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ABSTRACT
The unified weighing scheme for the local-linear smoother in analysing functional data can deal
with data that are dense, sparse or of neither type. In this paper, we focus on the convergence
rate of functional principal component analysis using this method. Almost sure asymptotic con-
sistency and rates of convergence for the estimators of eigenvalues and eigenfunctions have
been established. We also provide the convergence rate of the variance estimation of the mea-
surement error. Based on the results, the number of observations within each curve can be of
any rate relative to the sample size, which is consistent with the earlier conclusions about the
asymptotic properties of the mean and covariance estimators.
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1. Introduction

In this article, we consider the typical functional data
setting, where a sample of n curves are observed over
the time range T , each at mi discrete points for i =
1, . . . , n. When analysing such data, sparsity of the
time grid at which the measurements are observed
should be taken into account, and proper estimation
procedures would be adopted accordingly. Conven-
tionally, pre-smoothing the observations from each
subject is viable for dense data before subsequent
analysis, whereas the subjects are pooled to borrow
information for sparse data; furthermore, two types
of estimation procedures present different asymptotic
properties (Zhang & Wang, 2016). For the essen-
tial problem of estimating the mean and covari-
ance functions, we refer to, for example, Ferraty
and Vieu (2006), Ramsay and Silverman (2005), Rice
and Silverman (1991), Staniswalis and Lee (1998),
Zhou, Lin, and Liang (2017) and references therein.

Here we focus on local-linear smoother, which has
high popularity due to its conceptual simplicity, attrac-
tive local features and ability for automatic boundary
correction (Fan & Gijbels, 1996). To ensure that the
effect of each curve on the optimisers is not overly
affected by the denseness of observations, different
weighing schemes have been proposed. A scatter plot
smoother is employed byYao,Müller, andWang (2005),
which assigns the same weight to each observation for
sparse functional data analysis, referred to as the ‘OBS’
scheme. Alternatively, Li and Hsing (2010) suggested

a unified framework in which the number of obser-
vations within each curve can be of any rate relative
to the sample size, where each subject received the
same weight, referred to as the ‘SUBJ’ scheme. More
recently, Zhang andWang (2016) proposed amore gen-
eral weighing scheme which includes the previous two
commonly used schemes as special cases, and provided
a comprehensive and unifying analysis of the asymp-
totic properties for estimation.

In addition to the essential estimation problem,
functional principal component analysis (FPCA) has
become a common part in functional data analy-
sis, for example, to achieve dimension reduction of
functional data by summarising the data in a few
functional principal component (FPC) scores, or to
interpret the varying trend of individual trajectories
with the eigenfunctions. For a comprehensive discus-
sion on FPCA, one may refer to Greven, Crainiceanu,
Caffo, and Reich (2010), Hall,Müller, andWang (2006),
James,Hastie, and Sugar (2000), Jiang andWang (2010),
Yao and Lee (2006), and the references therein.
Although there has been a lot of literature on FPCA,
only a few theoretical studies on FPCA have been
made, such as in Hall and Hosseini-Nasab (2006), Hall
et al. (2006) and Li and Hsing (2010), and they are
all based on ‘OBS’ or ‘SUBJ’ scheme. The convergence
rates of the eigenvalues and eigenfunctions for the
FPCA have not been studied under the general weigh-
ing scheme. The theoretical results in the paper not only
provide the upper bounds of the convergence rates of
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eigenvalues and eigenfunctions under a unified weigh-
ing schemebut also provide bases for further theoretical
studies on functional clustering and classification based
on the FPCA method.

The work of Zhang and Wang (2016) established
the asymptotic normality, L2 convergence, and uniform
convergence for the mean and covariance estimators,
but not the asymptotic properties of the FPC. Under
the general weighing scheme, we provide in this arti-
cle the almost sure convergence rate for eigenvalues
and eigenfunctions, and further the convergence rate
for the variance estimation of the measurement errors.
The rest of the article is organised as follows. Notations,
model and methodology including FPCA are included
in Section 2. The main results about convergence rate
in eigenvalues, eigenfunctions and the variance estima-
tion of measurement errors are established in Section 3,
with all technical proofs left to the Appendix. Simula-
tion studies to verify the theoretical results are shown
in Section 4. The concluding remarks are given in
Section 5.

2. Model andmethodology

Consider a random process X(t) defined on a fixed
interval T = [0, 1] withmean functionμ(t) = E{X(t)}
and covariance function γ (s, t) = cov{X(s),X(t)}.
Denote with Yij the error-prone observations of the
random process at random points Tij, that is

Yij = Xi(Tij) + εij, i = 1, . . . , n, j = 1, . . . ,mi;

where the Xis are realisations of X, εij = εi(tij) are
identically distributed measurement errors with mean
zero and variance σ 2, and all the Xis, Tijs and εijs are
assumed to be independent.

