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ABSTRACT
Ultra-high-dimensional data with grouping structures arise naturally in many contemporary sta-
tistical problems, such as gene-wide association studies and themulti-factor analysis-of-variance
(ANOVA). To address this issue, we proposed a group screening method to do variables selec-
tion on groups of variables in linear models. This group screeningmethod is based on a working
independence, and sure screening property is also established for our approach. To enhance the
finite sample performance, a data-driven thresholding and a two-stage iterative procedure are
developed. To the best of our knowledge, screening for grouped variables rarely appeared in the
literature, and this method can be regarded as an important and non-trivial extension of screen-
ing for individual variables. An extensive simulation study and a real data analysis demonstrate
its finite sample performance.
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1. Introduction

Nowadays, grouping predictors arise naturally in many
regression problems. It means that we are interested in
finding relevant predictors in modelling the response
variable, where each predictors may be represented by
a group of indictor variables or a set of basis functions.
Grouping structures can be introduced into a regression
model naturally in hoping that the prior knowledge
about predictors may be used to the full. Thus, group-
ing structure problems become increasingly important
in various research fields. One common example is
the representation of multi-level analysis-of-variance
(ANOVA) in a regressionmodelwith a group of derived
input variables. The aim of ANOVA is often to select
relevant main factors and interactions, that is the selec-
tion of groups of derived input variables. Another
example is the additive model with nonparametric
components, where each component can be expressed a
linear combination of a set of basis functions of the orig-
inal predictors. Thus, in both cases, variable selection
amounts to the selection of groups of variables rather
than individual derived variables.

Using the penalised method, many researchers have
considered the group selection problems in various
parametric or nonparametric regression models. These
articles include, but are not limited to the follow-
ing. First, Bakin (1999) proposed the group LASSO in
his doctoral dissertation. Yuan and Lin (2006) further
studied the group LASSO and related group selection

methods, such as the group LARS and the group Gar-
rote, and proposed the corresponding algorithms. But
they did not give any asymptotic properties of the group
LASSO. Wei and Huang (2010) showed that, under a
generalised sparsity condition and the sparse Riesz con-
dition proposed by Zhang and Huang (2008), together
with some regularity conditions, the group LASSO can
select a model with the same order as the underlying
model. They also established the asymptotic proper-
ties of the adaptive group LASSO, which can correctly
select groups with probability tending to one. Under
the assumption of generalised linear models, Breheny
and Huang (2009) established a general framework
for simultaneous group and individual variable selec-
tion, or bi-level selection and the corresponding local
coordinate descent algorithm. In addition to the group
LASSO, many authors also proposed other methods for
various parametric models. For example, Huang, Ma,
Xie, and Zhang (2009) showed that simultaneous group
and individual variable selection can be conducted by
a group bridge method. They showed that it can cor-
rectly selected relevant groups with probability tending
to one. Moreover, Zhao, Rocha, and Yu (2009) intro-
duced a quite general composite penalty for groups
selection by combing different norms to form an intel-
ligent penalty. All these methods are very useful for
moderate number of predictors to be smaller than the
sample size or comparable with it. However, with rapid
progress of computing power and modern technology
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for data collection, massive amounts of ultra-high-
dimensional data are frequently seen in diverse fields
of scientific research. Due to the “curse of dimension-
ality” in terms of simultaneous challenges to compu-
tational expediency, statistical accuracy and algorithm
stability, the above methods are limited in handling
ultra-high-dimensional problems.

In the seminal work of Fan and Lv (2008), a new
framework for sure independence screening (SIS) was
established. They showed that the method based on
Pearson correlation learning possess a sure screen-
ing property for linear regressions. That is, all rele-
vant predictors can be selected with probability tend-
ing to one even if the number of predictors p can
grow much faster than the number of observations n
with log p = O(nα) for some α ∈ (0, 12). Following Fan
and Lv (2008), we call this non-polynomial dimen-
sionality or ultra-high dimensionality. From this on,
various screeningmethods based onmodel assumption
or model free have been developed (Fan & Lv, 2008;
Fan, Samworth, & Wu, 2009; Fan & Song, 2010; He,
Wang, & Hong, 2013; Li, Zhong, & Zhu, 2012; Shao
&Zhang, 2014;Wang, 2009; Zhao&Li, 2012).However,
all these screening methods deal with the individual
variables rather than grouped predictors. To the best
of our knowledge, screening methods for grouped pre-
dictors are quite limited in existing literatures. Thus it
is very important to propose a new screening method
based on grouped predictors.

Motivated by the theory of SIS, we consider how to
deal with these ultra-high-dimensional grouped pre-
dictors in the assumption of linear regression model.
Considering grouping structures in linear regression
model, we have

Y =
J∑

j=1
XT
j β j + ε, (1)

where Y is the response variable, Xj = (Xj1, . . . ,Xjpj)
T

is a pj × 1 random vector representing the jth group,
β j = (βj1, . . . ,βjpj)

T is the pj × 1 parameter vector cor-
responding to the jth group predictors, and ε is the
random error with mean 0.

Our method is a two-stage approach. First, an effi-
cient screening procedure is employed to reduce the
number of group predictors to a moderate order under
sample size, and then the existing group selectionmeth-
ods can be used to recover the final sparse model. Due
to fastness and efficiency of the screening method for
group predictors, we consider a independence screen-
ing method by ranking the magnitude of marginal esti-
mators based on each grouped predictor. That is, we fit
pmarginal linear regressions of the response Y against
the variables of the jth group respectively, and the
select the relevant group predictors by a measure of the
goodness of fit in its marginal linear regression model.
Under some mild conditions, We show that there is a

significant difference between relevant group predic-
tors and irrelevant ones, according to the strength of
these marginal utility. Thus we can distinguish active
group predictors from much more inactive ones. Next,
the existing group selectionmethods, such as the group
LASSO, the group SCAD (Breheny&Huang, 2015) and
the group MCP (Breheny & Huang, 2015), can be used
to obtain the final sparse model.We refer to our screen-
ing procedure as theGroup-SIS, and theoretically estab-
lish the sure screening property of our approach. In
order to further reduce the false-positive rate, we pro-
pose a iterative version of algorithm, named ISIS-
Group-Lasso. To enhance performance and speed up
the computation of ISIS-Group-Lasso, a greedy modi-
fication to the above iterative algorithm, named g-ISIS-
Group-Lasso is also developed. Our simulation stud-
ies indicate that ISIS-Group-Lasso and g-ISIS-Group-
Lasso significantly outperform the competitive group
selection, such as distance correlation-based screen-
ing method and the group LASSO, especially when the
dimensionality is ultra-high.

