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ABSTRACT
Official monthly U.S. labour force estimation at the sub-State level (mostly counties) is based on
what is known as the ‘Handbook’ (HB) method, one of the earliest uses of administrative data for
small area estimation. The administrative data, however, are poor in coverage and have concep-
tual deficiencies. Past attempts to correct for the resulting bias of the HB estimates by informal
(implicit) modelling have not been successful, due to the absence of regular direct monthly sur-
vey estimates at the sub-State level. Benchmarking the sub-State HB estimates each month to
the State model dependent estimates helps to correct for an overall bias, but not in individual
areas. In this articlewe propose benchmarking additionally to the annualmodel-dependent area
estimates. The annual models include known administrative data as covariates, and are used to
define corresponding monthly sub-State models, which in turn enable producing monthly syn-
thetic estimates as possible substitutes for the HB estimates in real time production. Variance
estimates, which account for sampling errors and the errors of the model dependent estima-
tors are developed. Data for sub-State areas in the State of Arizona are used for illustration.
Although themethodology developed in this article stems from a particular (but very important)
application, it is general and applicable to other similar problems.
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1. Introduction

The Bureau of Labor Statistics (BLS) in the U.S.A. pro-
duces each month local area employment and unem-
ployment estimates at the sub-State level, known as the
Handbook (HB) estimates, formally developed in 1960
(U.S. Bureau of Labor Statistics, 1960; U.S. Bureau of
Labor Statistics, Handbook of Methods, 2019). There
are over 4,000 sub-State areas in the 50 States of the
U.S.A. for which monthly labour force estimates are
produced. No monthly survey estimates are available
for most of these areas due to high cost of data col-
lection. The American Community Survey (ACS) col-
lects data for the sub-States on a monthly basis, but
it is designed to produce annual, rather than monthly
estimates.

The monthly HB estimates depend heavily on local
area administrative data, obtained from the Unemploy-
ment Insurance (UI) system. The data contains current
monthly counts of the number of workers receiving
UI benefits at the sub-State level, and local monthly
payroll employment data frombusiness establishments,
with a reporting delay of 4–6 months. Conceptual dif-
ferences and incomplete coverage prevent the use of
the administrative data as adequate substitutes for a
proper survey. In fact, except for the decennial cen-
sus long form data, no direct labour force survey data

were collected for the purpose of producing estimates at
the local level, until the advent of the American Com-
munity Survey (ACS). In an attempt to correct for the
deficiencies in the administrative data, the HB method
uses implicit models that combine national, regional
and State relationships through a series of synthetic
methods and special adjustments. (U.S. Bureau of Labor
Statistics, 1960; U.S. Bureau of Labor Statistics, Hand-
book of Methods, 2019). However, large biases remain
because of the lack of regular monthly survey informa-
tion at the appropriate level of geography (county level
in most cases).

Unlike at the sub-State area level, monthly State esti-
mates are produced each month by the BLS, based
on the Current Population Survey (CPS), conducted
by the U.S. Census Bureau. The CPS is a nationwide
household survey, collecting data on the labour force
characteristics of the civilian noninstitutionalized pop-
ulation, 16 years of age and over. An important feature
of the CPS is the 4-8-4 rotating panel design by which
households are interviewed for 4 successive months,
are dropped from the sample for the next 8 months
and then they are interviewed again for 4 additional
months. This rotation pattern induces high correlations
between themonthly direct estimators even at long lags.
To meet national (and State) reliability criteria, about
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60,000 housing units are drawn from 824 CPS sample
areas. The reliability criterion at the national level is
a coefficient of variation no greater than 1.9 percent,
assuming an unemployment rate of 6% for the national
monthly estimates of the unemployment rate. The reli-
ability criterion for allocating samples to each State is a
coefficient of variation no greater than 8% for annual
State estimates of unemployment level, assuming an
unemployment rate of 6%.

For large (national) samples, the direct survey esti-
mators are used as the official estimates. However, the
direct monthly survey estimates of unemployment are
not considered reliable at the State level. (There is no
explicit reliability criterion for employment.) Conse-
quently, in order to reduce the sampling errors at the
State level, time series models have been developed,
independently for each State. The models consist of
two components: a model for the signal, which is the
sum of a stochastic trend, seasonal effects and irreg-
ular variations, and a model for the CPS sampling
error, with the covariance matrix estimated externally
from the individual survey responses. In order to pro-
tect (robustify) against sudden national shocks, the
State models are combined into a multivariate model
with monthly benchmark constraints which force each
month the sum of the State model-based estimates of
the signal to equal the national CPS direct estimate.
Estimators of the variances of the benchmarked estima-
tors that account for all sources of errors have also been
developed and are published along with the monthly
estimates. (Pfeffermann & Tiller, 2006).

To partly deal with the bias of the monthly sub-State
HB estimates, and to ensure consistency with the State
model-based estimates, the sub-State HB estimates are
ratio adjusted eachmonth to the correspondingmodel-
based State estimate. The resulting adjusted estimates
define what is known as the official Local Area Unem-
ployment Statistics (LAUS) estimates. As commented
above, the monthly benchmarking reduces the overall
bias of themonthlyHB estimators in a given State, but it
is not effective in eliminating the bias of the estimators
for any given local area as illustrated in the empirical
results in Section 6.

Starting in 2005, the ACS provides direct annual
labour force estimates at the sub-State level of inter-
est. The ACS is the largest, timely and most geo-
graphic detailed household survey in the U.S. It collects
data on labour force status and other socioeconomic,
demographic and housing characteristics in over 4,000
counties or county equivalents, as well as forminor civil
divisions, with an overall sampling fraction of 2.5%.
Each year a survey questionnaire is mailed out to 3.5
million addresses, with each address sampled for one
month during the year, and not considered again for
sampling until five years later. Annual estimates are
published for areas with at least 20,000 persons. For
smaller areas, only five-year moving period estimates

are currently published. The annual series are available
9 months after data collection. The 5-year moving
period estimates become available after 12 months.

In this article, we develop a methodology that allows
estimation ofmonthly labour force characteristics at the
sub-State level, by combining information from three
separate sources: Administrative data known monthly
at the area level, the annual survey estimates at the
area level based on the ACS, and the monthly State-
wide estimates based on the CPS. The general idea
is to model the annual ACS estimates as functions of
the known administrative data, develop monthly mod-
els for each area, which are consistent with the annual
model, produce synthetic monthly estimates for each
area from the monthly models and then obtain final
monthly sub-State estimates by two-way benchmarking
of themonthly synthetic estimates to the annualmodel-
based ACS estimates and to the monthly model-based
CPS estimates. Ratio adjusting the monthly synthetic
estimates to the monthly CPS estimates, as a substi-
tute to the HB/LAUSmethod, produces estimates close
to the final benchmarked estimators even during the
current year, before the annual ACS data are available.
Appropriate variance estimates, which account for the
main sources of error are developed. Data for sub-State
areas in the State of Arizona are used for illustration.

Section 2 presents the two-way benchmarking of the
monthly local area estimates to known cross-sectional
and time-series benchmarks. A procedure for preserv-
ing the monthly movements in the original monthly
series being benchmarked is discussed and applied.
Section 3 discusses issues with the use of the direct ACS
estimates for benchmarking. These issues are addressed
in Section 4 by modelling the annual estimates. In
Section 5 we develop themonthlymodels and use them
for producing synthetic monthly sub-State estimates,
which are benchmarked to the model-based CPS and
ACS estimates. Section 6 illustrates the application of
the proposed procedure using data from the State of
Arizona. In Section 7 we consider variance estimation.
We conclude with a short summary and discussion of
remaining work in Section 8, followed by four technical
Appendices.

