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ABSTRACT
Thepower-expected-posterior prior is used in this paper for comparingnested linearmodels. The
asymptotic behaviour of the method is investigated for different values of the power parameter
of the prior. Focus is given on the consistency of the Bayes factor of comparing the full modelMp
versus a generic submodelM�. In each case, we allow the true generating model to be eitherMp
orM� and we keep the dimension ofM� fixed, while the dimension of Mp can be either fixed or
(grow as) O(n), with n denoting the sample size.
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1. Introduction

Pérez and Berger (2002) developed priors for objec-
tive Bayesian model comparison, through the utilisa-
tion of the device of ‘imaginary training samples’. The
expected-posterior prior (EPP) for the parameter under
a model is an expectation of the posterior distribution
given imaginary observations y∗ of size n∗. The expec-
tation is taken with respect to a suitable probability
measure of a reference model M0, while the posterior
distribution is computed via Bayes’s theorem starting
from a default, typically improper, prior. One of the
advantages of using EPPs is that impropriety of base-
line priors causes no indeterminacy in the computation
of Bayes factors. On the other hand, the EPPs depend
on the training sample size and particularly in variable
selection problems, imaginary design matrices should
also be introduced, under each competing model, and
therefore the resulting prior will further depend on
this choice (for a detailed discussion on this issue, see
Fouskakis, Ntzoufras, & Draper, 2015). The selection
of a minimal training sample, of size n∗, has been pro-
posed (see, for example, Berger & Pericchi, 2004), to
make the information content of the prior as small as
possible, and this is an appealing idea. But even under
this set-up, the resulting prior can be influential when
the sample size n is not much larger than the total num-
ber of parameters under the full model (see Fouskakis
et al., 2015).

The power-expected-posterior (PEP) prior, intro-
duced by Fouskakis et al. (2015), is an objective
prior which amalgamates ideas from the power prior

(Ibrahim & Chen, 2000), the expected-posterior prior
(Pérez & Berger, 2002) and the unit-information-prior
approach of Kass and Wasserman (1995) to simultane-
ously (a) produce a minimally informative prior and
(b) diminish the effect of training samples under the
EPP methodology. The main idea is to substitute the
likelihood by a density-normalised version of a power-
likelihood in EPP. Fouskakis et al. (2015) and Fouskakis
and Ntzoufras (2016b) studied in detailed the PEP pri-
ors under the variable selection problem in Gaussian
regression models. In the first paper, they introduced
the PEP prior by considering as parameter of interest
both the coefficients of themodel and the error variance
while in the second paper they studied the conditional
version of PEP, named PCEP, where they considered
only the coefficients as the parameter of interest and
the error variance as a common nuisance parameter.
Here we focus in the former case. Under this approach,
for every model M� in M (the set of all models under
consideration) the sampling distribution f�(· |β�, σ 2

� ) is
specified by

(Y |X�,β�, σ
2
� ,M�) ∼ Nn(X� β�, σ

2
� In), (1)

where Y = (Y1, . . . ,Yn) is a vector containing the
responses for all subjects,X� is an n × d� design matrix
containing the values of the explanatory variables in its
columns, In is the n × n identity matrix, β� is a vector
of length d� summarising the effects of the covariates
in model M� on the response Y and σ 2

� is the error
variance for model M�. Finally, by p we denote the
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total number of the explanatory variables under con-
sideration and by Mp the full model, including all p
covariates.