The rest of the article is organised as follows. In
Section 2, we introduce a marginal group SIS in lin-
ear regression models. Under some mild conditions,
the sure screening property and model selection con-
sistency of the Group-SIS will be established in Section
3. In Section 4, simulation studies and a real data anal-
ysis are carried out to assess the performance of our
method. Concluding remarks are given in Section 5.
All technical proofs for the main theoretical results are
given in the Appendix.

2. Group SIS and iterative algorithm

2.1. Marginal linear regression based on grouped
predictors

Suppose that we have n random sample frommodel (1)
of the form

yi =
J∑

j=1
xTijβ j + εi, i = 1, 2, . . . , n, (2)

in which xij = (xij1, . . . , xijpj)T, yi and εi are scalar.
Let y = (y1, . . . , yn)T, xj = (x1j, . . . , xnj)T and ε =
(ε1, . . . , εn)T, where xj is the n × pj design matrix cor-
responding to the jth group for each j = 1, 2, . . . , p.
Then the model (2) can be rewritten as

y =
J∑

j=1
xjβ j + ε. (3)

For simplicity, the number of variables in each group
is uniformly bounded. That is, there exists a posi-
tive constant K such that pj ≤ K for j = 1, 2, . . . , J. To
rapidly select the relevant grouped predictors, we con-
sider the following Jmarginal linear regressions against
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the grouped predictors:

min
γ j∈R

pj

n∑
i=1

(yi − xTijγ j)
2, (4)

where γ j = (γj1, . . . , γjpj)′ is a pj-dimensional vector
for each j = 1, 2, . . . , J.

It is easy to see that the minimiser of (4) is given by

γ̂ j = (xTj xj)
−1xTj y.

Then we define the marginal utility of the jth grouped
predictors as

‖υ̂nj‖2n ≡ 1
n

n∑
i=1

(γ̂
T
j xij)

2 = 1
n
yTxj(xTj xj)

−1xTj y. (5)

We now select a set of relevant grouped predictors as
follows:

M̂κ =
{
1 ≤ j ≤ J :

1
pj

‖υ̂nj‖2n ≥ πn

}
,

where κ is a positive constant and πn is a pre-specified
threshold value which will be given later.

Equivalently, we can also define a screening criterion
by ranking the residual sum of squares of the corre-
sponding marginal linear regression. These two ways
can reduce the group dimensionality from J to a mod-
erate size |M̂κ |. Here, the pre-specified threshold value
is crucial in the screening procedure. If we choose it
too small, we may select many irrelevant grouped pre-
dictors in the final model. On the contrary, we have
the risk of losing some important variables. In a word,
we should select all of the relevant grouped predictors
and control the selected model size simultaneously. In
Section 3, we will theoretically show that this group
screening approach possesses a sure screening prop-
erty and the final model size is only of polynomial
order. Noted that, our method is the same as traditional
feature screening when each group has one variable.
In this sense, our method can be regarded as a non-
trivial extension of feature screening under the context
of single feature screening.

2.2. Iterative group-SIS algorithm

For these ultra-high-dimensional group variable selec-
tion problems, we propose a two-stage procedure. That
is, we first apply a sure screening method such as
Group-SIS to reduce the number of groups from J to a
relatively large scale d, where the dimensionality of the
selected d group is below sample size n. Then we can
use a lower dimensional group-wise variable selection
procedure, such as group Lasso, group SCAD or group
MCP. In this article, we use group lasso penalty as our
group selection strategy. In fact, other group variable
selection methods would also work.

However, as Fan and Lv (2008) point out, this
marginal independence screening method would still
suffer from false negative (i.e., miss some important
group predictors that are marginally uncorrelated, but
jointly correlated with response), and false positive
(i.e., select some unimportant group predictors which
have higher marginal correlation than some impor-
tant group variables). Therefore, we propose an itera-
tive framework to enhance the finite performance of
this screening method. That is, we can iteratively use a
large-scale group screening and moderate-scale group
variable selection strategy.

To obtain a data-driven thresholding for indepen-
dence group screening, we extend the random per-
mutation idea of Zhao and Li (2012), which select
a small proportion of inactive variables to enter the
model in each screening step. Let x = (x1, x2, . . . , xJ),
randomly permute the row of x to get the decouple
data x̃ and y. Based on the randomly decoupled data
(x̃, y), which has no relationship between group vari-
ables and response, we compute the value of ‖υ̂∗

nj‖2n
similar to ‖υ̂nj‖2n for j = 1, 2, . . . , J. These values serve
as the baseline of the marginal group screening util-
ities under the null model (no relationship between
group variables and response). To obtain the screen-
ing threshold, we chooseωq as the q-rankedmagnitude
of {‖υ̂∗

nj‖2n, j = 1, 2, . . . , J}. In our simulation, we uses
q=1, namely, the largestmarginal group screening util-
ities under the nullmodel. For the sake of completeness,
our ISIS-Group-Lasso algorithm proceeds as follows.

Step 1. Compute J marginal utility ‖υ̂nj‖2n, and the
initial index subset is chosen as

A1 =
{
1 ≤ j ≤ J :

1
pj

‖υ̂nj‖2n ≥ ωq

}
.

Step 2. Apply the group Lasso (Breheny & Huang,
2009) on the index subsetA1 to obtain a subsetM1. In
this step, we choose the regularisation parameter by the
Bayesian Information Criterion (BIC) method.

Step 3. Conditioning onM1, compute the marginal
regression

υ̂nj = min
γ j∈R

pj

n∑
i=1

⎛⎝yi −
∑
k̃∈M1

xTĩkγ k̃ − xTijγ j

⎞⎠2

for each j ∈ Mc
1. By randomly permuting only the

groups not in M1, we obtain a new index subset A2
similar to step 1. Apply the group LASSO on the index
subsetA2 ∪ M1 to obtain a new subsetM2.

Step 4. Repeat the process until we have the final
index setAk such that |Ak| ≥ ko orAk = Al for some
l < k.