In what follows we refer for convenience to the
CPS and ACS estimates as benchmarks for the local
sub-State estimates, but as already mentioned in the
abstract, the procedure is applicable to other small area
estimation problemswhere no sample data are available
at the area level.

2. Benchmarking local areamonthly estimates
to the ACS and CPS aggregates

2.1. Benchmarking procedure

Table 1 describes schematically the two-way bench-
marking in a given year, for areas c = 1, . . . ,C of a given
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Table 1. Benchmarked monthly area estimates wc,m. Sm =
monthly CPS State estimates,Ac = annual ACS area estimates.

Months Year (y)

Areas(c) 1 2 . . . 12 ACS totals

1 w1,1 w1,2 . . . w1,12 A1
...

...
...

...
...

...
C wC,1 wC,2 . . . wC,12 AC
CPS totals S1 S2 . . . S12∑C

c=1 wc,m = Sm , m = 1, . . . , 12,
∑12

m=1 wc,m = Ac , c = 1, . . . , C.

State S, where the two benchmarks are (1)- themonthly
CPS State estimates (column totals) and (2)- the annual
ACS area estimates (row totals).

The two-way benchmarking system can be formu-
lated, similar to the calibration procedure of Deville
and Särndal (1992) as follows. Denote by nc,m the true
(unknown) count (estimand) in area c at month m,
and by dc,m any initial monthly estimate (say, the HB
estimate). The benchmarking consists of finding new
estimates, n̂c,m = wc,m, which are as close as possible to
the initial estimates, subject to satisfying the constrains,

C∑
c=1

wc,m = Sm,m = 1, . . . , 12,

12∑
m=1

wc,m = Ac, c = 1, . . . ,C, (1)

where ‘as close as possible’ is defined by minimising,

D(d,w) =
C∑
c=1

12∑
m=1

(wc,m − dc,m)2/dc,m. (2)

(More than one year can be considered simultane-
ously. Below we also consider the case of moving 5-year
benchmarks.)

Remark 2.1: The use of this distance function pro-
vides explicit expressions for the benchmarked esti-
mates {wc,m}. See Appendix 1. Other distance functions
can be used but the resulting estimates do not necessar-
ily have explicit expressions, which can be important for
subsequent analysis like variance estimation.

DISCUSSION. When proposing a new statistical
estimation procedure, it is common to justify its use
by considering theoretical properties such as bias, con-
sistency, optimality, etc. Can we claim any of these
properties under our proposed approach? The answer
is largely negative. To begin with, Pfeffermann and
Barnard (1991) proved that even with the availability
of unbiased estimators at the small area level, and with
known model hyper-parameters, there exist no uni-
formly best linear unbiased predictor (BLUP) (for every
area), satisfying random benchmark constraints. Isaki,
Tsay, and Fuller (2000) commented that by application
of benchmarking with random benchmarks, some of

the benchmarked small area predictors will be better
than the not benchmarked predictors, but other will be
worse. In our case the situation is even worse, as no
unbiased sub-State estimators exist.

Are our benchmarked predictors unbiased? The
state-spacemodels for themonthly CPS predictors have
been tested and found to fit the data well, see e.g.
Tiller (1992) and Pfeffermann and Tiller (2006). In Sec-
tions 4 and 6 we provide some diagnostics validating
the generalised linear mixed model (GLM) we fit to
the annual ACS estimates. Thus, both of these models
can be assumed to provide empirical BLUP (EBLUP)
of the benchmarks (with estimated hyper-parameters).
In Section 5 we propose the use of initial sub-State
model-based predictors and in Appendix 1 we obtain
the explicit expression of the final benchmarked predic-
tors as a function of the three sets of predictors. Conse-
quently, and as stated more rigorously in Lemma A1 in
Appendix 1, if themodel assumed for the true sub-State
means is correct, then the benchmarked predictors
are approximately unbiased and consistent for the true
means but as noted above, they are generally not ‘best’
for every area. The situation is clearly different with
non-random benchmarks, since in this case the bench-
marks provide new information about the area means.

Benchmarking to known margins, whether random
or fixed, is not new and goes back to Iterative Propor-
tional Fitting proposed by Deming and Stephan (1940).
Purcell and Kish (1980) propose the use of what is
known as Structure Preserving Estimation (SPREE),
later extended by Zhang and Chambers (2004) to Gen-
eralised SPREE (GSPREE). All these methods assume
reliable cell estimates (sub-States in our case) and
attempt to preserve interactions, measured in terms of
ratios of counts, observed for these estimates (either
exactly or proportionally). See Rao and Molina (2015,
Chapter 3) for discussion of these and other related
methods, with illustrations. In a recent article, Dostal,
Gabler, Ganninger, and Münnich (2016) likewise use
the Chi-square distance function in (2) subject to two-
way constraints as in (1), for enhancing the German
census estimates in small domains. Their set-up differs
from ours in some key elements:

1. The margins {Sm} and {Ac} are considered as fixed
known values, whereas in our case they are ran-
dom, model-based estimators,

2. Their initial cell estimates {dc,m} are sample esti-
mators obtained from a sample drawn by a proper
sampling design, whereas in our case no sample
estimates are available for the sub-State areas,

3. The authors propose variance estimators which
only partly account for the variances of their sam-
ple estimators.

As already stated, no reliable sub-State estimates are
available and our benchmarks are random, obtained
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from models fitted to the marginal sample estimates.
Our approach provides explicit benchmarked estimates
and as discussed below and shown in Appendix 2, it
generalises to the case where only 5-year moving totals
are available, a situation not considered in the litera-
ture other than in Sverchkov and Tiller (2016). For the
case of annual ACS totals, we propose in Section 7 and
Appendix 4 a bootstrap procedure for estimating the
variance of the final benchmarked predictors.

2.2. The case ofmoving 5-year benchmarks

Next consider the case of small sub-States for which
onlymoving 5-year ACS estimates are available. Denote
by ncym the true (unknown) count in area c at monthm
of year y, and by dcym the corresponding initial estimate.
The benchmarking consists in this case of finding new
estimates, n̂cym = wcym, minimising,

D(d,w) =
Y∑

y=1

C∑
c=1

12∑
m=1

(wcym − dcym)2/dcym, s.t.

C∑
c=1

wcym = Sym,m = 1, . . . , 12; y = 1, . . . , Y;

y=k+5∑
y=k+1

12∑
m=1

wcym = Ay+5
c,y , k = 0, . . . , Y − 5;

c = 1, . . . ,C. (3)

In this formulation, Sym denotes the State total inmonth
m of year y, Ay+5

c,y = ∑5
j=1 Ac,y+j, y = 0, 1, . . . , (Y − 5)

are the five year totals, and Y defines the last year.
See Appendix 2 for derivation of the benchmarked

estimators obtained in this case.