2.1. Local-linear smoother

A local-linear estimator of the mean function μ̂(t) =
β̂0 is obtained byminimising the weighted least squares

n∑
i=1

ωi

mi∑
j=1

Kh1(Tij − t)
{
Yij − β0 − β1(Tij − t)

}2 ,
with respect to (β0,β1), where Kh(·) = h−1K(·/h) is
a kernel with bandwidth h. It was proposed in Zhang
and Wang (2016) to assign weight ωi to each observa-
tion for the ith subject such that

∑n
i=1miωi = 1, which

is the general weighing scheme. Specifically, assignment
ωi = 1/

∑n
i=1mi along with νi = 1/

∑n
i=1mi(mi − 1)

leads to the OBS scheme; assignment ωi = 1/(nmi)

along with νi = 1/nmi(mi − 1) leads to the SUBJ
scheme.

To estimate the covariance function γ (s, t), we first
estimate G(s, t) = E{X(s)X(t)}, and then it follows that

γ̂ (s, t) = Ĝ(s, t) − μ̂(s)μ̂(t). (1)

Similarly as before, a local-linear estimator Ĝ(s, t) = β̂0
is obtained by minimising the weighted least squares

n∑
i=1

νi
∑

1≤j�=l≤mi

Kh2(Tij − s)Kh2(Til − t)

{
YijYil − β0 − β11(Tij − s) − β12(Til − t)

}2 ,
where weight νi is attached to each YijYil for the ith
subject such that

∑n
i=1mi(mi − 1)νi = 1.

Finally to estimate the variance of measurement
errors, we start by a local-linear estimator V̂(t) = β̂0 of
V(t) := G(t, t) + σ 2, obtained by minimising

n∑
i=1

ωi

mi∑
j=1

Kh3(Tij − t){Y2
ij − β0 − β1(Tij − t)}2.

We then estimate σ 2 by σ̂ 2 = ∫ 1
0 {V̂(t) − Ĝ(t, t)}dt.

Throughout this article, we select the bandwidths h1, h2
and h3 by using the leave-one-out cross-validation
method.

2.2. Functional principal component analysis

We consider a spectral decomposition of γ (s, t) and
its approximation. According to Mercer’s theorem, the
covariance function has the spectral decomposition

γ (s, t) =
∞∑
j=1

λjφj(s)φj(t),

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of γ (·, ·),
and the φ′

js are the corresponding eigenfunctions, i.e.,
the principal components, which form an orthonormal
system on the space of square-integrable functions on
[0,1]. Following the Karhunen–Loève expansion, Xi(t)
is represented as Xi(t) = μ(t) + ∑∞

j=1 ξijφj(t), where
ξij = ∫ 1

0 Xi(t)φj(t)dt is referred to as the jth FPC score
of the ith subject. For each i, the ξij s are uncorrelated
random variables with E(ξij) = 0 and E(ξ 2ij ) = λj.

With the local-linear estimate γ̂ (s, t), we can approx-
imate it with

γ̂ (s, t) =
K∑
j=1

λ̂jφ̂j(s)φ̂j(t),

where λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 are the estimated eigenval-
ues, the φ̂js are the corresponding estimated eigen-
functions, and K is the number of principal compo-
nents selected. We refer to Hall et al. (2006) and Yao
et al. (2005) for comprehensive discussions about com-
putation of the eigenvalues and eigenfunctions of an
integral operator with a symmetric kernel. We refer to
Li, Wang, and Carroll (2013) for intensive discussions
about the choice of K and the underlying theory of the
functional principal component analysis.
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3. Main results about convergence rates

A few more notations are introduced first. Given a
positive integer k, we denote MSk = ∑n

i=1m
k
i , M =∑n

i=1mi/n, MSk = MSk/n and MHk =
(n−1 ∑n

i=1m
−k
i )−1, where the subscript ‘H’ inMH sug-

gests a harmonic mean. The asymptotic behaviour of
estimated eigenvalues and eigenfunctions is given in
Theorem 3.1.

Theorem 3.1: Suppose that the regularity conditions
(A1)–(A2), (B1)–(B4), (C1)–(C2) and (D1)–(D2) in the
Appendix hold. For any fixed j, we have the following
results :

(a) convergence rate of estimated eigenvalue

λ̂j − λj = O
(

(log(n)/n)1/2 + h21 + h22 + log(n)

[∑n
i=1miω

2
i

h1
+

n∑
i=1

mi(mi − 1)ω2
i

]

+ log(n)
[∑n

i=1mi(mi − 1)ν2i
h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑

i=1
mi(mi − 1)(mi − 2)(mi − 3)ν2i

])
a.s.