In order to further reduce false positive and speed
up computation, we propose a greedy modification to
enhance the finite performance of the above algorithm.
Specifically, we restrict the number of the selected
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groups in the iterative screening steps to be at most
J0, a small positive integer, and the procedure stops
when none of the group predictors is recruited. In our
simulation, we set J0 = 1. This greedy version of ISIS-
Group-Lasso algorithm is called g-ISIS-Group-Lasso.
When J0 = 1, this method is connected with forward
regression screening (Wang, 2009), which select atmost
one new group predictor into the model at a time.
However, there is a great difference between the two
methods, that is ourmethod includes a deletion step via
group selection that can remove multiple group predic-
tors. This makes our procedure more effective, because
it is more flexible in terms of recruiting and delet-
ing group predictors. Based on our simulation results
in Section 4, g-ISIS-Group-Lasso outperforms other
methods in terms of lower false-positive rate, higher
percentage of selected the corrected model and small
model error.

3. Theoretical properties

Before we establish the sure screening property of our
method for linear models, let us introduce some nota-
tions first. Denote the Euclidean and the sup norm
of a vector α by ‖α‖ and ‖α‖∞, respectively. For
any symmetric matrix A, let ‖A‖∞ = maxi,j Aij be
the infinity norm and ‖A‖ the operator norm. Let
λmin(A) and λmax(A) be the minimum and maximum
eigenvalue of the matrix A. Let X = (XT

1 ,X
T
2 , . . . ,X

T
J )T

and E(XXT) = �. For each j = 1, 2, . . . , J and k =
1, 2, . . . , pj, let [a, b] be the support of Xjk. Define the
index set of the truly modelM∗ by

M∗ = {1 ≤ j ≤ J : β j �= 0}.
To gain theoretical insights into theGroup-SIS, we need
to define υj, which is the population version of (4), by
minimising

minE(Y − υj)
2 ≡ min

γ j∈R
pj
E(Y − XT

j γ j)
2

with respect to γ j ∈ R
pj . Then we have

υj = XT
j (EXjXT

j )−1EXjY .

Similar to (5), we define

‖υj‖2 ≡ E(XT
j (EXjXT

j )−1EXjY)2

= (EXjY)T(EXjXT
j )−1(EXjY).

Next we collect the technical assumptions to estab-
lish the sure screening property of our group screening
method.

(i) 1
pj minj∈M∗ ‖υj‖2 ≥ cn−κ , for some 0 < κ < 1

2
and c>0.

(ii) ‖∑J
j=1 X

′
jβj‖∞ < M1 forM1 > 0.

(iii) For any B>0 and i = 1, 2, . . . , n, there is a posi-
tive constantM2 such that E[exp{B|εi|}] < M2.

(iv) For j = 1, 2, . . . , J, the eigenvalues of�j = EXjXT
j

are bounded away from zero and infinity. That is,
there are some positive constants τ1 and τ2 such
that 0 < τ1 ≤ λmin(�j) ≤ λmax(�j) ≤ τ2 < ∞.

Under condition (i), we obtain the minimum signal
of the relevant grouped predictors. That is, the mag-
nitude of these marginal utilities of the grouped pre-
dictors can preserve the non-sparsity signal of the real
model with the fastest convergence rate. This condition
is often seen in screening literatures, which is important
as it guarantees that marginal utilities carry informa-
tion about the relevant covariates in the active set. And,
conditions (ii) and (iii) are two mild conditions needed
in using Berstein’s inequality (Van der Vaart & Well-
ner, 1996). Because we allow |Mκ | increase with n,
condition (ii) ensures the convergence of

∑J
j=1 x

T
j β j.

Condition (iv) is also easy to be satisfied, for the small
number of variables in each grouped predictor.

Remark 3.1: The above assumptions only serve to
help us to further understand the new group screen-
ingmethodology. Thus these conditions are imposed to
facilitate the technical proofs, and the weaker condition
may be an interesting topic for future research.

The following Theorem 3.1 provides the sure screen-
ing property of our group screening method.

Theorem 3.1: Suppose that conditions (i)–(iv) hold.
There exists a constant c1, such that we have

P{M∗ ⊂ M̂κ} ≥ 1 − 4
J∑

j=1
(pj + p2j ) exp{−c1n1−2κ}.

Theorem 3.1 indicates that we can select all the rel-
evant grouped predictors with probability tending to
1, and the key to the theorem’s proof is on how to
obtain the uniform consistence of ‖υ̂jn‖2 to ‖υjn‖2.
Denote

∑J
j=1 pj = p. Note that pj ≤ K uniformly, the

dimensionality can be handled as high as

log p = o(n1−2κ).

That is, under some mild conditions, our method has
the sure screening property and can reduce from the
exponentially growing dimension p to a relatively mod-
erate scale which will be applied in the next group vari-
able selection. Especially, we should point out that κ is
very important to our screening procedure. The greater
κ is, the higher number of groups that our method can
deal with.

On the other hand, although we can select the rel-
evant grouped predictors with probability tending to
1, the cardinality of the M̂κ may be relatively large
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compared with the sample size. That is, there are many
unimportant grouped predictors in the final model.
Thus controlling the false-positive rate is also necessary
for ourmethod. From the perspective in simulation, we
have proposed an iterative algorithm in Section 2.2 to
enhance the performance of ourmethod in terms of the
false selection rates. Under the same conditions as in
Theorem 3.1, we will show theoretically that the size of
the finalmodel is as large asnκλmax(�)with probability
tending to one exponentially.

Theorem 3.2: Suppose that conditions (i)–(iv) hold,
there exists some positive constant c0,

P{|M̂κ | ≤ c0nκλmax(�)}

≥ 1 − 4
J∑

j=1
(pj + p2j ) exp{−c1n1−2κ}.

Theorem 3.2 shows that, with probability tending to
1, the size of the selected model by our procedure is
as large as polynomial order when λmax(�) is of poly-
nomial order. It is crucial to the next group selection
stage, which make our two-stage approach much bet-
ter than traditional group variable selection methods.
Because there is no guarantee that existing group selec-
tionmethods can select the relevant grouped predictors
consistently if there are too irrelevant grouped predic-
tors. Thus this theorem, together with Theorem 3.1,
implies we can select a model which includes all rele-
vant grouped predictors and a small number of irrele-
vant ones with high probability.

4. Numerical studies

4.1. Simulation results

In this section, we carry out some simulation studies
to demonstrate the finite sample performance of our
group screen methods described in Section 2. We con-
sider two group size scenarios of simulation models. In
the first scenario, the group sizes are equal. In the sec-
ond, the group sizes vary. In our simulation, we set all
groups with size 5 or 3. We set the sample size n=200,
and the following three configurations with J = 200,
400, 1000 groups are considered for generating the
covariates (x1, x2, . . . , xJ). For example, when J=200
and group size is 5, the final predictor matrix has the
number of variables p = 1000. To gauge the difficulties
of the simulation models, different scenarios of signal-
to-noise ratio (SNR) are given in Examples 4.1–4.4,
where SNR = Var(

∑J
j=1 X

T
j β j)/Var(ε). It is obviously

that the larger the value of SNR, the higher probability
that our group screeningmethod can select the relevant
groups. In all examples, the simulation results are based
on 200 replications for each parameter setup.