Remark 2.2: Large and small sub-States can be com-
bined in a single benchmarking exercise, see Sverchkov
and Tiller (2016), but our empirical estimates obtained
this way are not satisfactory and we need to study this
option further. A possible explanation is that as shown
by Nagaraja and McElroy (2015), five years ACS total
estimates are not the sum of one-year estimates. In par-
ticular, the five-year samples are drawn differently from
the one-year samples. Hereafter we focus on bench-
marking the monthly sub-State area estimates in areas
with single year ACS estimates, plus an artificially con-
structed balance-of-State area with an annual ACS esti-
mate, defined as the difference between the State ACS
estimate and the sum of the annual estimates for areas
with single year estimates.

Remark 2.3: Since the benchmarking for any given
year is independent of other years, one can benchmark
each year separately which is simpler computationally
than benchmarking all the years simultaneously. This
is not true with moving five-year totals.

2.3. Denton corrections

A potential problem with the application of the pro-
cedure described so far is the possibility of producing
breaks in the series, when large year-to-year changes
occur in the annual ACS estimates. A possible solu-
tion to this problem is to use a benchmarking approach
designed to preserve movements in the original time
series. Denton (1971) proposed minimising the magni-
tude of such distortions when benchmarking a single
time series by minimising the sum of squares of the
monthly changes in the proportional differences to the
initial estimates, that is;

Minimize Dden(w, d)

=
T∑
t=2

[
(wc,t − dc,t)

dc,t
− (wc,t−1 − dc,t−1)

dc,t−1

]2
,

s.t.
12∑

m=1
wc,m = Ac, c = 1, . . . ,C. (4)

Since the Denton method does not necessarily satisfy
the Statemonthly constraints, we first apply themethod
to the initial estimates in each area separately, and
then benchmark the Denton adjusted series by applica-
tion of the two-way benchmarking procedure described
before, satisfying simultaneously the monthly CPS and
annual ACS constraints. This approach tends to pre-
serve relative monthly movements in the initial esti-
mates. Bikker, Daalmans, and Mushkudiani (2013) use
a combination of Chi-square distance and Denton dis-
tance simultaneously.

3. Issues in relying on (Direct) ACS estimates
for benchmarking

There are a number of issues (concerns) in using the
directACS estimates for benchmarking: conceptual and
measurement differences compared to the CPS, lower
reliability, long delays in publication, and missing val-
ues. In what follows we discuss these issues in some
detail.

While the employment and unemployment defini-
tions in the ACS and CPS are similar, there are dif-
ferences in the way the two surveys are designed and
conducted, which may generate differences in the esti-
mated values: mode of data collection (Mail and Inter-
net→ CATI → CAPI at ACS, CAPI and CATI at CPS,
where CATI and CAPI define, respectively, Computer
Assisted Telephone Interview and Computer Assisted
Personal Interview); reference week (week prior to the
date of filling out the questionnaire in the ACS, week
including the 12th of the month in the CPS) and
response rates (much higher in CPS). Additionally, the
CPS uses the 4-8-4 rotation scheme described in the
Introduction, with 1st and 5th time interviews carried
out by CAPI and the other interviews conducted by
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Figure 1. Annual ACS & CPS estimates, 2002–2016.

Figure 2. Annual ACS (y) and CPS(x) State shares of annual national totals.

CATI, while the households sampled for the ACS are
included in the sample only once.

Figure 1 indicates non-negligible differences between
the ACS and CPS estimates at the national level.
The ACS unemployment rates tend to be significantly
higher than the CPS rates (with the exception of
2008–2009). On the other hand, the ACS employment
counts are significantly lower than the CPS counts until
2008. Since 2008, the ACS employment counts are
much closer to the CPS counts, following a change in
the questionnaire, designed to improve the measure-
ment of employment status. The change enabled the
ACS to capture more employed persons, particularly
those with irregular work arrangements (Kromer &
Howard, 2011). However, the change in questionnaire
did not reduce the overestimation of the unemployment
rates compared to the CPS rates.

While there are clear differences between the CPS
and ACS estimates (especially for unemployment), the
ACS and CPS shares of the various States out of the cor-
responding national totals are surprisingly close. This is
seen in Figure 2, where the annual ACS State shares of
the ACS national totals are regressed against the annual
CPS State shares of the CPS national totals. (Similar
results hold for major metropolitan areas as shares of
their respective State totals.)

To reconcile the ACS estimates with the model-
based State CPS estimates in our benchmarking
process, we modify the annual ACS sub-State estimates

so that their sum equals the annual CPS State model
estimate. This is accomplished by computing adjusted
annual ACS sub-State estimates, obtained by multiply-
ing the areas’ share of the annual total State ACS by the
annual model-based State CPS;

Ãcy = Acy∑C
c=1 Acy

× Sy, y = 1, 2, . . . ,Y ; (5)

Ãcy is the adjusted annual ACS estimate for an area c in
a given year y within a State, and Sy = ∑12

m=1 Smy is the
annual total of the monthly State CPS model estimates.

A second major issue is the relatively low reliabil-
ity of the ACS estimates at the sub-State level. Even
though the ACS sample is of substantial size (2.5%
sampling rate, with oversampling in small areas), there
are nonetheless major reliability problems. Figure 3
compares the direct monthly CPS coefficients of vari-
ation (CVs), with the annual ACS CVs, separately for
employment and unemployment. The monthly CPS
estimates are not considered to be sufficiently reliable
for direct use as official statistics. Since the ACSCVs are
evenhigher, their direct use is highly problematic. Large
variation in area population sizes lead to large variation
in sample sizes and hence large differences in reliability
of the estimates.

The reliability of the annual changes in the ACS
is even worse than the reliability of the level esti-
mates. Unlike the CPS where 75% of the households
are retained in the sample from month-to-month and
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Figure 3. Monthly State CPS CVs (before modelling) and annual ACS CVs, 2005–2016.

Figure 4. Standard errors of change in monthly CPS and annual ACS, 2005–2016.

50% from year-to-year, an entirely new sample of ACS
households is drawn each year, which basically doubles
the variance of a change estimate compared to the vari-
ance of a level estimate. Figure 4 shows that the ACS
annual changes are much less reliable than the changes
in the monthly direct CPS estimates.

A third problem with the annual ACS estimators is
that they are not available for a current year, thus pre-
venting benchmarking the monthly estimates in real
time. The annual ACS estimates are released only 9
months after data collection due to processing require-
ments.

Finally, there is a practical problem of dealing with
missing values. It happens occasionally that areas which
have been eligible for publication of annual estimates
drop in size below the 20,000 mark, in which case the
annual estimates are no longer published. Also, data
may be suppressed due to special circumstances, (con-
fidentiality, data quality, table suppression,). In order to
benchmark all the area estimates in a consistent man-
ner, it is necessary to impute the missing values before
benchmarking.

For all the above reasons, it is imperative to model
the adjusted annual ACS estimates. Section 4 details the
model specification.