(b) convergence rate of estimated eigenfunction

sup
t∈[0,1]

|φ̂j(t) − φj(t)|

= O
(
h21 +

{
log(n)

[∑n
i=1miω

2
i

h1

+
n∑

i=1
mi(mi − 1)ω2

i

]}1/2

+ h22

+
{
log(n)

[∑n
i=1miω

2
i

h2
+

n∑
i=1

mi(mi − 1)ω2
i

]}1/2

+ log(n)
[∑n

i=1mi(mi − 1)ν2i
h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑

i=1
mi(mi − 1)(mi − 2)(mi − 3)ν2i

])
a.s.

In the following, we state in Corollary 3.2 and
Corollary 3.3 the specialised results for the OBS and
SUBJ schemes, respectively. For either the OBS or SUBJ
scheme, convergence rate depends on the order ofMSk
andMHk relative to n and the order of bandwidth.

Corollary 3.2: Suppose that the conditions in Theorem
3.1hold, alongwith two additional assumptions (C3) and
(D3). Then under the OBS scheme, for any fixed j,

(a)

λ̂j − λj = O
(

(log(n)/n)1/2 + h21 + h22

+
(

1
Mh1

+ MS2

(M)2

)
log(n)
n

+
(

1
MS2h22

+ MS3

(MS2)2h2

+ MS4

(MS2)2

)
log(n)
n

)
a.s.

(b)

sup
t∈[0,1]

|φ̂j(t) − φj(t)|

= O
(
h21 +

√(
1

Mh1
+ MS2

(M)2

)
log(n)
n

+ h22

+
√(

1
Mh2

+ MS2

(M)2

)
log(n)
n

+
(

1
MS2h22

+ MS3

(MS2)2h2

+ MS4

(MS2)2

)
log(n)
n

)
a.s.

Corollary 3.3: Suppose that the conditions in Theorem
3.1 hold. Then under the SUBJ scheme, for any fixed j,

(a)

λ̂j − λj

= O
(

(log(n)/n)1/2 + h21 + h22

+
(

1
MHh1

+ 1
)
log(n)
n

+
(

1
MH2h22

+ 1
MHh2

+ 1
)
log(n)
n

)
a.s.

(b)

sup
t∈[0,1]

|φ̂j(t) − φj(t)|

= O
(
h21 +

√(
1

MHh1
+ 1

)
log(n)
n

+ h22

+
√(

1
MHh2

+ 1
)
log(n)
n

+
(

1
MH2h22

+ 1
MHh2

+ 1
)
log(n)
n

)
a.s.
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In addition, we provide below the convergence rate
of the estimated variance of the measurement error
under the general weighing scheme, as well as the spe-
cial cases of the OBS and SUBJ schemes.

Theorem 3.4: Assume that the conditions in Theorem
3.1, and conditions (C1’) and (C2’) hold. Then under the
general weighing framework,

σ̂ 2 − σ 2

= O
(
h22 +

{
log(n)

[∑n
i=1miω

2
i

h1

+
n∑

i=1
mi(mi − 1)ω2

i

]}1/2

+ log(n)
[∑n

i=1mi(mi − 1)ν2i
h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑

i=1
mi(mi − 1)(mi − 2)(mi − 3)ν2i

]

+ h23 + log(n)
[∑n

i=1miω
2
i

h3

+
n∑
i=1

mi(mi − 1)ω2
i

])
a.s.

Corollary 3.5: Suppose that the conditions in Theorem
3.4 hold.

(a) OBS: With an additional assumption (C3),

σ̂ 2 − σ 2

= O
(
h22 +

√(
1

Mh2
+ MS2

(M)2

)
log(n)
n

+
(

1
MS2h22

+ MS3

(MS2)2h2
+ MS4

(MS2)2

)
log(n)
n

+ h23 +
(

1
Mh3

+ MS2

(M)2

)
log(n)
n

)
a.s.

Figure 1. This is for the ‘OBS’ case. The top two panels present the values of δλ1 and δλ2 for 200 replications as n increases,
respectively. The bottom two panels present the values of δφ1(t) and δφ2(t) for 200 replications as n increases, respectively.
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(b) SUBJ:

σ̂ 2 − σ 2

= O
(
h22 +

√(
1

MHh2
+ 1

)
log(n)
n

+
(

1
MH2h22

+ 1
MHh2

+ 1
)
log(n)
n

+ h23

+
(

1
MHh3

+ 1
)
log(n)
n

)
.