To further explore the finite sample performance
of our methods, we create some unimportant group

variables highly correlated with the response due to
the presence of the important group variables associ-
ated with the spurious group variables. The correlation
between group variables can be specified as follows.

The group vector is X = (XT
1 , . . . ,X

T
J )T where Xj =

(Xj1, . . . ,Xjpj)
T, j = 1, 2, . . . , J. In the following four

examples, we set two different group size and three con-
figurations of the number of groups are considered. For
example, we set pj = 5 for each j = 1, . . . , J. To gener-
ate X, we first simulate 5J random variables T1, . . . ,T5J
independently from N(0, 1). Then Z1, . . . ,Z50 are sim-
ulated from a multivariate normal distribution with
mean 0 and Cov(Zj1 ,Zj2) = 0.6|j1−j2|. For k = 1, . . . , 5,
the group variable Xjk are generated as

Xjk =
⎧⎨⎩
Zj + T5(j−1)+k√

2
, j = 1, . . . , 50,

T5(j−1)+k, j = 51, . . . , J.

Here, the group components were the relevant vari-
ables, while most of components were spurious vari-
ables not used in the model but correlated to the rel-
evant group variables. The random error εi was gen-
erated from a standard normal distribution. To ensure
that the theoretical value of SNR was not too weak or
strong, εi can be multiplied by a constant σ .

Extensive simulation studies have been conducted
to demonstrate the finite performance of our group
screening method. For comparison purpose, the per-
formance of distance correlation screening (DC-SIS)
(Li et al., 2012), which is a model-free screening
method that uses the distance correlation to replace
Pearson correlation in marginal correlation screen-
ing, is examined. For the sake of fairness, we pro-
pose first to apply DC-SIS to reduce the number of
groups to n

log n , and a group-wise variable selection pro-
cedure such as group Lasso is conducted to recover
the final model. We call DC-SIS followed by group
Lasso DC-SIS-Group-Lasso. To enhance the perfor-
mance of DC-SIS, Zhong and Zhu (2015) propose an
iterative version of DC-SIS, named by DC-ISIS, which
will also be chosen as a comparison. For the sake
of fairness, group Lasso is conducted after DC-ISIS,
referring to DC-ISIS-Group-Lasso. At the same time,
the performance of group Lasso was also examined.
Thus, we have five group screening method (i.e., ISIS-
Group-Lasso, g-ISIS-Group-Lasso, Group-Lasso, DC-
SIS-Group-Lasso, DC-ISIS-Group-Lasso) under con-
sideration. In the following four examples, we report
five performance measures: true positive (TP), false
positive (FP), median of the model size (MEDIAN),
percentage of occasions on which the exactly cor-
rect groups are selected (CORRECT) and model error
(Yuan & Lin, 2006).

Example 4.1: Each group consists of five variables, and
the number of the relevant groups is 4. Andwe generate



48 Y. NIU ET AL.

the response from the following linear model:

Y = XT
1β1 + XT

2β2 + XT
3β3 + XT

4β4 + σε,

where

β1 = (1.5, 1.5, 1, 1,−0.5)T,

β2 = (1.5,−0.5, 0.5, 2, 0.5)T,

β3 = (2,−1, 1.5, 1.5, 2)T,

β4 = (−1,−2,−2, 0.5,−1)T,

β5 = β6 = · · · = βJ = (0, 0, 0, 0, 0)T.

Example 4.2: Similar to Example 4.1, the number of
the relevant groups is 8 with group size 3. We generate
the response from the following linear model:

Y = XT
1β1 + XT

2β2 + XT
3β3 + XT

4β4 + XT
5β5

+ XT
6β6 + XT

7β7 + XT
8β8 + σε,

where

β1 = (0.5,−2,−2)T, β2 = (1, 3, 1)T,

β3 = √
2 ∗ (1.5,−0.5, 2)T,

β4 = √
2 ∗ (1,−1.5,−2)T,

β5 = (0.5,−2,−2)T, β6 = (1, 3, 1)T,

β7 = √
2 ∗ (1.5,−0.5, 2)T,

β8 = √
2 ∗ (1,−1.5,−2)T,

β9 = β10 = · · · = βJ = (0, 0, 0)T.

Example 4.3: In this example, the group sizes differ
across groups. There are half of the groups with size
5 and the other groups with size 3. The group vari-
ables are generated the same way as the above exam-
ples. The response variable Y is generate from Y =∑4

k=1 X
T
kβk + σε. However, the regression coefficients

β1 = (0.5, 0.5,−0.5, 2, 1)T, β2 = (2, 0, 1, 1.5,−1)T,

β3 = (0.5,−2,−2)T, β4 = (1, 3, 1)T,

β5 = · · · = β0.5∗(J−4)+4 = (0, 0, 0, 0, 0)T,

β0.5∗(J−4)+5 = · · · = βJ = (0, 0, 0)T.

Example 4.4: In this example, the group sizes also dif-
fer across groups. This example is a more difficult case
than Example 4.3, because it has eight groups with
more different regression coefficients. There are 0.5 ∗ J
groups with size 5 and the other groups with size 3.
The group variables are generated the same way as the
above Example 4.3. The response variable Y is generate
from Y = ∑8

k=1 X
T
kβk + σε. However, the regression

coefficients

β1 = (1.5, 1.5, 1, 1,−0.5)T,

β2 = (1.5,−0.5, 0.5, 1.5, 0.5)T,

β3 = (1.5,−1, 1, 1, 2)T,

β4 = (−1,−1.5,−1.5, 0.5,−1)T,

β5 = (0.5,−2,−2)T, β6 = (1, 3, 1)T,

β7 = √
2 ∗ (0.5,−2,−2)T, β8 = √

2 ∗ (1, 3, 1)T,

β9 = · · · = β0.5∗(J−8)+8 = (0, 0, 0, 0, 0)T,

β0.5∗(J−8)+9 = · · · = βJ = (0, 0, 0)T.