Furthermore, we denote by πN
� (β�, σ 2

� ) the baseline
prior to the parameters of model M�. Here we use the
independence Jeffreys prior (or reference prior) as the
baseline prior distribution.Hence, for anyM� ∈ M, we
have

πN
� (β�, σ

2
� ) = c�

σ 2
�

, (2)

where c� is an unknown normalising constant.
We assume that in M there exists a model M0,

with parameters β0 and σ 2
0 , sampling distribution

f0(· |β0, σ 2
0 ) and baseline prior πN

0 (β0, σ 2
0 ) ∝ σ−2

0 ,
which is nested into each of the remaining models
and we consider it as a reference model. This is the
typical case in the variable selection problem, stud-
ied in this paper. Given then a set of imaginary data
y∗ = (y∗

1, . . . , y
∗
n∗)T and a positive power parameter δ,

that is used to regulate, essentially, the contribution of
the imaginary data on the ‘final’ prior, we introduce
the density-normalised power-likelihood, undermodel
M�, given by

f�(y∗ | β�, σ
2
� , δ,X

∗
�) = f�(y∗ | β�, σ 2

� ,X
∗
�)

1/δ∫
f�(y∗ | β�, σ 2

� ,X
∗
�)

1/δ dy∗ .

(3)

The above density-normalised power-likelihood is still
a normal distribution with variance inflated by a fac-
tor of δ; in the above, X∗

� denotes the imaginary design
matrix under model M�. In a similar manner, under
the reference model, the density-normalised power-
likelihood takes the form of (3) but using now the
likelihood f0(y∗ | β0, σ 2

0 ,X
∗
0) ofM0.

In order to apply the PEP methodology, the density-
normalised power-likelihood (3) is used to evaluate,
under the imaginary data and the baseline prior, the
prior predictive distribution mN

0 (y∗ | δ,X∗
0) of model

M0 as well as the posterior distribution of the param-
eters of modelM�

πN
� (β�, σ

2
� | y∗, δ,X∗

�)

= f�(y∗ | β�, σ 2
� , δ,X

∗
�)π

N
� (β�, σ 2

� )

mN
� (y∗ | δ,X∗

�)
, (4)

where

mN
j (y∗ | δ,X∗

j )

=
∫ ∫

fj(y∗ | β j, σ
2
j , δ,X

∗
j )π

N
j (β j, σ

2
j ) dβ j dσ

2
j ,

(5)

is the prior predictive distribution of modelMj for j =
�, 0.

Finally, the imposed prior for the parameters of any
modelM� has the following form

πPEP
� (β�, σ

2
� | δ,X∗

�)

=
∫

πN
� (β�, σ

2
� | y∗, δ,X∗

�)m
N
0 (y∗ | δ,X∗

0) dy
∗. (6)

The default choice for δ is to set it equal to n∗, i.e. the
sample size of the imaginary data, so that the overall
information of the imaginary data in the posterior is
equal to one data point. Furthermore, setting n∗ = n
and, consequently, the design matrix of the imaginary
data X∗

� ≡ X� simplifies significantly the overwhelm-
ing computations required when considering all possi-
ble ‘minimal’ training samples (Pérez & Berger, 2002)
while it also avoids the complicated issue (in some
cases) of defining the size of the minimal training sam-
ples (Berger & Pericchi, 2004). In addition, under the
choice n∗ = n, the PEP prior remains relatively non-
informative even for models with dimension close to
the sample size n, while the effect on the evaluation of
each model is minimal since the resulting Bayes factors
are robust over different values of n∗. Detailed informa-
tion about the default specifications of the PEP prior
is provided in Fouskakis et al. (2015). Finally, the null
model (with no explanatory variables) is a standard
choice for the reference model in regression problems;
see, for example, Pérez and Berger (2002). In the above
definition of PEP prior, the power parameter can also
be model depended, and denoted by δ�.

Fouskakis and Ntzoufras (2016a) proved the consis-
tency of the Bayes factorwhen using the PEPmethodol-
ogy, with the independence Jeffreys as a baseline prior,
for Gaussian linear models, under very mild condi-
tions on the designmatrix, when the dimension of each
model is fixed, the size of the training sample is equal
to the sample size n and the power parameter is also
set equal to n. In a similar manner as in Fouskakis
and Ntzoufras (2016a), when comparing the full model
Mp to a reduced modelM�, the Bayes factor under the
PEP prior is given by

BFPEPp� = 2
�(n − p)
�2(

n−p
2 )