4. Enhancing the utility of ACS bymodelling
the annual estimates

We fit a generalised linear mixed (GLM) model to pro-
duce better quality estimates for annual ACS, using the

annual ACS estimates as the dependent variable and
data from two main sources of area specific informa-
tion, currently used in the LAUS programme as known
regressors: UI- unemployment insurance claims, and
QCEW- the Quarterly Census of Earnings and Wages
(annual average of monthly counts of persons on pay-
roll). For a total of C areas and Y years, we fitted the
following cross-sectional – time series mixed model:

rcy = Rcy + ecy = (α + αc) + xcy(β + βc) + ecy;

c = 1, . . . ,C, y = 1, . . . ,Y , (6)

where Rcy is the (unknown) true ratio of employment
(unemployment) to the population aged 16+ in area c
at year y, rcy is the sample (ACS) estimate, ecy = (rcy −
Rcy) is the sampling error, independent across time and
areas with ‘known’ variances σ 2

cy (estimated externally),
xcy represents the known regressor; (xcy = UIcy/Popcy
for the unemployment model, xcy = QCEWcy/Popcy
for the employment model, with Popcy denoting the
population size), α,β are fixed intercept and slope
parameters and αc,βc are random area intercept and
slope. The model assumes normality of the error terms;
ecy ∼ N(0, σ 2

cy),αc ∼ N(0,Vα),βc ∼ N(0,Vβ).
In the empirical results of Section 6, we fit the

model using SAS Proc Mixed, with Restricted Max-
imum Likelihood (REML) option for estimating the
model parameters, and Empirical Best Linear Unbi-
ased Prediction (EBLUP) to predict the random inter-
cepts, (random effects in small area estimation termi-
nology). The computations require matrices of high
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Figure 5. Autocorrelations of model residuals with approximate 95% confidence intervals.

dimension. An alternative approach is based on a state-
space representation, which provides an efficient recur-
sive approach for likelihood calculation and estimation.
Appendix 3 describes this approach and presents results
of applying it to data from Arizona. As expected and
illustrated in Appendix 3, the use of the two approaches
yields the same predictions.

Remark 4.1: In the empirical study we tried adding
fixed and random time effects to the model, but it did
not improve the goodness of fit in any significant way
for the series considered.

An examination of the correlograms for each of the
15 time series for the mixed model residuals in the 15

counties of ARIZONA (see Section 6 for more details),
shows no evidence of large autocorrelations except in
a few cases, providing further evidence for the good-
ness of fit of the model. (The autocorrelations refer to
the estimated residuals based on a small number of
annual estimates). Figure 5 shows the estimated auto-
correlations along with approximate 95% confidence
intervals. The number of annual estimates ranged from
12 for areas with no missing data during the observa-
tion period 2005–2016, to 9 estimates for areas with
missing data. The number of lags computed is equal to
one fourth of the number of observations per area.

For benchmarking, we convert the predicted ratios
r̂cy under the model to levels; L̂cy = r̂cy × Popcy, and
ratio adjust the levels to the State annual controls,
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producing model based annual ACS benchmarks (con-
trols),

Ãcy = L̂cy∑C
c=1 L̂cy

× Sy, y = 1, 2, . . . ,Y ,

c = 1, . . . ,C, see Equation (5).

5. Synthetic predictors for monthly data

As pointed out in Section 3, a major problem with the
use of the annual ACS estimates is that they are released
only 9 months after data collection due to processing
requirements. In particular, no ACS benchmarks are
available for a current year. While this problem can
be resolved by imputing the missing ACS estimates
under the model, another related problem is that no
HB or LAUS estimates are available to initialise the
benchmarking before the end of a current year.

In order to deal with this problem, we propose to
produce synthetic monthly predictors from a model
that is consistent with the annual ACS model defined
in Section 4. For this, we first seasonally adjust (SA)
the monthly covariates and then use the annual model
and parameter estimates to generate themonthly (ratio)
estimates,

r̂cym = (α̂ + α̂c) + SA(x)cym(β̂ + β̂c);

c = 1, . . . ,C;m = 1, . . . , 12; y = 1, . . . ,Y . (7)

We seasonally adjust the covariates because the mod-
els for the annual ACS estimates (employment and
unemployment) use annual versions of the covariates,
which are free of seasonal effects. We also found in
our empirical study that when using the original (sea-
sonal) covariates, themodel can generate unrealistically
large fluctuations, as happens with the unemployment
models where the slope coefficients are greater than
one. As before, the resulting monthly ratio estimates
are converted to levels, which are then ratio adjusted
to the monthly State controls, before applying the Den-
ton adjustment and the two-way benchmarking (See
Remark 5.2 below.)

Remark 5.1: In practice, we use the initial synthetic
predictors for all the years and not just for the last cur-
rent year, because the use of the synthetic predictors
yieldsmuch better final predictors thanwhen initialling
the process with theHB or LAUS estimates, in the sense
ofminimising the extent of revision whenACS controls
become available. See the empirical results in Section 6.

Remark 5.2: By ratio adjusting the monthly synthetic
sub-State estimates, which by our model are not sea-
sonal, to the monthly State estimates, which are sea-
sonal, part of the State seasonality is added to the
sub-State estimates, but it does not imply the same sea-
sonal pattern for each of the sub-States. For example,

although not shown in the article, the seasonality fea-
turing in Figure 8 for the Yuma county is much weaker
than the seasonality of the monthly State control.

Remark 5.3: It may be argued that the model holding
for the annual ACS estimates does not define uniquely
the models holding for the monthly sub-States. This is
true in principle, known as the ecological fallacy, but in
the absence of reliable monthly estimates at the sub-
State level, this is the best we can do. On the other
hand, and as already stated in Section 2.1, if the model
assumed for the sub-States is correct (as far as a model
is ever ‘correct’), the final two-way benchmarked pre-
dictors are approximately unbiased and consistent. See
Appendix 1.

Remark 5.4: One could ask why we don’t use the
monthly State CPS model for each of the sub-State
areas, as an alternative procedure to obtain synthetic
monthly estimates. Notice, however, that the CPS State
models account for the complex rotation pattern of the
CPS samples described in the Introduction, whereas
the monthly ACS samples are independent cross-
sectionally and over time, so that they obey a very dif-
ferent model. Moreover, the State model does not con-
tain the geographically detailed information in the ACS
data (the area covariates) which is critical for reducing
the model bias. See Section 6 for illustration.

6. Empirical illustrations- State of Arizona

In this section we apply our estimation procedure
to the 15 counties comprising the State of Arizona.
Table 2 contains information for this State for the years
2005–2016.

We start by presenting in Table 3 the model hyper-
parameter estimates as obtained when fitting themodel
(6) by application of SAS Proc Mixed procedure, using
restricted maximum likelihood (REML) for estimating
the fixed model parameters, and empirical best lin-
ear unbiased prediction (EBLUP) for predicting the
random effects. The procedure enables inputting the
externally estimated ACS variances for each year.

Figure 6 shows the Conditional Pearson Residuals
(CPR), defined as the difference between the observed
dependent variable and the predicted value, divided by
the square root of the corresponding ACS variance. The
Figure contains four panels: 1- plot of the CPR against
the predicted values, 2- histogram of the CPR, with the

Table 2. Information about counties (sub-States) in the State of
Arizona.

Total number of counties 15
Counties of size 20k ≤ Pop < 65k 6
Counties of size Pop ≥ 65k 9
Number of missing ACS estimates 14
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Table 3. Model (6) parameter estimates, Arizona.

Coefficients, Unemployment/Pop16+ Coefficients, Employment/Pop16+
Coefficient Estimate t-value Pr> |t| Coefficient Estimate t-value Pr> |t|
Intercept 0.02255 8.97 < .0001 Intercept 0.3300 8.74 < .0001
UI/Pop 2.5354 9.92 < .0001 QCEW/Pop 0.4451 4.32 < .0001
*Yr10 9.3× 10−3 15.16 < .0001 *Yr10 0.02979 1.96 < .0001

Variances, Unemployment/Pop Variances, Employment/Pop

Variance Estimate z-value Pr > | z| Variance Estimate z-value Pr > |z|
Intercept 5.5× 10−5 1.60 0.0549 Intercept 0.01105 1.32 0.0929
UI/Pop 0.6135 1.91 0.0282 QCEW/Pop 0.08421 1.27 0.1026

*Yr10 is a dummy variable controlling for the introduction of new ACS estimates in 2010.