Detailed simulation results of Examples 4.1–4.4 are
given in Tables 1–4, respectively. Especially, the box-
plots of average model size are presented in Figure 1.
Obviously, in all these four examples, the relevant
groups can almost be selected for four methods except
for DC-SIS-Group-Lasso, which misses more groups
most of the time. In terms of true positives (TP), the
iterative version of DC-SIS-Group-Lasso performs well
at the cost of increasing the size of the model, which
leads to large FP andME. On the other hand, the num-
ber of false-positive groups selected by group Lasso is
much larger than the other four methods. Compared
with distance correlation-based screeningmethods, our
approaches have better finite performance. This may be
due to the reasons for their methods based on model-
free framework, while our screening methods take full
advantage of the assumptions of the linearmodel. Espe-
cially for the greedy modification, g-ISIS-Group-Lasso,
the size of final selected model is much smaller than
the other four methods in all examples. Just because of
this, g-ISIS-Group-Lasso outperforms its competitors
in terms of the percentage of correct selectedmodel. On
the other hand, the simulations show that the value of
SNR has an important impact on the results of the three
methods. In Examples 4.2 and 4.4, there are eight rele-
vant groups, while the number of relevant groups in the
other two examples is 4. Itmeans that screening relevant
groups in these two examples is difficult than the other
two. Thus, if we want achieve sure screening, the value
of SNR in these two examples is much larger than the
other two.

4.2. Real example

In this section, we compare ISIS-Group-Lasso, g-ISIS-
Group-Lasso and Group-Lasso on colon data (Alon
et al., 1999). Alon’s work reports the application of a
two-way clustering method for analysis a data set con-
sisting of the expression patterns of different cell types.
For these data, we were interested in finding the genes
that are related to colon tumour. In the original colon
data, the identity of the 62 samples from colon-cancer
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Table 1. Simulation results of MEDIAN, TP, FP, CORRECT and ME for Example 4.1.

p Method MEDIAN TP FP CORRECT ME

ISIS-Group-Lasso 6.00 4.00 (0.00) 2.88 (2.99) 0.12 2.19 (0.32)
p= 200 g-ISIS-Group-Lasso 4.00 4.00 (0.00) 0.76 (0.75) 0.51 1.90 (0.38)

Group Lasso 16.00 4.00 (0.00) 11.78 (2.24) 0.00 2.82 (0.36)
DC-SIS-Group-Lasso 9.00 3.13 (0.00) 5.76 (2.24) 0.00 4.05 (0.28)
DC-ISIS-Group-Lasso 13.00 4.00 (0.00) 8.52 (2.24) 0.00 2.73 (0.35)

ISIS-Group-Lasso 7.00 4.00 (0.00) 3.43 (2.99) 0.09 2.30 (0.39)
p= 400 g-ISIS-Group-Lasso 4.00 4.00 (0.00) 0.76 (0.75) 0.51 1.92 (0.46)

Group Lasso 20.00 4.00 (0.00) 16.11 (2.24) 0.00 2.93 (0.38)
DC-SIS-Group-Lasso 11.00 3.09 (0.00) 7.48 (2.24) 0.00 4.15 (0.29)
DC-ISIS-Group-Lasso 14.00 4.00 (0.00) 10.17 (1.49) 0.00 2.77 (0.33)

ISIS-Group-Lasso 7.00 4.00 (0.00) 3.32 (2.99) 0.14 2.34 (0.49)
p= 1000 g-ISIS-Group-Lasso 4.00 3.99 (0.00) 0.83 (0.75) 0.51 1.97 (0.50)

Group Lasso 28.00 4.00 (0.00) 24.15 (2.99) 0.00 3.02 (0.32)
DC-SIS-Group-Lasso 13.00 3.04 (0.00) 9.81 (2.24) 0.00 4.17 (0.24)
DC-ISIS-Group-Lasso 16.00 4.00 (0.00) 11.80 (2.24) 0.00 2.80 (0.32)

Note: Robust standard deviations are given in parentheses. (σ = 5, SNR= 2.92.)

Table 2. Simulation results of MEDIAN, TP, FP, CORRECT and ME for Example 4.2.

p Method MEDIAN TP FP CORRECT ME

ISIS-Group-Lasso 10.00 8.00 (0.00) 2.89 (2.24) 0.12 1.81 (0.34)
p= 200 g-ISIS-Group-Lasso 8.00 8.00 (0.00) 0.73 (0.75) 0.52 1.58 (0.33)

Group Lasso 34.00 8.00 (0.00) 26.44 (3.73) 0.00 2.74 (0.33)
DC-SIS-Group-Lasso 19.00 6.22 (0.75) 13.23 (2.24) 0.00 4.40 (1.04)
DC-ISIS-Group-Lasso 23.00 7.94 (0.00) 14.85 (2.24) 0.00 3.15 (0.44)

ISIS-Group-Lasso 11.00 8.00 (0.00) 3.08 (2.99) 0.13 1.87 (0.37)
p= 400 g-ISIS-Group-Lasso 9.00 8.00 (0.00) 0.87 (0.75) 0.44 1.66 (0.33)

Group Lasso 45.00 8.00 (0.00) 36.86 (3.73) 0.00 2.95 (0.31)
DC-SIS-Group-Lasso 21.00 5.47 (0.75) 15.39 (2.24) 0.00 4.99 (0.79)
DC-ISIS-Group-Lasso 25.00 7.90 (0.00) 17.33 (2.24) 0.00 3.35 (0.43)

ISIS-Group-Lasso 11.00 8.00 (0.00) 3.37 (2.99) 0.12 1.92 (0.43)
p= 1000 g-ISIS-Group-Lasso 8.00 8.00 (0.00) 0.83 (0.75) 0.51 1.66 (0.43)

Group Lasso 60.00 7.99 (0.00) 52.18 (3.92) 0.00 3.13 (0.33)
DC-SIS-Group-Lasso 24.00 4.86 (0.75) 19.02 (2.99) 0.00 5.29 (0.62)
DC-ISIS-Group-Lasso 27.00 7.78 (0.00) 19.43 (2.24) 0.00 3.50 (0.47)

Note: Robust standard deviations are given in parentheses. (σ = 4, SNR= 5.34.)