∫ π/2

0

× (sinϕ)n−d�−1(cosϕ)n−p−1(δ� + sin2 ϕ)(n−p)/2(
δ�

RSSp
RSS�

+ sin2 ϕ
)(n−d�)/2

dϕ,

(7)

withRSSj denoting the residual sumof squares ofmodel
Mj (j = �, p). For large n, we can approximate the Bayes
factor given in (7) as

BFPEPp� ≈
(

1
ρ�p

)(n−d�)/2 ( 1
δ�

)(p−d�)/2 (1
2

)(p−d�)/2
,

(8)
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if p is fixed constant; and as

BFPEPp� ≈
(

1
ρ�p

)(rp−d�)/2 ( 1
δ�

)(p−d�)/2
2(2(r−1)p−1)/2

× (r − 1)(r−1)p/2r(rp−d�−1)/2

(2r − 1)((2r−1)p−d�−1)/2 , (9)

if p increases as n grows to infinity and (n − p) grows to
infinity, with rate r > 1 so that n = r × p (for a detailed
proof of (8) and (9) see Innocent, 2016).

In the rest of the paper, we denote by

ρ�p = RSSp
RSS�

and by

εp� = 1
σ 2
T
βt
T
Xt
T(In − H�)XT

n
βT ,

where MT denotes the ‘true’ model and H� the hat
matrix of model M� (see Casella, Girón, Martínez,
&Moreno, 2009). Since the reducedmodelM� is nested
in the full modelMp, we have that ρ�p ∈ (0, 1].

Finally, the following results hold, as n increases,
with respect to the distribution and the limiting
behaviour of the statistic ρ�p (see Girón, Moreno,
& Casella, 2010):

• If dim(M�) = d� = O(1) and dim(Mp) = p =
O(1):

◦ When sampling from model M�, the distribu-
tion of the statistic ρ�p is the central beta distri-
bution Be((n − p)/2, (p − d�)/2) and

lim
n→+∞ ρ�p = 1.

◦ When sampling from model Mp, the distribu-
tion of the statistic ρ�p is the non-central beta
distribution Be((n − p)/2, (p − d�)/2, 0, nεp�)
and

lim
n→+∞ ρ�p = 1

1 + ε
,

with

lim
n→+∞ εp� = ε > 0.

• If dim(M�) = d� = O(1) and dim(Mp) = p = O(n)
with r = limn,p→+∞ n

p > 1, p > d� > 1 :
◦ When sampling from model M�, the distribu-

tion of the statistic ρ�p is the central beta distri-
bution Be(p(r − 1)/2, (p − d�)/2) and

lim
n→+∞ ρ�p = r − 1

r
, r > 1.

◦ When sampling from model Mp the distri-
bution of the statistic ρ�p is the non-central

beta distribution Be(p(r − 1)/2, (p − d�)/2, 0,
rpεp�) and

lim
n→+∞ ρ�p = r − 1

r(1 + ε)
,

where

lim
n→+∞ εp� = ε > 0.

In this paper, we examine the consistency of the
Bayes factor, for nested normal linearmodels, under the
PEPmethodology, using the pair ofmodelsM� andMp.
The number of parameters of the simpler model M� is
always fixed, while for the full model is of order O(nα),
where α ∈ {0, 1}. We investigate the effect of the power
parameter δ� by examining four different scenarios. In
each case, the ‘true’ model is set equal to either M� or
Mp.

2. Bayes factor consistency under
power-expected-posterior priors

In what follows we set the size of the training sample n∗
equal to the sample size n as in Fouskakis et al. (2015).

2.1. When the power δ� = n

First, we consider the case where the power parame-
ter is set equal to the sample size n, and studying the
consistency when the dimension p of the full modelMp
is either a fixed constant number or large and goes to
infinity.

Then (7) becomes:

BFPEPp� = 2
�(n − p)
�2(

n−p
2 )

∫ π/2

0

× (sinϕ)n−d�−1(cosϕ)n−p−1(n + sin2 ϕ)(n−p)/2

(nρ�p + sin2 ϕ)(n−d�)/2
dϕ.