4. Simulation

To illustrate the theoretical results in Section 2, we now
turn to the numerical performance of the estimators as
sample size increases. Choices on ωi and νi that satisfy
the conditions in the general weighing scheme must be
made. Since the ‘OBS’ and ‘SUBJ’ cases are the twomost
commonly used choices, and our corollaries showed
the specific results regarding these two cases, we use
these two cases as examples to illustrate the theoreti-
cal results. The data are generated from the following
model:

Yij = Xi(Tij) + εij,

where Xi(t) = μ(t) + ∑2
k=1 ξikφk(t), ξik ∼ N(0, λk)

for k = 1, 2 and εij ∼ N(0, σ 2). Letμ(t) = t + sin(t) +
cos(t), φ1(t) = −√

2 cos(π t), φ2(t) = √
2 sin(π t), set

(λ1, λ2, σ 2) = (0.6, 0.3, 0.2).
The observation times are generated in the following

way. Each individual has a set of ‘scheduled’ time points,
{1, 2, . . . , 20}, and each scheduled time has a 20% prob-
ability of being skipped. The actual observation time is
a random perturbation of a scheduled time: a uniform
[0,1] random variable is added to a nonskipped sched-
uled time. This results in different observed time points
Tij per subject.

To illustrate that the convergence rates of the esti-
mated λ̂k, φ̂k and σ̂ 2 have the orders of magnitude
shown in Section 2, let δλk = (̂λk − λk)/an, where an
is the derived convergence rate (e.g., under the OBS
scheme, an = (log(n)/n)1/2 + h21 + h22 +

(
1

Mh1
+ MS2

(M)2

)
log(n)
n +

(
1

MS2h22
+ MS3

(MS2)2h2
+ MS4

(MS2)2

)
log(n)
n ), if the esti-

mated λ̂k is actually consistent with λk by this order of
magnitude, the range of the term δλk should decrease or
remain constant as n increases. Here we set n = 50, 75,
100, 125, 150, 175, 200 for both ‘OBS’ and ‘SUBJ’ cases,
and 200 replications were done for each sample size.

Figure 2. This is for the ‘SUBJ’ case. The top two panels present the values of δλ1 and δλ2 for 200 replications as n increases,
respectively. The bottom two panels present the values of δφ1(t) and δφ2(t) for 200 replications as n increases, respectively.
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Figure 3. Plots of δσ 2 for ‘OBS’ (the left panel) and ‘SUBJ’ (the right panel), respectively.

The procedure is visualised in Figures 1–3. The
number of K in each replication was chosen by the 90%
fraction of explained variance. As shown in Figure 1,
the ranges (under ‘OBS’ scheme) for δλk (top two pan-
els) and δφk(t) (bottom two panels) for k = 1, 2 tend to
be stable or go down, as the sample size n increases.
This demonstrates that the derived order of magnitude
of convergence rate in Corollary 3.2 is reasonable.

A similar phenomenon under the ‘SUBJ’ scheme can
be observed in Figure 2, which shows the converg-
ing processes of the estimators λ̂k and φ̂k for k = 1,
2. Although there are some abnormal values in the
estimates of eigenfunctions (shown in the left bottom
and right bottom panel), generally the fluctuation range
tends to be stable. And as expected, the abnormal val-
ues disappear as the sample size increases. This shows
that the derived convergence rates in Corollary 3.3 is
reasonable.

Furthermore, the δσ 2 under the ‘OBS’ and ‘SUBJ;
schemes are plotted in Figure 3. Observe that as the
sample size increases, the range of variation of the 200
replications tends to be stable, which demonstrates the
results of Corollary 3.5.

5. Discussion

It is common in functional data analysis literature that
a method focuses on either dense or sparse data, while
discussions about data of neither type are much less.
Due to different behaviours of the two types of meth-
ods, one needs to choose properly the analysis method
when dealing with real data, which is not necessarily as
easy as it looks like. For example, we may face a mix-
ture of densely and sparsely observed curves, or even
it may be difficult to decide a sampling density. In this
sense, methods that can handle any type of data are

appreciated. And themethod we consider in this article
belongs to this category. Specifically, we investigate the
almost sure convergence of functional principal com-
ponent analysis following Zhang and Wang (2016) and
complement the unified theoretical framework they set
up. We also note that the special case of Corollary 3.3
under SUBJ scheme is consistentwithTheorem3.6 in Li
and hsing (2010). The convergence rate of Corollary 3.2
under OBS scheme is better than that of Corollary 1 in
Yao et al. (2005), due to different techniques of proofs.
We prove with asymptotic expansions of the eigenval-
ues and eigenfunctions of estimated covariance func-
tion (Hall and Hosseini-Nasab (2006) and Hall et al.
(2006)) and strong uniform convergence rate of γ̂ (s, t)
by Lemma 5.1 in this article, which lead to a better
convergence rate. It is also of great interest to establish
the asymptotic distribution and optimal convergence
rate of φ̂j(t) under the general weighing framework,
which we left for future work. Furthermore, the general
weighing framework may be used in functional data
regression, classification, clustering, etc., and hence the
theoretical results here could be extended to those cases
as well. This will also be pursued as future work.
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Appendix

The following regularity conditions that are used to estab-
lish the asymptotic properties of the proposed estimators
are imposed mainly for mathematical simplicity and may
be modified as necessary. In the following, h1, h2 and h3
are bandwidths used in estimating μ(t), γ (s, t) and V(t),
respectively.