Table 3. Simulation results of MEDIAN, TP, FP, CORRECT and ME for Example 4.3.

p Method MEDIAN TP FP CORRECT ME

ISIS-Group-Lasso 7.00 4.00 (0.00) 2.87 (2.24) 0.12 1.64 (0.32)
p= 200 g-ISIS-Group-Lasso 4.00 4.00 (0.00) 0.75 (0.75) 0.56 1.37 (0.35)

Group Lasso 19.00 4.00 (0.00) 15.42 (2.24) 0.00 2.15 (0.28)
DC-SIS-Group-Lasso 12.00 3.68 (0.75) 8.33 (2.43) 0.00 2.41 (0.67)
DC-ISIS-Group-Lasso 13.00 4.00 (0.00) 8.73 (1.49) 0.00 2.03 (0.27)

ISIS-Group-Lasso 6.00 4.00 (0.00) 2.88 (2.24) 0.14 1.64 (0.43)
p= 400 g-ISIS-Group-Lasso 4.00 4.00 (0.00) 0.74 (0.75) 0.56 1.37 (0.40)

Group Lasso 27.00 3.99 (0.00) 22.86 (2.99) 0.00 2.22 (0.26)
DC-SIS-Group-Lasso 13.00 3.51 (0.75) 9.25 (2.24) 0.00 2.64 (0.71)
DC-ISIS-Group-Lasso 14.00 4.00 (0.00) 9.88 (1.49) 0.00 2.07 (0.28)

ISIS-Group-Lasso 7.00 4.00 (0.00) 3.20 (2.99) 0.10 1.77 (0.37)
p= 1000 g-ISIS-Group-Lasso 5.00 3.99 (0.00) 0.79 (0.75) 0.44 1.47 (0.41)

Group Lasso 40.00 4.00 (0.00) 36.01 (3.17) 0.00 2.33 (0.26)
DCS-Group-Lasso 15.00 3.43 (0.75) 11.71 (2.24) 0.00 2.71 (0.56)
DC-ISIS-Group-Lasso 15.00 4.00 (0.00) 11.53 (2.24) 0.00 2.15 (0.26)

Note: Robust standard deviations are given in parentheses. (σ = 4, SNR= 2.69.)

patients were analysed with an Affymetrix oligonu-
cleotide Hum6000 array. And these data contain the
expression of the 2000 genes with the highest mini-
mal intensity across the 62 tissues, where the genes
are placed in order of descending minimal intensity.
That is, the original data have 2000 numerical variables.
For each continuous variable in the additive model, we
use five B-spline basis functions to represent its effect,
which is originally used by Yang and Zou (2015) in
solving group-lasso penalise learning problems. Thus

we obtain 10,000 predictors in 2000 groups after basis
function expansion. Three methods are used to select
relevant additive components.

Before the analysis, all data are standardised in
advance such that each variable has zero mean and
unit sample variance. To valuate the performance of the
three methods, we used cross-validation and compared
the average model size (AMS) and the prediction mean
squared error (PE). We randomly partitioned the data
into a training data set of 50 observations and a test set
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Table 4. Simulation results of MEDIAN, TP, FP, CORRECT and ME for Example 4.4.

p Method MEDIAN TP FP CORRECT ME

ISIS-Group-Lasso 11.00 8.00 (0.00) 3.45 (2.99) 0.13 2.08 (0.43)
p= 200 g-ISIS-Group-Lasso 9.00 8.00 (0.00) 0.79 (0.75) 0.46 1.80 (0.32)

Group Lasso 30.00 8.00 (0.00) 22.17 (2.99) 0.00 3.15 (0.30)
DC-SIS-Group-Lasso 14.00 5.70 (0.75) 8.08 (2.99) 0.00 5.53 (0.91)
DC-ISIS-Group-Lasso 18.00 7.52 (0.75) 10.23 (2.24) 0.00 3.52 (1.16)

ISIS-Group-Lasso 11.00 8.00 (0.00) 3.96 (2.24) 0.07 2.19 (0.38)
p= 400 g-ISIS-Group-Lasso 9.00 7.98 (0.00) 0.79 (0.75) 0.49 1.86 (0.34)

Group Lasso 37.00 7.97 (0.00) 29.55 (3.17) 0.00 3.35 (0.41)
DC-SIS-Group-Lasso 14.00 5.26 (0.75) 8.99 (2.24) 0.00 5.87 (0.82)
DC-ISIS-Group-Lasso 18.00 7.44 (0.75) 11.25 (2.99) 0.00 3.69 (1.12)

ISIS-Group-Lasso 11.00 8.00 (0.00) 3.91 (2.24) 0.07 2.24 (0.39)
p= 1000 g-ISIS-Group-Lasso 8.00 7.94 (0.00) 0.75 (0.75) 0.50 1.92 (0.34)

Group Lasso 49.00 7.91 (0.00) 40.75 (4.48) 0.00 3.60 (0.36)
DC-SIS-Group-Lasso 16.00 4.88 (0.75) 11.19 (2.99) 0.00 6.07 (0.54)
DC-ISIS-Group-Lasso 20.00 7.40 (0.75) 12.77 (2.24) 0.00 3.77 (1.11)

Note: Robust standard deviations are given in parentheses. (σ = 4, SNR= 6.78.)

Figure 1. Boxplots of average model sizes for Example 4.1 under different group number.

Table 5. Results of AMS and CORRECT for colon data.

Method AMS PE

ISIS-Group-Lasso 6.58 (2.24) 2.08 (0.34)
g-ISIS-Group-Lasso 3.6 (1.49) 2.10 (0.35)
Group Lasso 18.49 (2.24) 3.09 (0.58)

Note: Robust standard deviations are given in parentheses.

of 12 observations. That is, we conduct group screen-
ing using 50 observations and the PEs on these 12 test
sets. Detailed results based on 100 replications are pre-
sented in Table 5. In addition, the boxplot of the average
model size is presented in Figure 2. As clearly shown
in Table 5, ISIS-Group-Lasso and g-ISIS-Group-Lasso
select far fewer genes than Group-Lasso, while the first
two methods have a smaller PE. In conclusion, the pro-
posed iterative group screening approach is very useful
in high-dimensional scientific studies, which can select
a parsimonious model and reveal interesting relation-
ship between group variables.

Figure 2. Boxplot of average model sizes for colon data analy-
sis.

5. Concluding remarks

In this article, we have proposed the marginal group
sure screening method under the context of ultra-high
dimensionality. Unlike most existing literatures, we
deal with variables, which can be naturally grouped.
Our group screening method respects the grouping
structure in the data and is based on a working
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independence. Theoretically, we establish the sure
screening property for this group screening approach.
To enhance the finite sample performance, a data-
driven thresholding and an iterative procedure, ISIS-
Group-Lasso, are developed. A greedy modification to
the iterative procedure, g-ISIS-Group-Lasso is also pro-
posed to further reduce the false positive. Simulation
results show that these two methods perform well in
terms of the five performance measures.

