I personally believe
it is necessary to bring it up in this note for readers’
attention.

Tan and Weng (2014) proposed a general frame-
work to formulate a typical optimal reinsurance model
into an empirical formulation. The empirical approach

starts with a theoretical model:

min - p(Ty(X)

st TI(f(X)) < m, (10)
0<f(X) <X,

where p is an appropriately chosen risk measure. It is
possible to consider more constraints with the model.
The empirical approach assumes that an insurer
has observed empirically N losses (or claim amounts),
denoted xT := (x1,x2,...,xN), where x; corresponds
to the ith loss. The method seeks an optimal reinsur-
ance coverage f; attached to each loss observation x;.
Obviously, f; is the decision variable and has yet to
be determined. Let f := (f1, f, . ..,fy) . The principle
underlying the empirical-based reinsurance model is to
formulate the optimisation model involving both x and
f directly. More specifically, corresponding to theoreti-
cal model (10), the empirical reinsurance model can be
formulated in the following symbolic form:

min p(x,)

st. 0<fi<x;, i=12,...,N, (11)

@ <,

where the variables p/(x,\f) and ﬁ(f\) can be interpreted
as the empirical estimates of p(X,f) and II(f(X)) in
model (10), respectively.

The above formulation of the empirical-based rein-
surance model is an optimisation problem of N dimen-
sions. By denoting f* = (f,...,f)T as the resulting
solution to empirical model (11), the optimal ceded loss
function is represented as a set of finite points {(x;, f;*),
i=1,...,N}, instead of a ceded loss function f(x) in
terms of x. Generally, some standard smoothing tech-
niques such as spline interpolation can always be used
if we were interested in a smooth (or piecewise smooth)
ceded loss function. Tan and Weng (2014) has dis-
cussed in great detail the computational aspect of the
resulting empirical model, and showed that for many
interesting reinsurance premium principles and objec-
tives, the resulting empirical model can be cast into
a second-order-conic programming problem and thus
numerically convenient to obtain an accurate optimal
solution. The stability and sensitivity of the empiri-
cal optimal solutions under interesting risk measures
(such as variance and CVaR) have been demonstrated.
However, it is yet for us to establish rigorous analysis
regarding the consistency and convergence rate of the
solutions obtained from an empirical model.

Sun et al. (2017) adopted CVaR to measure the
total loss of multiple lines of insurance business and
introduced two nonparametric estimation methods to
explore the optimal multivariate quota-share reinsur-
ance under a mean-CVaR framework. The general



dependence structure makes it almost impossible to
explore an optimal solution directly based on a prob-
abilistic model. Following the empirical approach, Sun
etal. (2017) formulated the optimal reinsurance design
problem on empirical data and made no explicit dis-
tributional assumption on the underlying risk vector.
The resulting nonparametric reinsurance models are
convex and computationally amenable, circumventing
the difficulty of computing CVaR of the sum of a gen-
erally dependent random vector. Statistical consistency
of the resulting estimators for the best CVaR is estab-
lished for both nonparametric models, allowing empiri-
cal data to be generated from any stationary process sat-
isfying strong mixing conditions. Sun et al. (2017) con-
ducted extensive numerical experiments to show that
a routine bootstrap procedure can capture the distribu-
tions of the resulting risk measures well for independent
data.

Finally, it is worth mentioning an additional merit
of the empirical approach. The empirical model will
maintain the same level of tractability when a back-
ground risk is included in the model; on the contrast, it
is notoriously challenging to study the optimal reinsur-
ance when the background risk is considered and when
it is generally dependent on the underlying insurable
risk.
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