A.1 Regularity conditions

Kernel function
(A1) K(·) is a symmetric probability density function on
[−1, 1] and

σ 2
K =

∫
u2K(u)du < ∞, ‖K‖2 =

∫
K(u)2du < ∞.

(A2) K(·) is Lipschitz continuous: There exists 0 < L <

∞ such that |K(u) − K(v)| ≤ L|u − v|, for any u, v ∈ [0, 1].
This implies K(·) ≤ MK for a constantMK .
Time points and true functions
(B1) {Tij : i = 1, . . . , n, j = 1, . . . ,Ni}, are i.i.d. copies of a
random variable T defined on [0,1]. The density f (·) of T is
bounded from below and above: 0 < mf ≤ mint∈[0,1] f (t) ≤
maxt∈[0,1] f (t) ≤ Mf < ∞. Furthermore, f (2)(·), the second
derivative of f (·), is bounded.
(B2) X is independent of T and ε is independent of T
and U.
(B3) μ(2)(t), the second derivative of μ(t), is bounded on
[0,1].
(B4) ∂2γ (s, t)/∂s2, ∂2γ (s, t)/∂s∂t and ∂2γ (s, t)/∂t2 are
bounded on [0, 1]2.

Conditions for mean estimation
(C1) h1 → 0, log(n)

∑n
i=1miω

2
i /h1 → 0, log(n)

∑n
i=1mi

(mi − 1)ω2
i → 0.

(C1’) h3 → 0, log(n)
∑n

i=1miω
2
i /h3 → 0, log(n)

∑n
i=1mi

(mi − 1)ω2
i → 0.

(C2) For some α > 2, E supt∈[0,1] |X(t)|α < ∞, E|ε|α < ∞
and

n
[ n∑

i=1
miω

2
i h1 +

n∑
i=1

mi(mi − 1)ω2
i h

2
1

][
log(n)
n

]2/α−1

→ 0.

(C2’) For some α > 2, E supt∈[0,1] |X(t)|α < ∞, E|ε|α < ∞
and

n
[ n∑

i=1
miω

2
i h3 +

n∑
i=1

mi(mi − 1)ω2
i h

2
3

][
log(n)
n

]2/α−1

→ 0.

(C3) supn(nmaxi miωi) ≤ B < ∞.
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Conditions for covariance estimation
(D1)h2 → 0, log(n)

∑n
i=1mi(mi − 1)ν2i /h

2
2 → 0, log(n)∑n

i=1mi(mi − 1)(mi − 2)ν2i /h2 → 0, log(n)
∑n

i=1mi(mi −
1)(mi − 2)(mi − 3)ν2i → 0.
(D2) For someβ > 2,E supt∈[0,1] |X(t)|2β < ∞,E|ε|2β < ∞
and

n
[ n∑

i=1
mi(mi − 1)ν2i h

2
2 +

n∑
i=1

mi(mi − 1)(mi − 2)ν2i h
3
2

+
n∑
i=1

mi(mi − 1)(mi − 2)(mi − 3)ν2i h
4
2

]

×
[
log(n)
n

]2/β−1

→ ∞.

(D3) supn(nmaxi mi(mi − 1)νi) ≤ B′ < ∞.

The above conditions (A1)–(A2) and (B1)–(B4) are com-
monly used in the literature of the functional data and
longitudinal data (see, e.g.. Fan Zhang (2000); Zhu, Li,
Kong (2012)). Conditions (C1)–(C3) are used to guaran-
tee the consistency of the mean estimators. Conditions
(D1)–(D3) are used to guarantee the consistency of the
covariance estimators. For the SUBJ estimators, (C3) and
(D3) are automatically satisfied, similar versions of (C2) and
(D2) were adopted by Li and Hsing (2010). In addition, (C1’)
and (C2’) are used to guarantee the consistency of measure-
ment error variance estimation.