Figure 6. Diagnostics based on Conditional Pearson Residuals (CPR).

normal density overlaid, 3- Q-Q plot of the CPR, 4-
summary results.

The residuals are fairly well behaved. The plots show
some long tails at both ends of the data distribution,
suggesting the presence of outliers.

Next we focus on Yuma County, located on the
southwestern corner of Arizona, bordering Mexico.
There has been considerable public questioning of
Yuma’s HB and LAUSmonthly unemployment figures,
which appear unusually high (up to 30%, highest in the
nation), even though its population has grown contin-
uously by 20% (Bare, 2012). As a border community
there are large flows of workers from across the bor-
der which raises the possibility that many UI claimants
may reside in Mexico or even California, but counted
as Yuma residents. As we now show, by benchmarking
to the ACS annual estimates, we succeed in eliminating
or at least reducing very significantly the apparent bias
of the HB and LAUS estimates.

Figure 7 compares the annual unemployment LAUS
rates, the ACS rates ratio adjusted to the annual model-
based State controls (Ratio adjusted ACS), and the
model-basedACS rates (Model-BasedACS). The LAUS

Figure 7. Annual unemployment rates for Yumawhere theACS
estimates and themodel-based ACS predictions are adjusted to
the annual model-based CPS.

annual rates are as high as 25% in some years, compared
to a high of about 13% for the ACS.

The LAUS annual rates in Figure 7 are as high as 25%
in some years, compared to a high of about 13% for the
ACS.

Figures 8 and 9 illustrate our benchmarking pro-
cess. Figure 8 shows for Yuma county the HB esti-
mates, the LAUS estimates obtained by ratio adjusting
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Figure 8. Unemployment rate estimates for YumaCounty as obtainedbyHB, LAUS, Denton LAUS (DLAUS) andbenchmarkedDenton
LAUS (BMK DLAUS). 2005–2016.

Figure 9. Unemployment Rate estimates for Yuma county: Synthetic, Dsynthetic, BMK Dsynthetic and BMK DLAUS. 2005–2016.

the HB estimates to the monthly State, model-based
CPS estimates (the State controls), the LAUS estimates
after benchmarking to the model-based ACS estimates
using the Denton method to preserve the proportional
monthly change in the series (DLAUS), and the final
estimates obtained by applying the two-way bench-
marking process to the DLAUS series (BMK DLAUS).
The DLAUS and BMK DLAUS for the YUMA series
are seen to be virtually equal, suggesting that after
applying theDenton adjustment to the LAUS estimates,
both the monthly and the annual constraints are prac-
tically satisfied for this county, with no need for further
adjustments by the two-way benchmarking process.

Figure 9 compares the synthetic unemployment
rates with the Denton adjusted synthetic series (Dsyn-
thetic), the two-way benchmarked Denton adjusted
synthetic series (BMK Dsynthetic) and the BMK
DLAUS series (same as in Figure 8). It is interesting to
note that the three series – synthetic (generated from
the model), Dsynthetic and BMK Dsynthetic are vir-
tually indistinguishable. In other words, the synthetic
estimates are, by construction, very close to the final
benchmarked estimates. On the other hand, the syn-
thetic estimates are far less seasonal than the BMK
DLAUS estimates since the covariates are seasonally
adjusted. Benchmarking the HB series to the monthly
State model-based CPS estimates to produce the LAUS
series, sometimes introduces weak seasonal variation.
When the series are all seasonally adjusted (not shown),
the resulting series are very close to each other.

Finally, Table 4 indicates that the findings for Yuma
extend to the other counties in Arizona. The table
shows how much the input (initial) series has to be
changed in magnitude on average, over all the months

Table 4. Average absolute percent change between input
series and benchmarked estimates. Arizona, all counties.
2005–2016.

Unemployment Employment

Input
Series

ACS
Controls

Model-based
ACS Controls

ACS
Controls

Model-based
ACS Controls

HB 44.05% 34.60% 8.97% 7.42%
DHB 4.58% 4.57% 0.90% 0.90%
LAUS 26.39% 16.92% 7.44% 5.68%
DLAUS 0.79% 0.76% 0.01% 0.01%
SYNTH 19.06% 0.31% 4.47% 0.08%
DSYNTH 0.05% 0.01% 0.00% 0.00%

and across all the counties, to satisfy both the annual
and the monthly constraints. We consider two alterna-
tive annual constraints: the (ratio adjusted) ACS con-
trols and the model-based ACS controls.

The use of HB requires by far the largest revisions.
The LAUS is second, while initialising with the syn-
theticmodel estimates and applying theDenton correc-
tions virtually requires no further benchmarking. Ini-
tialisingwith theDenton corrected LAUS estimates also
yields very satisfactory results, as explained by the fact
that these estimates are first ratio adjusted to satisfy the
monthly State controls and then adjusted to satisfy the
annual controls. Notice also that the size of the revisions
is uniformly reduced when replacing the ratio adjusted
ACS estimates by the model-based ACS controls.

7. Variance estimation

In Appendix 4 we develop a parametric bootstrap (BS)
procedure for estimating the variance of the two-way
benchmarked predictors, as obtained when initialising
the estimation process with the synthetic predictors
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Table 5. Model and Bootstrap (BS) Standard Errors (SE), and Coefficients of Variation (CV) for Arizona Unemployment by
county, averaged over all monthly values. 10,000 Bootstrap samples. 2005–2016.

SE BS CV BS

Column/County SE Model L̂cym L̂cym L̂∗cym L̂∗∗
cym Synthetic, Columns (2/3) CV Model L̂cym L̂cym L̂∗cym L̂∗∗

cym

1 2 3 4 5 6 7 8 9 10

1 217 197 264 264 1.10 0.07 0.06 0.10 0.10
3 419 381 442 443 1.10 0.09 0.08 0.10 0.10
5 451 411 500 499 1.10 0.08 0.07 0.10 0.10
7 182 165 193 194 1.10 0.08 0.08 0.10 0.10
9 120 119 119 120 1.01 0.11 0.11 0.12 0.12
11 32 31 32 32 1.04 0.11 0.10 0.12 0.12
12 76 68 77 78 1.11 0.09 0.08 0.11 0.11
13 12,691 11,919 8,195 8,198 1.06 0.10 0.10 0.08 0.08
15 704 651 815 816 1.08 0.08 0.07 0.10 0.10
17 344 313 423 422 1.10 0.07 0.06 0.10 0.10
19 3,269 3,019 3,477 3,478 1.08 0.08 0.07 0.09 0.09
21 1,152 1,120 1,404 1,404 1.03 0.07 0.07 0.10 0.10
23 146 154 166 166 0.95 0.09 0.09 0.12 0.12
25 753 742 924 923 1.02 0.07 0.07 0.10 0.10
27 649 629 1,255 1,254 1.03 0.04 0.04 0.09 0.09

Estimators: L̂cym = R̂bcymPopcym , L̂
∗
cym = ratio adjusted L̂cym , L̂∗∗

cym = Calibrated L̂∗cym

Model Standard Error = Popcym
√
Var(R̂bcym) (computed for every BS sample); Var(R̂bcym) = Var(α̂∗b

c ) + SA2(xcym)Var(β̂∗b
c ) +

2SA(xcym)Cov(α̂∗b
c , β̂∗b

c ); α̂∗b
c = (α̂b + α̂b

c ), β̂
∗b
c = (β̂b + β̂b

c ).

