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I wholeheartedly congratulate Professors Cai and Chi
(referred to as CC hereafter) for their extensive review
paper that surveys the optimal reinsurance designs
based on risk measures. This paper should not only
facilitate a deeper understanding of the recent advances
in optimal reinsurance designs, but also lead to many
interesting and/or unsolved problems left for future
studies.

My discussion, motivated by the need of developing
a ‘hybrid’ model (in the sense of more than two agents),
would provide a practical way to consider the optimal
reinsurance problems. Notably, CC mentioned some
related works in their section of concluding remarks
and future studies. This discussion concentrates on one
of my recent studies. To facilitate the discussion, I adopt
the same notation as in CC.

In the reinsurance literature, the insurer’s risk is
often assumed to be exogenously given and the objec-
tive boils down to determining an optimal portion of its
risk to a reinsurer. However, in practice, the risk of the
insurer is directly related to the insured’s claim. Moti-
vated by this observation, Zhuang et al. (2017) assumes
that the insurer’s risk is endogenously determined from
bargaining with an insured. In other words, in addition
to determining optimal reinsurance, the insurer also
needs to decide how much risk to underwrite from the
insured. The problem is therefore phrased as a three-
party problem involving insured, insurer and reinsurer,
and with the objective of jointly analysing the opti-
mal insurance-reinsurance designs from the insurer’s
perspective.

Since the model includes three agents, namely the
insured, the insurer and the reinsurer, we use the nota-
tion P, I, R, to represent these agents, respectively. In a
given time period, an insured with an initial wealth of
Wp faces a non-negative and bounded risk X, which has
a support on [0, M] for some M > 0. We denote L™ as
the class of bounded random variables on (2, .7, P).
As defined in CC, the general distortion premium

principle is expressed as
(V) = (14 0) g (Y)
- /0 T4 0)g(Sy () dz
for all non-negative Y € L,

where gi () denotes the distortion function of the agent
k. We assume the insured wishes to insure a portion of
its risk X with an insurer who has an initial wealth of
Wr. Mathematically, the insurable risk X is decomposed
into two parts: f;(X) and X — f;(X), where f;(X) repre-
sents the portion of loss that is ceded to the insurer, and
X — fi(X) is the residual loss retained by the insured.
We require that f7(-) belongs to the following set F;:

Fa =) :f0)=0,0<f@)—f() <x—y
VO<y<ux §M}

for 0 <M < M. Notably, this condition is consis-
tent with the incentive compatibility condition dis-
cussed in CC as well as some recent studies on opti-
mal insurance designs (see, e.g. Chi & Zhuang, 2020;
Xu et al,, 2019). Under such an insurance arrange-
ment, the final wealth for the insured is Wp — X +
f1X) — m1(fi(X)) and the final wealth for the insurer
becomes W — f1(X) + 1 (f1(X)), where w7 (f; (X)) rep-
resents the insurance premium for insuring the ceded
risk fi(X). Moreover, we assume that at the time of
insuring risk f7(X), the insurer wishes to reinsure its
risk with a reinsurer. As a result, with the reinsurance,
the risk f7(X) is further partitioned into fr(f;(X)) and
f1X) — fr(fi(X)), where fr(f1(X)) captures the risk that
is ceded to a reinsurer and f7(X) — fr(f (X)) is the net
residual risk retained by the insurer. The final wealth
for the insurer becomes Wi — fi(X) + m1(fi(X)) +
(X)) — mr(fr(f1(X))), where mr(fr(f1(X))) corre-
sponds to the reinsurance premium charged by the
reinsurer for reinsuring the risk fr(f7(X)). In line with
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the incentive compatibility condition, we require that

(fofi) € (o) : i € Fanfr € From) = F2.

We further assume that the insured and the insurer are
characterised by Yaari’s dual utility. Notably, maximis-
ing the dual utility of gains is mathematically equiva-
lent to minimising a distortion risk measure of losses.
Therefore, the utilities of the insured and the insurer
can be expressed as
Uk(W) := —p8k(—=W) := E8[W], ke {P,I}.

We propose baseline insurance-reinsurance model that
was jointly integrating insured’s decision, insurer’s deci-
sion, as well as the corresponding optimal insurance
premium:

fr?a;( Eg’[WI = f1X) + 7 (f1(X)) + fr(fi(X))
— (RN ]
st (fufo) € FAa(fiX)) = 0, (1)
E[Wp — X + f1i(X) — m1(fi(X))]
> ESP[Wp — X].

In the above model, the insurer’s dual utility is max-
imised in the presence of both insurance and rein-
surance. The left- and right-hand side of the second
constraint measure the insured’s dual utility with and
without insurance. Therefore, the second constraint is
the incentive condition for the insured to purchase
the insurance contract. For this reason, this constraint
can be viewed as the insurance participation con-
straint. Although problem (1) is a mathematical chal-
lenging problem, we solve it explicitly by using the tech-
nique of marginal indemnification function formula-
tion approach (see, e.g. Assa, 2015; Cheung & Lo, 2017;
Zhuang et al,, 2016). This result extends the study of
Cui et al. (2013) to the case that there are three agents
involved in sharing the insurer’s risk. In other words,
we show that the classical risk-sharing models do apply
to the setting with insurance and reinsurance jointly as
well.