A.2 Proof

To begin, let us give some notations that will be used in the
sequel. Denote

Sr =
n∑

i=1
ωi

mi∑
j=1

Kh1(Tij − t)
(
Tij − t
h1

)r
,

Rr =
n∑

i=1
ωi

mi∑
j=1

Kh1(Tij − t)
(
Tij − t
h1

)r
Yij,

Qr =
n∑

i=1
ωi

mi∑
j=1

Kh3(Tij − t)
(
Tij − t
h3

)r
Y2
ij ,

where r = 0, 1, 2, and

Spq =
n∑

i=1
νi

∑
1≤j �=l≤mi

Kh2(Tij − s)Kh2(Til − t)

×
(
Tij − s
h2

)p (
Til − t
h2

)q

and

Rpq =
n∑

i=1
νi

∑
1≤j �=l≤mi

Kh2(Tij − s)Kh2(Til − t)

×
(
Tij − s
h2

)p (
Til − t
h2

)q
YijYil

where for p, q = 0, 1, 2. For any univariate function ϕ(·) ∈
[0, 1] and a bivariate function �(·, ·) ∈ [0, 1]2, define the
L2 norm by ‖ϕ‖ = [

∫
ϕ(t)2dt]1/2 and the Hilbert–Schmidt

norm by� = [
∫ ∫

�(s, t)2dsdt]1/2. The domains of the inte-
grals [0,1] are omitted unless otherwise specified.

First, we present the convergence rate of γ̂ obtained in (1).

Lemma A.1: Under the conditions in Appendix A.1, we have

sup
s,t∈[0,1]

|γ̂ (s, t) − γ (s, t)|

= O
(
h21 +

{
log(n)

[∑n
i=1miω

2
i

h1
+

n∑
i=1

mi(mi − 1)ω2
i

]}1/2

× h22 +
{
log(n)

[∑n
i=1mi(mi − 1)ν2i

h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑

i=1
mi(mi − 1)(mi − 2)(mi − 3)ν2i

]}1/2)
a.s.

Proof: From (1), We note that

sup
s,t∈[0,1]

|γ̂ (s, t) − γ (s, t)|

≤ |Ĝ(s, t) − G(s, t)| + μ(s) sup
t∈[0,1]

|μ̂(t) − μ(t)|

+ μ̂(t) sup
s∈[0,1]

|μ̂(s) − μ(s)|.

By (B3) and Theorem 5.1 in Zhang and Wang (2016),
we have μ(s) supt∈[0,1] |μ̂(t) − μ(t)|, μ̂(t) sups∈[0,1] |μ̂(s) −
μ(s)| = O({log(n)[

∑n
i=1 miω

2
i

h1 + ∑n
i=1mi(mi − 1)ω2

i ]}1/2)
a.s.. Thus the result can be derived from Theorem 5.2 in
Zhang and Wang (2016). �

The following lemma is similar with Lemma 6 of Li
and Hsing (2010) and will be used in our following proof
repeatedly. Let � be the integral operator with kernel γ̂ − γ .

Lemma A.2: For any bounded measurable function φ on
[0,1],

sup
t∈[0,1]

|(�φ)(t)|

= O
(
h21 +

{
log(n)

[∑n
i=1miω

2
i

h1

+
n∑
i=1

mi(mi − 1)ω2
i

]}1/2

+ h22 +
{
log(n)

[∑n
i=1miω

2
i

h2

+
n∑
i=1

mi(mi − 1)ω2
i

]}1/2

+ log(n)
[∑n

i=1mi(mi − 1)ν2i
h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑
i=1

mi(mi − 1)(mi − 2)(mi − 3)ν2i

])
a.s.

Proof: By (1), it follows that (�φ)(t) = An1 + An2, where
An1 = ∫

(Ĝ − G)(s, t)φ(s)ds and An2 = ∫ {μ(s)μ(t) − μ̂(s)
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μ̂(t)}φ(s)ds. With minor derivation, we have

An1 =
∫

(A1R∗
00 − A2R∗

10 − A3R∗
01)B−1φ(s)ds,

where A1 = S20S02 − S211, A2 = S10S02 − S01S11, A3 = S01
S20 − S10S11, B = A1S00 − A2S10 − A3S01 and

R∗
pq = Rpq − G(s, t)Spq − h2∂G(s, t)/∂sSp+1,q

− h2∂G(s, t)/∂tSp,q+1 for p, q = 0, 1.

Further, by Taylor’s expansion,

R∗
pq =

n∑
i=1

νi
∑

1≤j �=l≤mi

(
Tij − s
h2

)p

×
(
Til − t
h2

)q
Kh2(Tij − s)Kh2(Til − t)

× [YijYil − G(Tij,Tij)] + O(h22). (A1)

Applying the proof of Theorem 5.2 in Zhang and Wang
(2016), we obtain, uniformly in s, t,

R∗
pq = O(h22 + bn/h2) a.s. (A2)

With further calculation,

A1 = f 2(s)f 2(t)(σ 2
K)2 + O(h2 + bn/h2) a.s. (A3)

and

B = f 3(s)f 3(t)(σ 2
K)2 + O(h2 + bn/h2) a.s., (A4)

where bn = {log(n)[∑n
i=1mi(mi − 1)ν2i h

2
2 + ∑n

i=1mi(mi −
1)(mi − 2)ν2i h

3
2 + ∑n

i=1mi(mi − 1)(mi − 2)(mi − 3)ν2i
h42]}1/2.