(10)

2.1.1. When dim(M�) = O(1) and dim(Mp) = O(1)

Theorem 1: Let the sample size n increases and being
strictly greater than the dimension of the full model Mp.
Furthermore, suppose that the dimension of both mod-
els, under consideration, are fixed non-negative natural
numbers, i.e. dim(M�) = d� = O(1) and dim(Mp) =
p = O(1), where p > d� > 1. Under the condition δ� =
n, when sampling from model Mj, where j is either � or p
we have:

lim
n→+∞BFPEPp� =

{
0 if j = �

+∞ if j = p
.

Proof: For δ� = n, (8) becomes

BFPEPp� ≈
(

1
2n

)(p−d�)/2 ( 1
ρ�p

)(n−d�)/2
. (11)
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(a) Suppose that the Reduced Model M� is true
Using the asymptotic results of ρ�p given in

Section 1, (11) becomes:

BFPEPp� ≈
(

1
2n

)(p−d�)/2
. (12)

Since p and d� are constants and n goes to infinity we
get

lim
n→+∞BFPEPp� = 0.

Thus, the Bayes factor of the full model Mp versus
the reduced modelM� is consistent under the reduced
modelM�.

(b) Suppose that the Full Model Mp is true
Using the asymptotic results of ρ�p given in

Section 1, (11) becomes:

BFPEPp� ≈
(

1
2n

)(p−d�)/2
(1 + ε)n/2 ≈

(
1
2

)(p−d�)/2

× e−n((p−d�)/2)(log(n)/n)+(n/2) log(1+ε). (13)

Thus

lim
n→+∞BFPEPp� = elimn→+∞(n/2) log(1+ε) = +∞,

since ε > 0, and (n/2) log(1 + ε) → +∞ as n →
+∞. Therefore, the Bayes factor of the full model Mp
versus the reduced model M� is consistent when sam-
pling from the full modelMp. �

2.1.2. When dim(M�) = O(1) and dim(Mp) = O(n)

Theorem 2: Let δ� = n and suppose that the reduced
model M� has a fixed number of parameters, i.e.
dim(M�) = d� = O(1), as the simple size n increases,
and in the full model Mp the number of parameters
increase with rate dim(Mp) = p = O(n) with

r = lim
n,p→+∞

n
p

> 1, p > d� > 1.

Then:

(1) When sampling from model M�

lim
n→+∞BFPEPp� = 0.

(2) When sampling from model Mp

lim
n→+∞BFPEPp�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if r > 1 is a fixed constant{
0 if limn→+∞ εp� < ε2p(r)
+∞ if limn→+∞ εp� ≥ ε2p(r)
if r > 1 is a large number

for some function ε2p given by ε2p(r) : (1,+∞) −→
R, r �−→ (2rp)1/r − 1.

Proof: By replacing n ≈ rp, and δ� = rp, (9), becomes

BFPEPp� ≈
[

1
2(r − 1)p

](p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2 (r − 1
rρ�p

)(pr−d�)/2
.

(14)

(a) Suppose that the Reduced Model M� is true
Using the asymptotic results of ρ�p given in

Section 1, (14) becomes

BFPEPp� ≈
[

1
2(r − 1)p

](p−d�)/2 ( 2r
2r − 1

)((2r−1)p−d�−1)/2

and then

BFPEPp� ≈
[

1
2(r − 1)p

(
2r

2r − 1

)2r−1
]p/2

×
(

(2r − 1)(r − 1)p
r

)d�/2 (
1 − 1

2r

)1/2
.

So for large value of p, we have

BFPEPp� ≈
[

1
2(r − 1)p

(
2r

2r − 1

)2r−1
]p/2

and then

BFPEPp� ≈

⎧⎪⎪⎨
⎪⎪⎩

(
1
p

)p/2
if r > 1 is a fixed constant(

1
2rp

)p/2
if r is a large number

.