Bootstrap (BS) Standard Errors:

BS L̂cym =
√

(1/B)
∑B

b=1 (L̂bcym − L̂
b

cym)

2

, BS L̂∗cym =
√

(1/B)
∑B

b=1 (L̂∗bcym − L̂
∗b
cym)

2

, BS L̂∗∗
cym =

√
(1/B)

∑B
b=1 (L̂∗∗b

cym − L̂
∗∗b
cym)

2

. See Appendix 4 for
more details.

defined in Equation (7). As discussed before and illus-
trated in the empirical study in Section 6, initialising the
estimation process with the synthetic estimators yields
much better final sub-State estimates, compared to the
final estimates obtained when initialising the bench-
marking with the HB or the LAUS estimates. In fact,
since no variances can be computed for the HB or
the LAUS estimates unless when conditioning on the
wrong HB estimates, no variances can be developed
for the final sub-State predictors when initialising the
estimation process with the HB or LAUS estimates.

In Table 5 we compare the BS variance estimators
with the corresponding model-based estimators of the
variances of synthetic predictors, as produced by Proc
mixed in SAS. We are interested in 3 types of estimates:

L̂cym−Model estimate of the signal converted to
level, L̂cym = R̂cym ∗ Popcym; R̂cym is the synthetic pre-
dictor (Equation (7)), Popcym is the population size for
sub-State area c at monthm of year y.

L̂∗
cym− Ratio adjusted L̂cym to monthly State controls

(Smy), L̂∗
cym = (L̂cym/

∑
c L̂cym)∗Smy,

L̂∗∗
cym−Benchmarked L̂∗

cym to monthly and annual
controls.

TheTable contains themodel-based andBS standard
errors (SE), and Coefficients of Variation (CV) for each
of the 15 counties in Arizona, using 10,000 bootstrap
replications. See Appendix 4 for details. The figures in
the table are averages over all simulatedmonthly values.

When comparing the average SEs and CVs of
the synthetic estimators, the model SEs and CVs in
columns 2 and 7 tend to be a bit higher, but generally

close to the corresponding bootstrap estimates in
columns 3 and 8. (The CVs are virtually the same.)

The picture is different when comparing the model-
based SEs andCVs of the synthetic estimators (columns
2 and 7), to the BS SE’s and CVs of the benchmarked
estimators in columns 4, 5 and 9, 10 respectively. As can
be seen, except for County 13 with the very extreme
SEs, the BS SEs are larger, and occasionally consider-
ably larger than the correspondingmodel-based and BS
SE’s of the synthetic estimators. This outcome is easily
explained by the fact that the sub-State benchmarked
estimators depend also on the random benchmarks,
which adds to the variances of the benchmarked esti-
mators. On the other hand, there is basically no differ-
ence between the SEs of the predictor L̂∗

cym, which only
ratio adjusts to the monthly CPS predictor, and the cor-
responding SEs of the final predictor , L̂∗∗

cym, based on
the two-way benchmarking. This latter result provides
additional support to the use of the synthetic model
during a current year when calibration to the annual
ACS estimates is not (yet) possible.

Remark 7.1: The results in Table 5 raise, what looks
a priori like a legitimate question, of why one should
benchmark the synthetic predictors, given that the
benchmarked predictors have larger SEs than the syn-
thetic predictors. Recall, however, that the monthly
synthetic predictors are the result of a model that
matches the annual ACS model, with no way to ascer-
tain its correctness, having no samples at the sub-State
level. Benchmarking increases the variance of the final
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monthly predictors, but it guaranties that they agree
with the reliable annual ACS predictors and more so,
with the reliable monthly CPS predictors. As discussed
in Section 2, benchmarking to random benchmarks
generally increases the variances of the benchmarked
predictors.

Remark 7.2: The BS procedure potentially accounts
for all sources of variance, but it is much more com-
putationally intensive, which could be an issue, given
that we aim to produce variance estimates for all the
U.S. sub-State areas simultaneously, in real time. Devel-
opment of a linearization-based procedure for variance
estimation that similarly accounts for all (or at least
the most important) variance components is tempting,
but it seems formidable to account properly for all the
covariances involved, which cannot be ignored. Recall
that the two-way benchmarked predictors are functions
of three sets of predictors, obtained from two different
surveys, with the synthetic estimators being generated
from the ACS model such that for each county their
annual sum is close to the corresponding ACS annual
total.

8. Conclusions and further work

The monthly ratio adjusted LAUS estimates and the
syntheticmodel-based estimates have similar levels and
hence, both reduce the bias of the HB estimates in cur-
rent use by about the same magnitude. The big differ-
ence between the two series is in the size of the revisions
from the not benchmarked to the benchmarked series.
The revisions required for the synthetic estimates are
much smaller.

The monthly synthetic model estimates provide a
natural way to produce real time estimates when annual
ACS benchmarks for the current year are not available.
Benchmarking the LAUS estimates is an ex-post oper-
ation that would require some kind of additional work
such as forecasting the annual ACS benchmarks for the
current year. Benchmarking themonthly series with the
model based ACS controls produces much smoother
monthly series and reduces the size of the benchmarked
revisions, compared to the original (not-modeled) ACS
controls.

Our next major task is to apply our proposed pro-
cedure to the small counties for which only moving
five year ACS estimates are available (Section 2.2 and
Appendix 2). One of the problems with the moving five
year estimates is that while the annual ACS sampling
errors are independent over time, the 5-year sampling
errors are highly autocorrelated by construction. Sam-
pling error variances for 5 period estimates are available
but not the autocovariances. Another problem is how
to obtain monthly synthetic estimators from the model
fitted to the moving five year estimates. A possible way
to deal with this problem is to fit an annual state-space

model to the 5-year ACS estimates, which will allow
prediction of the annual estimates, and then proceed as
with the larger sub-State areas.

Remark 8.1: There is a possibility that we shall obtain
single year estimates for the small counties in the near
future, in which case we may not need to benchmark
the estimates for these counties separately.
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Appendices

Appendix 1. Benchmarking of Initial estimates to
State and Annual estimates

In what follows we consider a single year and hence we
drop the subscript y (defining the year) from the notation.
(As mentioned before, we apply the two-way benchmark-
ing for the large sub-States for every year separately. See
Appendix 2 for the two-way benchmarking in the case of
the small sub-States.) For consistency with Appendix 4 on
variance estimation, we consider the case where we ini-
tialise the benchmarking with the synthetic estimators R̂cm,
c = 1, . . .C (areas),m = 1, . . . ,M (M = 12,months) defined
by (7), but the same procedure applies to any other set
of initial estimates and other dimensions of the two-way
table. See also Table 1 in Section 2. Similarly to Section 4,
we convert the ratios R̂cm to levels; L̂cm = R̂cm × Popcm
(Popcm is the population size). Denote by Lcm the true value

in cell (c,m), which under the model (7) equals, Lcm =
[(α + αc) + SA(x)cm(β + βc)]Popcm. Denote by T1, . . . ,TC
the true row totals (A1, , ,AC in the notation of Table 1),
and by TC+1, . . . ,TC+M the true column totals (S1, . . . , SM
in the notation of Table 1. In our applicationM = 12.) Define
T = (T1, . . . ,TC,TC+1, . . . ,TC+M)′ (a column vector).