We focus on
∫
A1R∗

00B−1φ(s)ds since the other two
terms can be dealt with similarly. Specifically,∫

A1R∗
00B−1φ(s)ds

= 1
f (t)

n∑
i=1

ωi
∑

1≤j �=l≤mi

{YijYil − G(Tij,Til)}Kh2(Til − t)

×
∫

Kh2(Tij − s)φ(s)f (s)−1ds

+ O
(
h22 + log(n)

[∑n
i=1mi(mi − 1)ν2i

h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑

i=1
mi(mi − 1)(mi − 2)(mi − 3)ν2i

])
.

Note that∣∣∣ ∫ 1

0
Kh2(Tij − s)φ(s)f (s)−1ds

∣∣∣
≤ sup

s∈[0,1]
(|φ(s)|f (s)−1)

∫ 1

−1
K(u)du.

Similarly to the proof of Lemma 5 in Zhang andWang (2016),
we can prove the following almost sure uniform rate:

1
f (t)

n∑
i=1

ωi
∑

1≤j�=l≤mi

{YijYil − G(Tij,Til)}Kh2(Til − t)

×
∫

Kh2(Tij − s)φ(s)f (s)−1ds

= O
({

log(n)
[∑n

i=1miω
2
i

h2

+
n∑

i=1
mi(mi − 1)ω2

i

]}1/2)
a.s.

Thus∫
A1R∗

00B−1φ(s)ds

= O
({

log(n)
[∑n

i=1miω
2
i

h2
+

n∑
i=1

mi(mi − 1)ω2
i

]}1/2

+ h22 + log(n)
[∑n

i=1mi(mi − 1)ν2i
h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑
i=1

mi(mi − 1)(mi − 2)(mi − 3)ν2i

])
a.s.

The term An2 can be written as

An2 =
∫

{μ(t) − μ̂(t)}
∫

μ(s)φ(s)ds

+ μ̂(t)
∫

{μ(s) − μ̂(s)}φ(s)ds.

Following Theorem 5.1 in Zhang and Wang (2016), it is easy
to see that

An2 = O
(
h21 +

{
log(n)

[∑n
i=1miω

2
i

h1

+
n∑
i=1

mi(mi − 1)ω2
i

]}1/2)
a.s.

Hence, the lemma follows. �

Proof of Theorem 3.1: Following Hall and Hosseini-Nasab
(2006) and Bessel’s inequality, we have

‖φ̂j − φj‖ ≤ C(‖�φj‖ + ‖�‖2),
where ‖�φj‖ = (

∫ ∫ {γ̂ (s, t)− γ (s, t)φj(s)}2dsdt)1/2 and ‖�‖
= (

∫ ∫ {γ̂ (s, t) − γ (s, t)}2dsdt)1/2. Lemma A.1 and Lemma
A.2 lead to

‖φ̂j − φj‖ = O
(
h21 +

{
log(n)

[∑n
i=1miω

2
i

h1

+
n∑
i=1

mi(mi − 1)ω2
i

]}1/2

+ h22 +
{
log(n)

[∑n
i=1miω

2
i

h2

+
n∑
i=1

mi(mi − 1)ω2
i

]}1/2
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+ log(n)
[∑n

i=1mi(mi − 1)ν2i
h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑

i=1
mi(mi − 1)(mi − 2)(mi − 3)ν2i

])
a.s.

By (4.9) in Hall et al. (2006), we have

λ̂j − λj = Bn1 + Bn2 + O(‖�φj‖2),
where

Bn1 =
∫ ∫

(A1R∗
00 − A2R∗

10 − A3R∗
01)B−1φj(s)φj(t)dsdt

and

Bn2 =
∫

{μ(s) − μ̂(s)}φj(s)ds
∫

μ̂(t)φj(t)dt

+
∫

μ(s)φj(s)ds
∫

{μ(t) − μ̂(t)}φj(t)dt.

For Bn1, again it suffices to focus on
∫ ∫

A1R∗
00B−1φj(s)φj(t)

dsdt. First, we have∫ ∫
A1R∗

00B−1φj(s)φj(t)dsdt

=
n∑

i=1
νi

∑
1≤j≤l≤mi

{YijYil − G(Tij,Til)}

×
∫ ∫

Kh1(Tij − s)Kh2(Tjl − t)

× φj(s)φj(t){f (s)f (t)}−1dsdt

+ O
(
h22 + log(n)

[∑n
i=1mi(mi − 1)ν2i

h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑

i=1
mi(mi − 1)(mi − 2)(mi − 3)ν2i

])
a.s.