This article leaves the problems of extending the
ISIS-Group-Lasso and g-ISIS-Group-Lasso under lin-
ear model to the family of generalised linear model
and other parametric models. And model-free group
screening approach may be appealing for dealing with
ultra-high-dimensional data more generally, which
avoids the difficult task of specifying the form of a sta-
tistical model. These problems are beyond the scopes of
this article and are interesting topics for future research.
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Appendix 1. Three lemmas

Next, we state some lemmas which will be used in the proof
of Theorems 3.1 and 3.2.

Lemma A.1: Under conditions (i)–(iii), for any δ > 0, j =
1, 2, . . . , J, we have

P
{

1√pj

∥∥∥∥ 1nxTj y − EXjY
∥∥∥∥ ≥ δ

n

}
≤ 4pj exp{−δ2/(c2n + c3δ)},

where c2 = max(8M2
0M1, 16M2) and c3 = max

( 1
3M0M1, 1

)
.

Proof: Using Bonferroni’s inequality, we can easily prove that

P
{

1√pj

∥∥∥∥ 1nxTj y − EXjY
∥∥∥∥ ≥ δ

n

}

≤ P

⎧⎨⎩
pj⋃
k=1

⎛⎝[ 1
n

n∑
i=1

(xijkyi − EXjkY)

]2
≥ δ2

n2

⎞⎠⎫⎬⎭
≤

pj∑
k=1

P

{∣∣∣∣∣
n∑

i=1
(xijkyi − EXjkY)

∣∣∣∣∣ ≥ δ

}
.

Thus we need to show that

P

{∣∣∣∣∣
n∑

i=1
(xijkyi − EXjkY)

∣∣∣∣∣ ≥ δ

}
≤ 4 exp{−δ2/(c2n + c3δ)},

for every k = 1, 2, . . . , pj. Recall that the support of Xjk is
[a, b] for j = 1, 2, . . . , J and k = 1, 2, . . . , pj, we denoteM0 =
max(|a|, |b|). Because yi = ∑J

j=1 x
T
ijβj + εi, we can obtain

that

xijkyi−EXjkY =
⎧⎨⎩xijk

⎛⎝ J∑
j=1

xTijβ j

⎞⎠−E

⎡⎣xijk
⎛⎝ J∑

j=1
xTijβ j

⎞⎠⎤⎦⎫⎬⎭
+ xijkεi

=̂Sijk1 + Sijk2.

Nextwe bound the tails probability of |Sijk1| and |Sijk2| respec-
tively. By condition (ii)–(iii), it is easy to see that

|Sijk1| ≤ M0M1,

Var(Sijk1) ≤ M2
0M

2
1,

E|Sijk2|m ≤ EMm
0 |εi|m

≤ m!E expM0|εi| ≤ M2m! (m ≥ 2).

Using the Bernstein’s inequality (Van der Vaart & Well-
ner, 1996, lemma 2.2.9 and lemma 2.2.11), we conclude that

P

{∣∣∣∣∣
n∑
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Sijk1

∣∣∣∣∣ >
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}
≤ 2 exp

{
−δ2

8
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1 + M0M1δ/6

}
,

(A1)

P

{∣∣∣∣∣
n∑
i=1

Sijk2

∣∣∣∣∣ >
δ

2

}
≤ 2 exp

{
−δ2

8
1

2nM2 + δ/2

}
.

(A2)

Therefore, we combine the results (A1) and (A2) with c2 =
max(8M2

0M1, 16M2) and c3 = max
( 1
3M0M1, 1

)
, to obtain

that

P

{∣∣∣∣∣
n∑

i=1
(xijkyi − EXjkY)

∣∣∣∣∣ ≥ δ

}
≤ 4 exp{−δ2/(c2n + c3δ)}.

This concludes the proof of the lemma. �

LemmaA.2: Under conditions (ii)–(iv), for any δ > 0 and j =
1, 2, . . . , J, we have

P
{
1
pj

∥∥∥∥ 1nxTj xj − EXjXT
j

∥∥∥∥ ≥ 1
n
δ

}
≤ 2p2j exp

{
− δ2

c4n + c5δ

}

where c4 = 2M4
0 and c5 = 4M2

0
3 .

Proof: For s = 1, 2, . . . , pj, t = 1, 2, . . . , pj, let Tj = 1
nx

T
j xj −

EXjXT
j andT(s,t)

j be the entry ofTj. Thenwe canwriteT
(s,t)
j =

1
n
∑n

i=1(xijsxijt − EXjsXjt).

By the fact that ‖A‖ ≤ p‖A‖∞, we have

P
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1
pj

∥∥∥∥ 1nxTj xj − EXjXT
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}
. (A3)

Next we also use Bernstein’s inequality to bound the tails
probability of T(s,t)

j . By condition (ii)–(iii), we can obtain
easily that

|xijsxijt − EXjsXjt| ≤ 2M2
0,

Var(xijsxijt) ≤ M4
0.

Using Bernstein’s inequality, it follows that

P
{
|T(s,t)

j | ≥ δ

n

}
≤ 2 exp

{
−1
2

δ2

nM4
0 + 2M2

0δ/3

}
. (A4)

Thus the desired result is obtained from (A3) and (A4) by
taking c4 = 2M4

0 and c5 = 4M2
0

3 . �

Remark A.1: IfA and B are two symmetric matrices of order
p, we have the following two results (Fan, Feng, & Song, 2011;
He et al., 2013):

|λmin(A) − λmin(B)| ≤ max{|λmin(A − B)|, λmin(B − A)|},
|λmax(A) − λmax(B)| ≤ max{|λmax(A − B)|, λmax(B − A)|}.
In addition, note that

|λmin(A − B)| ≤ |λmax(A − B)| ≤ p‖A − B‖∞.