For every cell (c,m), define the column vector xcm =
(xcm1, . . . , xcm(C+M))

′, where xcmi = 1 if i = c or
i = C + m, and 0 otherwise, such that xcm = (0, . . . , 0︸ ︷︷ ︸

c−1

, 1,

0, . . . , 0︸ ︷︷ ︸
C−c

, 0, . . . , 0︸ ︷︷ ︸
m−1

, 1, 0, . . . , 0︸ ︷︷ ︸
M−m

)′. With {Lcm} defining the true

area totals, it follows that
∑C

c=1
∑M

m=1 Lcmxcm = T (the true
marginal totals).

We wish to benchmark the synthetic estimates L̂cm to the
model-based ACS and CPS totals, T̂ = (T̂1, . . . , T̂C, T̂C+1,
. . . , T̂C+M)′. Following Deville and Särndal (1992), the
benchmarked predictors {wcm} under the loss function (2)
are:

wcm = L̂cm(1 + x′
cmλ); λ =

[ C∑
c=1

M∑
m=1

L̂cmxcmx′
cm

]−1

× (T̂ −
C∑
c=1

M∑
m=1

L̂cmxcm). (A1)

Remark A1: The model-based ACS and CPS estimates,
T̂ = (T̂1, . . . , T̂C, T̂C+1, . . . , T̂C+M)′ are not the same as∑C

c=1
∑M

m=1 L̂cmxcm, as they are obtained from the models
fitted to the observed ACS and CPS totals, without use of the
initial estimates.

Remark A2: Deville and Särndal (1992) consider modifica-
tion of the base sampling weights in survey sampling estima-
tion, such that sample estimators of totals of variables that
use the modified weights equal known totals of these vari-
ables, known as ‘calibration’. Here we use their algorithm
for modification of the available (initial) estimates, known as
‘benchmarking’.

For possible problems with the inversion of the matrix∑C
c=1

∑M
m=1 L̂cmxcmx

′
cm and how to deal with them, see Dev-

ille and Särndal (1992).

Lemma A1: Under the models used for generating the bench-
marks (ACS and CPS totals), and the model used to generate
the synthetic predictors {L̂cm}, the final benchmarked predic-
tor wcm defined by (A1) is approximately unbiased and con-
sistent for all c = 1, . . . ,C;m = 1, . . . , 12, in the sense that
limY→∞,C→∞ (wcm) = Lcm.

Outline of Proof: By Taylor approximation, the predictor
wcm in (A1) can be approximated as,

wcm ∼= L̂cm

⎧⎨⎩1 + x′
cm

[ C∑
c=1

M∑
m=1

Lcmxcmx′
cm

]−1

×
[
(T̂ − T) +

( C∑
c=1

M∑
m=1

(Lcm − L̂cm)xcm

]}
. (A2)

�

Suppose first that all the models’ hyper-parameters are
known. As Y → ∞,C → ∞, Cov[L̂cm, (T̂ − T)] ∼= 0,
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Cov[L̂cm, (
∑C

c=1
∑M

m=1 (Lcm − L̂cm)xcm] ∼= 0 and hence, by
the formula for the expectation of the product of uncorre-
lated random variables, and the assumptions of the Lemma
that E(L̂cm) = Lcm for all c andm and E(T̂ − T) = 0, we find
that E(wcm) = Lcm.

As Y → ∞,C → ∞, the estimators of the models’ hyper-
parameters converge to the true hyper-parameters, thus com-
pleting the proof.

Appendix 2. Benchmarkingwhen onlymoving five
year ACS estimates

In Appendix 1 we consider benchmarking based on annual
ACS data. Here we consider the small areas for which only
moving five year totals are available for each area. Denote,
as before, by Lcym the true estimand for area c in year y and
monthm and by L̂cym the corresponding synthetic estimator.

Denote by T1, . . . ,TH = T1, . . . ,T12,T13, . . .T24, . . . ,
T(Y−1)12+1, . . .T12Y the true monthly State totals for years
y = 1, . . . ,Y , (H = 12Y), and by TH+1, . . . ,TH+J the area
annual totals, such that for j = Y(c − 1) + y, TH+j is
the annual total in year y for area c (J = Y × C). Let
T = (T1, . . . ,TH ,TH+1, . . . ,TH+J)

′. Define for each (h, j),
the vector xhj = (xhj,1, . . . , xhj,H+J)

′, where xhj,i = 1 if i =
h or i = H + j, and xhj,i = 0 otherwise. xhj = (0, . . . , 0︸ ︷︷ ︸

h−1

, 1,

0, . . . , 0︸ ︷︷ ︸
H−h

, 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
J−j

)′. Finally, for h = 12(y − 1) + m

and j = Y(c − 1) + y, denote nhj = Lcym and dhj = L̂cym.
Then,

∑H
h=1

∑J
j=1 nhjxhj = T. Notice that for each pair (h, j)

corresponds only one set of values (c, y,m).
With these definitions, the estimates dhj, h = 1, . . . ,H,

j = 1, . . . , J can be adjusted to satisfy the known col-
umn and row totals similar to (A1): find new estimates
whj, h = 1, . . . ,H, j = 1, . . . , J, minimising the distance func-
tion D(d,w) = ∑H

h=1
∑J

j=1 (whj − dhj)2/dhj, satisfying the
constraints

∑H
h=1

∑J
j=1 whjxhj = T. As in (A1), the solution

of the minimisation problem is explicit:

whj = dhj(1 + x′
hjλ); λ =

⎡⎣ H∑
h=1

J∑
j=1

dhjxhjx′
hj

⎤⎦−1

× (T −
H∑
h=1

J∑
j=1

dhjxhj) (A3)

Next, assume that all the monthly State totals, T1, . . . ,TH , are
known, but only moving 5-year area totals are known:

TH+1(5),TH+2(5), . . . ,TH+Y−4(5),TH+Y+1(5),TH+Y+2(5),

. . . ,TH+2,Y−4(5), . . . ,TH+J−Y+1(5),TH+J−Y+2(5), . . . ,

TH+J(5)

where Tt(5) = Tt + Tt+1 + · · · + Tt+4. Let xhjt(5) = xhjt +
· · · + xhjt+4 and define, T∗ = [T1, . . . ,TH ,TH+1(5),
TH+2(5), . . . ,TH+Y−4(5),TH+Y+1(5),TH+Y+2(5), . . . ,
TH+2Y−4(5), . . . , TH+J−Y+1(5), TH+J−Y+2(5), . . . ,TH+J
(5)]′, and x∗

hj = [xhj1, . . . , xhjH , xhjH+1(5), xhjH+2(5), . . . ,
xhjH+Y−4(5), xhjH+Y+1(5), xhjH+Y+2(5), xhjH+2Y−4(5), . . . ,
xhjH+J−Y+1(5), xhjH+J−Y+2(5), xhjH+J−4(5)]′.