By Lemma 5 in Li and Hsing (2010), we have

Bn1 = O
(

(log(n)/n)1/2 + h22

+ log(n)
[∑n

i=1mi(mi − 1)ν2i
h22

+
∑n

i=1mi(mi − 1)(mi − 2)ν2i
h2

+
n∑
i=1

mi(mi − 1)(mi − 2)(mi − 3)ν2i

])
a.s.

Following Theorem 5.1 in Zhang and Wang (2016), it can be
shown similarly that

Bn2 = O
(

(log(n)/n)1/2 + h21 + log(n)
[∑n

i=1miω
2
i

h1

+
n∑
i=1

mi(mi − 1)ω2
i

])
a.s.

This completes the proof for assertion (a). For assertion
(b), we have, for any t ∈ [0, 1],

λj|φ̂j(t) − φj(t)|
= |̂λjφ̂j(t) − λjφj(t) − (̂λj − λj)φ̂j(t)|

≤
∫

{γ̂ (s, t) − γ (s, t)}φj(t)ds

+
∫

γ̂ (s, t){φ̂j(s) − φj(s)}ds + |̂λj − λj||φ̂j(t)|

≤ sup
t∈[0,1]

|(�φ)(t)| + O(‖φ̂j − φj‖)

+ |̂λj − λj| sup
t∈[0,1]

|φ̂j(t)|,

where the last inequality is established by Cauchy-Schwarz
inequality. Based on Lemma 6 and assertion (a), assertion (b)
holds. �

Proof of Theorem 3.4: By rearranging the terms, we have

σ̂ 2 − σ 2 =
∫

{V̂(t) − V(t)}dt −
∫

{Ĝ(t) − G(t)}dt.

First, we consider V̂(t) − V(t). Similarly to (C.1) in Zhang
and Wang (2016), we have

V̂(t) − V(t) = Q∗
0S2 − Q∗

1S1
S0S2 − S21

, (A5)

where Q∗
q = Qq − V(t)Sq − hV(1)Sq+1 for q = 0, 1. By (D.1)

in Zhang andWang (2016),Q∗
q has the uniformly rateO(h23 +

an/h3) a.s. and we can derive that S2 = f (t)σ 2
K + O(h3 +

an/h3), where an = {log(n)[∑n
i=1miω

2
i h3 + ∑n

i=1mi(mi −
1)ω2

i h
2
3]}1/2. One can see that

V̂(t) − V(t) = 1
f (t)

∑
i

ωi

mi∑
j=1

Kh3(Tij − t){Y2
ij − V(Tij)}

+ O(h23 + (an/h3)2) a.s.

Thus∫ 1

0
V̂(t) − V(t)dt

=
∑
i

ωi

mi∑
j=1

{Y2
ij − V(Tij)}

∫ 1

0
Kh3(Tij − t)f−1(t)dt

+ O(h23 + (an/h3)2) a.s.

We apply (A5) but will focus on the leading term Q∗
0S2

S0S2−S21
,

since the other term is of lower order and can be dealt with
similarly. Note that∣∣∣ ∫ 1

0
Kh3(Tij − t)f−1(t)dt

∣∣∣ ≤ sup
t
f−1(t),

and by Lemma 5 in Li and Hsing (2010), we have∫ 1

0
V̂(t) − V(t)dt = O((log(n)/n)1/2 + h23 + (an/h3)2).

(A6)
Next, to consider Ĝ(t) − G(t) we follow the similar expres-
sion (C.2) in Zhang and Wang (2016). Again we focus on
R∗
00A1B−1. Applying (A2), we obtain, uniformly in s, t,

R∗
00 = O(h22 + bn/h2)



STATISTICAL THEORY AND RELATED FIELDS 65

and
A1B−1 = [f (s)f (t)]−1 + O(h2 + bn/h2),

where bn = {log(n)[∑n
i=1mi(mi − 1)ν2i h

2
2 + ∑n

i=1mi(mi −
1)(mi − 2)ν2i h

3
2 + ∑n

i=1mi(mi − 1)(mi − 2)(mi − 3)ν2i
h42]}1/2. Similarly to the proof of Theorem 3.4 in Li and

Hsing (2010), it can be shown that∫ 1

0
{Ĝ(t) − G(t)}dt = O(h22 + an/h2 + (bn/h2)2) a.s.

(A7)
The theorem follows from (A6) and (A7). �


	1. Introduction
	2. Model and methodology
	2.1. Local-linear smoother
	2.2. Functional principal component analysis

	3. Main results about convergence rates
	4. Simulation
	5. Discussion
	Disclosure statement
	Funding
	Notes on contributors
	References
	Appendix
	A.1. Regularity conditions
	A.2. Proof




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