The above results, together with Lemma 2, imply that

P
{∣∣∣∣λmin

(
1
n
xTj xj

)
− λmin(EXjX′

j)

∣∣∣∣ ≥ pj
n

δ

}
≤ 2p2j exp

{
− δ2

c4n + c5δ

}
, (A5)

P
{∣∣∣∣λmax

(
1
n
xTj xj

)
− λmax(EXjXT

j )

∣∣∣∣ ≥ pj
n

δ

}
≤ 2p2j exp

{
− δ2

c4n + c5δ

}
(A6)

for j = 1, 2, . . . , pj.
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Lemma A.3: Suppose conditions (ii)–(iv) hold, there exist
some positive constants τ3 and τ4 such that

P
{
τ3 ≤ λmin

(
1
n
xTj xj

)
≤ λmax

(
1
n
xTj xj

)
≤ τ4

}
≥ 1 − 2p2j exp

{
− δ2

c4n + c5δ

}
. (A7)

That is, with probability approaching 1, we have

0 < τ3 ≤ λmin

(
1
n
xTj xj

)
≤ λmax

(
1
n
xTj xj

)
≤ τ4 < ∞.

Proof: Combing condition (iv) and (A5)–(A6), it is easy to
obtain (A7). �

Appendix 2. Proof of Theorem 3.1

Proof of Theorem 3.1.: The key idea of the proof is to show
the uniform consistence of ‖υ̂nj‖2n under conditions (ii)–(iv).
As to the existing literatures, the sure screening property is
typically established in this way. Recall that

‖υ̂nj‖2n =
(
1
n
xTj y

)T ( 1
n
xTj xj

)−1 ( 1
n
xTj y

)
and

‖υj‖2 = (EXjY)T(EXjXT
j )−1(EXjY).

Thus we need to evaluate

1
pj

‖υ̂nj‖2n − 1
pj

‖υj‖2 = 1
pj

(
1
n
xTj y

)T ( 1
n
xTj xj

)−1 ( 1
n
xTj y

)
− 1

pj
(EXjY)T(EXjXT

j )−1(EXjY).

By some algebra, we decompose it into three parts

‖υ̂nj‖2n − ‖υj‖2 = λ1 + λ2 + λ3

in which

λ1 =
(
1
n
xTj y − EXjY

)T ( 1
n
xTj xj

)−1 ( 1
n
xTj y − EXjY

)
,

λ2 =
(
1
n
x′
jy − EXjY

)T ( 1
n
xTj xj

)−1
EXjY ,

λ3 = (EXjY)T
(
1
n
xTj xj

)−1
(EXjXT

j

− 1
n
xTj xj)(EXjXT

j )−1EXjY .

Now, we define a event �δ on which we have
1√pj

∥∥∥∥ 1nxTj y − EXjY
∥∥∥∥ ≤ δ

n
,

1
pj

∥∥∥∥ 1nxTj xj − EXjXT
j

∥∥∥∥ ≤ 1
n
δ,

τ3 ≤ λmin

(
1
n
xTj xj

)
≤ λmax

(
1
n
xTj xj

)
≤ τ4

for j = 1, 2, . . . , J.
Then the above three lemmas indicate that

P(�δ) ≥ 1 − 4
J∑

j=1
pj exp{−δ2/(c2n + c3δ)}

− 4
J∑

j=1
p2j exp{−δ2/(c4n + c5δ)}. (A8)

By the fact that ‖AB‖ ≤ ‖A‖‖B‖, we have on �δ ,

1
pj

|λ1| ≤
∥∥∥∥ 1nxTj Y − EXjY

∥∥∥∥2
∥∥∥∥∥
(
1
n
xTj xj

)−1
∥∥∥∥∥ ≤ δ2

n2
1
τ3
,

1
pj

|λ2| ≤ 2
∥∥∥∥ 1nxTj y − EXjY

∥∥∥∥
∥∥∥∥∥
(
1
n
xTj xj

)−1
∥∥∥∥∥

‖EXjY‖ ≤ δ

n
2M0M1

τ3
,

1
pj

|λ3| ≤
∥∥∥∥∥
(
1
n
xTj xj

)−1
∥∥∥∥∥ ‖(EXjXT

j )−1‖
∥∥∥∥EXjXT

j − 1
n
xTj xj

∥∥∥∥
‖EXjY‖2 ≤ δ

n
M0M1

τ1τ3
.

Take δ = c6n1−κ , there exists a constant c7 such that

δ2

n2
1
τ3

+ δ

n
2M0M1

τ3
+ δ

n
M0M1

τ1τ3
≤ c6c7n−κ .

Choosing c6 such that c6c7 ≤ c, we can easily obtain that∣∣∣∣∣
∥∥∥∥ 1pj υ̂nj

∥∥∥∥2
n

− 1
pj

‖υj‖2
∣∣∣∣∣ ≤ cn−κ .

By invoking condition (i), we have on�δ for sufficiently large
n ∥∥∥∥ 1pj υ̂nj

∥∥∥∥2
n

≥ 2cn−κ .

If we chooseπn ≤ 2cn−κ , it is easy to show that j ∈ M∗. This,
together with (A8), indicates that there exists a constant c1
such that

P{M∗ ⊂ M̂κ } ≥ 1 − 4
J∑

j=1
(pj + p2j ) exp{−c1n1−2κ }. �

Appendix 3. Proof of Theorem 3.2

Proof of Theorem 3.2.: Following the similar argument of
the proof of Theorem 3.1, we have on �δ∣∣∣∣{1 ≤ j ≤ J :

1
pj

‖υ̂nj‖2n ≥ 2cn−κ

}∣∣∣∣
≤
∣∣∣∣{1 ≤ j ≤ J :

1
pj

‖υj‖2 ≥ cn−κ

}∣∣∣∣ ,
where |.| denotes the size of the set. This implies that∑

j∈M̂κ

1
pj

‖υj‖2 ≥ cn−κ |M̂κ |.

By some algebra, it follows that |M̂κ |≤O(nκ
∑J

j=1 ‖EXjY‖2)
= O(nκ‖EXY‖2). That is, we have

P{|M̂κ | ≤ O(nκ‖EXY‖2)}

≥ 1 − 4
J∑

j=1
(pj + p2j ) exp{−c1n1−2κ }. (A9)

Thus the key point is to show that ‖EXY‖2 = O(1). For this
purpose, we consider the following linear regression:

min
α

E(Y − XTα)2
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with respect to α ∈ R

∑J
j=1 pj . By least square, we can easily

obtain that

‖EXY‖2 = α̂
′[E(XTX)]2α̂ ≤ λmax(�)α̂

′E(XTX)α̂

in which α̂ is the least square estimator. On the other hand,
the orthogonal decomposition of least square implies that

Var(Y) = Var(XTα̂) + Var(Y − XTα̂). Because Var(Y) =
O(1), we conclude that

‖EXY‖2 ≤ O(1). (A10)

Combining (A9) and (A10), the desired result can be easily
obtained. �
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