We again have
∑H

h=1
∑J

j=1 nhjx
∗
hj = T∗ and therefore the

estimates dhj, h = 1, . . . ,H, j = 1, . . . , J can be adjusted by

benchmarking as,

whj = dhj(1 + x∗′
hjλ); λ =

⎡⎣ H∑
h=1

J∑
j=1

dhjx∗
hjx

∗
hj

′
⎤⎦−1

× (T∗ −
H∑
h=1

J∑
j=1

dhjx∗
hj) (A4)

Remark A3: A similar approach can be applied for any com-
bination of moving totals, for example, 1-year totals for some
areas and 5-years totals for other areas. Cf. Sverchkov and
Tiller (2016).

Appendix 3. State-space representation of the
generalised linearmixedmodel

A state-space representation of our model provides an alter-
native approach to Proc Mixed for fitting the model defined
in Section 4 to the ACS annual estimates. The state-space rep-
resentation consists of an ‘observation equation’ and a ‘transi-
tion equation’ (Harvey, 1989). For Equation (6); rcy = Rc,y +
ec,y = (αc + α) + xc,y(βc + β) + ec,y; c = 1, . . . ,C, y = 1,
. . . ,Y , the observation equation is given by

rcy = h′
cyzcy + ecy; h′

cy = (1, 1, xcy, xcy), zcy = [α,αc,β ,βc]′.
(A5)

The ‘state vector’, zcy contains the unknown fixed and ran-
dom regression coefficients.

The general form of the transition equation is given by

zcy = Tcyzc,y−1 + vcy;E(vc,yv′
c,y) = Qy (A6)

where vcy is the vector of the random disturbances in the
model. In our case,

For y = 1, Tcy = Tc1 = Diag(1, 0, 1, 0); Qy = Q1
= Diag(0,Vα , 0,Vβ),

For y > 1, Tcy = Tc = Diag(1, 1, 1, 1); Qcy = Q
= Diag(0, 0, 0, 0).

To apply the model to all the areas, we combine the data
for each sub-State area, sorted by time, to a single vector of all
of the observed values.

ry = (rC,y, rC−1,y, . . . , r1,y) compare with (A5)

The observation equation for all the areas may be expressed:

r = Hz + e;H = ⊕[hC,y, hC−1,y . . . , h1,y] (A7)

(the notation ⊕ is used for ‘block diagonal’), zy = (zC,y,
zC−1,y, . . . , z1,y)′, e = (eC,y, eC−1,y, e1,y)′.

The corresponding transition equation is now,

zy = Tyzy−1 + vy, Ty = ⊕[TCy, TC−1,y, . . .T1,y],

vy = (vC,y, vC−1,y, . . . , v1,y)′. (A8)

Given estimates of the model variances, the Kalman filter is
used to produce predicted values of Rcy and its variance. See
Harvey (1989) for details. Before processing the first obser-
vation, the state vector and its variances must be initialised.
The state vector values are set to zero and the variances of
the random intercept and slope are set to their uncondi-
tional variances. Improper priors are used to initialise the
variances of the fixed intercept and slope. When processing
the first observation from another area, the estimates of the
random state variables are re-initialised. Once the filtering is
complete, the filtered estimates are revised by a smoothing
algorithm, which runs back through the data to strengthen
the predictions at each time point by using the information
from all the available data (Harvey, 1989).
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Figure A1. Predictions of annual ACS ratios (R̂cy) and standard errors as obtained from state-space modelling and Proc Mixed.
2005–2016.

The state-space model has been fitted in SAS Proc IML
and applied to the Arizona data. Figure A1 compares the
results for the 15 counties in Arizona as obtained by use of
the state-space model and by use of the Proc Mixed pro-
cedure in SAS (used for the empirical study in Section 6).
The ACS Ratios are the predictions of Rcy (Equation (6)). On
the horizontal axis are labels for each of the counties identi-
fied by their Fips (Federal Information Processing Standards)
code. As can be seen, the state-space results are virtually iden-
tical to Proc Mixed. However, the latter procedure uses an
algorithm that requires matrices of dimension that equals
the total number of observations (12 × Y × C), which grows
larger and larger as more years with data become available. In
contrast, with the recursive structure of the Kalman filter and
the smoother, the dimensions of the matrices are indepen-
dent of the number of yearly observations, and they require
only the inversion of the prediction error covariance matrix.

Appendix 4. Parametric bootstrap procedure for
variance estimation

Our proposed parametric BS procedure consists of the fol-
lowing steps, using the index c for county, y for year, m for
month and b for bootstrap iteration:

(A) Generate a single set of true values Rcy as:
Rcy = α∗

c + β∗
c ∗xcy, y = 2005 − 2016, c = 1, . . . , 15.

α∗
c = a + ac, ac ∼ N(0, σ 2

a ),β∗
c = β + βc,βc ∼ N(0, σ 2

β).
a,β , σ 2

a , σ 2
β are the estimates obtained when fitting the

model (6) to Arizona’s data.

(B) Generate independently B times:
1. State CPS monthly totals from normal distributions

with means equal to the empirical predictors (Sym) and vari-
ances (σ 2

Sym ), as estimated from the State CPS model for
Arizona;

TCPS(b)
ym ∼ N(Sym, σ 2

Sym),m = 1, . . . , 12.

2. Annual State total of monthly signal predictions:
TCPS(b)
y = ∑12

m=1 T
CPS(b)
ym .

3. Annual ACS controls:
3a. Generate annual sample labour force to pop ratios:

rbcy = Rcy + ebcy, ebcy ∼ N(0, σ 2
cy),

where σ 2
cy are the empirical variance estimates from the

ACS sample.
3b. Use the estimates rbcy as input to Proc Mixed to esti-

mate the regression coefficients α̂b, α̂b
c , β̂b, β̂b

c , and variances
σ b2

α , σ b2
β . Predict new annual ratios R̂bcy and compute vari-

ances V̂b2
cy = Var(α̂∗b

c ) + x2cyVar(β̂∗b
c ) + 2xc,yCov(α̂∗b

c , β̂∗b
c ),

where α̂∗b
c = α̂ + α̂b

c , β̂∗b
c = β̂ + β̂b

c .
3c. Convert annual predictions to level, L̂bcy = R̂bcy ×

Popcy, and compute T̂ACS(b)
y = ∑n

c=1 L̂
b
cy.

3d. Calculate annual ratio adjusted controls:

L̂∗b
cy =

(
TCPS(b)
y

T̂ACS(b)
y

)
L̂bcy.

4. Compute monthly predictions:
4a. Predict true monthly ratios: R̂bcym = α̂∗b

c + β̂∗b
c

SA(xcym), where α̂∗b
c and β̂∗b

c are from step 3b and SA(xcym)

is the seasonally adjusted monthly covariate.
4b. Convert to level, L̂bcym = R̂bcym × Popcym.
4c. Prorate to CPS State model predictions,

L̂∗b
cym = L̂bcym∑C

c=1 L̂
b
cym

× TCPS(b)
ym .

4d. Compute benchmarked predictors L̂∗∗b
cym, which sat-

isfy both the monthly controls, Tcps(b)
ym in 2 and the annual

controls, L̂∗b
cy in 3d.

(C) Compute Bootstrap standard errors of monthly
predictions:

SEboot
T̂

=
√

1
B
∑B

b=1 (T̂b − T̄boot)
2
where we use the gen-

eric notation T̂b to represent any of the estimates L̂cym, L̂∗
cym

and L̂∗∗
cym, with T̄boot = 1

B
∑B

1 T̂b.
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