In practice, it is desirable to impose a reinsurance
premium budget constraint as mentioned in CC. In
what follows, we study two variants of our baseline
model depending on how we incorporate the reinsur-
ance premium budget constraint. First, we impose the
premium budget by assuming that the insurer can only
spend a given amount C > 0 on reinsurance:

max

ma ng[w, — f1(X) + 11 (1 (X)) + fr (7 (X))

— mR(R(ECON |
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st (ffr) € FLar(fi(X)) > 0,
B8P [Wp — X + f1(X) — m1(fi(X))]
> ESP[Wp — X],

mr(fRR(1(X)) < C.
)

We solve problem (2) explicitly by using the Lagrangian
dual approach. The result clearly shows the effects of the
reinsurance premium budget constraint. In particular,
we demonstrate that the insurer provides less insurance
coverage to the insured due to an upper limit on how
much it could spend on reinsurance. Such a situation is
aggravated by the larger risk retained by both insured
and insurer.

Then, we similarly explore the baseline model by
imposing the reinsurance premium budget in term of a
certain percentage of the insurance premium collected.
Specifically, we use the parameter o € (0,1] to cap-
ture the percentage of the insurance premium that an
insurer could spend on reinsurance:

max EgI[WI — fiX) + (X)) + fr(fi(X))
fofem

- nR(fR(mX)))],

st. (ffr) € FALa(fi(X)) = 0,
ES[Wp — X + fi(X) — mr(fi(X))]
Z EgP[WP - X])

r(fr(1(X))) < am(fi(X)).

3)
Notably, the generalised baseline models (2) and (3)
differ from each other merely on how we impose the
reinsurance premium budget constraint. As a result,
there are some similarities as well as differences on the
effect of the reinsurance premium budget constraint.
In particular, this budget constraint implies that the
insurer’s retained risk is higher for problem (3), as in
problem (2). However, as opposed to problem (2), the
risk that is ceded to a reinsurer decreases and that the
insurance coverage fi(X) is not necessarily increasing
or decreasing for problem (3).

The optimal insurance-reinsurance models that we
have examined so far assume that reinsurer can only
trade with the insurer. In the following, we assume
that the insured can insure its risk exclusively with the
insurer, or with the reinsurer, or with both. Therefore,
we will need to choose a pricing function 77y : L — R
instead of the single price of the optimal contract. A
plausible model that incorporates such a feature can be
formulated as follows:

B Wy — fi(X) + (X)) + fr(f1(X))

— mr(fr(1X))],

max

fofromr
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st (fufe) € FLm(fiX)) =0 Vfie Fu,
ES[Wp — X + f1(X) — m(fi(X))]
> B (Wp—X] Vi € Fun,
21(r(X0) < (X0 — R(r(X)))

+ mr(R(i(X)) ¥ (fr) € F2.
(4)

Notably, the individual rationality constraints are mod-
ified such that it holds for every insurance contract.
The term n;(]?I(X)) on the left-hand side of the third
constraint represents the insurance premium that the
insurer needs to collect to provide the insurance cov-
eragef](X). Suppose now the riskﬁ(X) is partitioned
into two portions (i.e.]A‘I(X) —fR()A‘I(X)) ande(fI(X)))
and that these two parts of the risk are shared with
the insurer and reinsurer, respectively. The right-hand
side of the third constraint therefore indicates the total
expense to the insured if it were to insure its risk from
both insurer and reinsurer. The presence of the third
constraint ensures that it is cheaper for the insured to
simply trade exclusively with the insurer, even though
the insured could also insure with the reinsurer. For
this reason, we refer to this constraint as the compe-
tition constraint. After solving problem (4), we find
that the competition constraint does not affect the opti-
mal indemnity functions. But it lowers the insurance
premium, and therefore affects the way the profits are
shared between the insured and the insurer. As a con-
sequence, the insured can pay a smaller price for the
same coverage.

Such a hybrid model can be explored further in sev-
eral directions. For example, it would be interesting to
consider alternative objectives and premium principles
(see, e.g. Balbas et al., 2009; Chi & Tan, 2013). However,
the approach we used may not be readily applicable to
such cases, as the marginal indemnification function
formulation approach fails. In addition, we can con-
sider a more advanced hybrid model by allowing mul-
tiple insureds (Bernard et al., 2020), multiple insurers
(Asimit & Boonen, 2018) or multiple reinsurers (Boo-
nen et al., 2016, 2018; Chi & Meng, 2014) to participate
the insurance-reinsurance game.
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