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The academic community should be indebted to Pro-
fessors Jun Cai and Yichun Chi for their meticulously
written review paper (referred to as Cai & Chi, in press
in what follows) on optimal reinsurance, which sum-
marises and synthesises the historical developments
and recent advances in this burgeoning research
field. In the current era, where risk management has
found more and more applications, this review paper
cannot be more timely and will definitely provide
the impetus for future research in this and broader
areas.

In keeping with Cai and Chi (in press)’s notation
and terminology, this discussion aims to complement
their review paper by highlighting an important line
of recent research and its prospective future directions:
The study of risk-measure-based optimal reinsurance
contracts with practical constraints. Given an objec-
tive functional (a notable example being a distortion
risk measure; see Section 5 of Cai & Chi, in press),
a reinsurance premium principle, and a set of feasi-
ble ceded loss functions, a common theme of research
in recent years has been to examine optimal reinsur-
ance treaties in the presence of an external constraint
that reflects different kinds of practical considerations.
Various types of constraints accounting for a wide
range of strategic and operational concerns have been
studied in the literature, the most conspicuous ones
being:

• A reinsurance premium budget constraint, which
specifies the amount that the insurer can allocate
to reinsurance and reflects the financial limitations
facing the insurer, as discussed in Section 5 of Cai
andChi (in press). Such a constraint was imposed in,
for example, Cui et al. (2013), Zhuang et al. (2016),
and Cheung and Lo (2017), and tackled using differ-
ent techniques.

• A reinsurer risk constraint, which limits the amount
of risk (quantified by a certain risk measure) that the
reinsurer is willing to be exposed to and recognises

the bilateral nature of reinsurance. See, for example,
Cheung et al. (2012) and Lo (2017b).

A unifying treatment of different external con-
straints that can be embedded in a risk-measure-based
optimal reinsurance problem is provided in Lo (2017a).
Capitalizing on the statistical character inherent in
such a constrained problem, Lo (2017a) associated the
marginal ceded loss function with the test function
(i.e., the probability of rejecting the null hypothesis
given the observed data) of an appropriate hypothesis
test and studied the following constrained functional
minimisation problem:

inf
f∈F

∫ ∞

0
g(x)f ′(x) dx

s.t.
∫ ∞

0
h(x)f ′(x) dx ≤ π

, (1)

where g and h are arbitrary integrable functions defined
on the non-negative real line, π is a generic real
constant, and f is the ceded loss function to be
selected within F , the set of so-called non-decreasing
and 1-Lipschitz functions (see Subsection 3.2 of Cai
and Chi (in press)). By specifying g and h appropriately,
one can retrieve many risk measures and external con-
straints commonly encountered in practice. Via the use
of a variation of the Neyman–Pearson Lemma in statis-
tical hypothesis testing theory, Lo (2017a) solved Prob-
lem (1) analytically and expeditiously, and provided a
full characterisation of the optimal solutions.

It is imperative to point out that Lo (2017a)’s Ney-
man–Pearson approach works well when there is a sin-
gle external constraint, as in Problem (1), but lends itself
to multiple external constraints only in special cases. In
an attempt to impose two constraints in a risk-measure-
based optimal reinsurance model, Cai et al. (2016) and
Lo (2017a) studied the following weighted Value-at-
Risk (VaR) minimisation problem (see Section 6 of Cai
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& Chi, in press):

inf
f∈F

λVaRα

(
X − f (X) + π(f (X))

)

+ (1 − λ)VaRβ

(
f (X) − π(f (X))

)

s.t.
VaRα

(
X − f (X) + π(f (X))

) ≤ π1

VaRβ

(
f (X) − π(f (X))

) ≤ π2

, (2)

which involves minimising a weighted average of the
insurer’s VaR and reinsurer’s VaR subject to their
respective risk constraints, for arbitrary constants
λ ∈ [0, 1], π1, π2, and has intrinsic connections to the
notion of Pareto-optimal reinsurance contracts. Due to
the special properties of the VaR, Problem (2) can be
reduced to Problem (1), which carries only one external
constraint for some appropriate choices of the func-
tions g and h, depending on the range of values of λ,
and thus easily solved by Lo (2017a)’s Neyman–Pearson
approach. Lo and Tang (2019) extended Problem (2) to
a weighted distortion risk measure minimisation prob-
lem and proposed a geometric approach to solving the
resulting problem. Nevertheless, both of these weighted
average minimisation problems are not entirely gen-
eralisations of Problem (1) in that the quantities that
define the two constraints also appear in the objective
function. Of more theoretical and practical interest is a
general two-constraint optimal reinsurance problem of
the form

inf
f∈F

∫ ∞

0
g(x)f ′(x) dx

s.t.

∫ ∞

0
h1(x)f ′(x) dx ≤ π1

∫ ∞

0
h2(x)f ′(x) dx ≤ π2

(3)

and its multiple-constraint counterpart

inf
f∈F

∫ ∞

0
g(x)f ′(x) dx

s.t.

∫ ∞

0
h1(x)f ′(x) dx ≤ π1

∫ ∞

0
h2(x)f ′(x) dx ≤ π2

...∫ ∞

0
hn(x)f ′(x) dx ≤ πn

, (4)

where g, h1, h2, . . . , hn are given integrable functions
and π1,π2, . . . ,πn are given constants. Problems (3)
and (4) are natural but practically important andmath-
ematically challenging extensions of Problem (1) to two
or more constraints. The appeal of these two problems
lies in the interplay between the multiple constraints
and their joint effect on the optimal solutions. We are

particularly interested in whether one constraint will
dominate or ‘compete’ with another constraint when
it comes to designing the optimal contract for differ-
ent values of π1,π2, . . . ,πn, and this may be a phe-
nomenon reflecting the relative importance of differ-
ent operational constraints facing an insurer. Techni-
cally, the presence of two or more constraints would
invalidate the direct application of Lo (2017a)’s Ney-
man–Pearson approach. While there are generalisa-
tions of the Neyman-Pearson Lemma to the case of
multiple constraints in the statistics literature (see, for
example, Proposition 6.1 of Shao, 2003), they aremerely
in the form of sufficient conditions rather than com-
plete characterisations of the optimal solutions. To solve
Problems (3) and (4) would probably require concep-
tually different and mathematically more sophisticated
techniques, and I am hopeful that Professors Cai and
Chi’s review paper will provide a springboard for a
solution, analytic or numerical, in the not too distant
future.
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