(15)

In both cases, for large p, we get

lim
n→+∞BFPEPp� = 0,

since

lim
n→+∞

(
1
p

)p/2
= lim

n→+∞ exp
(
−p
2
log p

)
= 0.

Thus the Bayes factor of the full model Mp against
the reduced model M� is consistent under the reduced
modelM�.

(b) Suppose that the Full Model Mp is true
Using the asymptotic results of ρ�p given in

Section 1, (14) becomes

BFPEPp� ≈
[

1
2(r − 1)p

](p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2
(1 + ε)(rp−d�)/2.
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So for large p, we have

BFPEPp� ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1
p

)p/2
if r > 1 is a fixed constant

[
(1 + ε)r

2rp

]p/2
(2rp)d�/2

if r is a large number

and then

lim
n→+∞BFPEPp�

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
p

)p/2
if r > 1 is a fixed constant

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2rp)d�/2 if
(1 + ε)r

2rp
= 1

[
(1 + ε)r

2rp

]p/2
if

(1 + ε)r

2rp

= 1

if r > 1 is a large number

.

Solving the equation (1 + ε)r/2rp = 1 for ε, we get
ε = (2rp)1/r − 1. Therefore using the function ε2p(r) :
(1,+∞) −→ R, r �−→ (2rp)1/r − 1 we have

lim
n→+∞BFPEPp�

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if r > 1 is a fixed constant⎧⎨
⎩
0 if limn→+∞ εp� < ε2p(r)

+∞ if limn→+∞εp� ≥ ε2p(r)
if r > 1 is a large number

.

Thus, the Bayes factor of the full model Mp versus the
reduced model M� is consistent under the full model
Mp if and only if limn→+∞ εp� ≥ ε2p(r) when r is large
and goes to infinity. �

2.2. When the power δ� = (n − p)

Second, we consider the case where the power δ� =
(n − p) and studying the consistency when the dimen-
sion p of the full model Mp is either a fixed constant
number or large and goes to infinity. Then (7) becomes:

BFPEPp� = 2
�(n − p)
�2(

n−p
2 )

∫ π/2

0

×
(sinϕ)n−d�−1(cosϕ)n−p−1((n − p)

+ sin2 ϕ)(n−p)/2[
(n − p)ρip + sin2ϕ

](n−d�)/2
dϕ

2.2.1. When dim(M�) = O(1) and dim(Mp) = O(1)

Let the simple size n increases and being strictly greater
than the dimension of the full modelMp. Furthermore,
suppose that the dimension of both models, under

consideration, are fixed non-negative natural numbers,
i.e. dim(M�) = d� = O(1) and dim(Mp) = p = O(1),
where p > d� > 1.

For δ� = (n − p), (8) becomes

BFPEPp� ≈
(
1
2

)(p−d�)/2 ( 1
n − p

)(p−d�)/2 ( 1
ρ�p

)(n−d�)/2
,

and then since p and d� are fixed constants and for large
values of n, we get

BFPEPp� ≈
(
1
n

)p/2 ( 1
ρ�p

)n/2
. (16)

Working as in the proof of Theorem 2.1, we conclude
that the Bayes factor of the full model Mp versus the
reduced model M� is consistent when sampling from
either models.

2.2.2. When dim(M�) = O(1) and dim(Mp) = O(n)

Theorem 3: Let δ� = (n − p) and suppose that the
reduced model M� has a fixed number of parameters, i.e.
dim(M�) = d� = O(1), as the simple size n increases,
and in the full model Mp the number of parameters
increase with rate dim(Mp) = p = O(n) with

r = lim
n,p→+∞

n
p

> 1, p > d� > 1.

Then:

(1) When sampling from model M�

lim
n→+∞BFPEPp� = 0.

(2) When sampling from model Mp

lim
n→+∞BFPEPp�

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
if r > 1 is a fixed constant{
0 if limn→+∞εp� < ε2p(r)
+∞ if limn→+∞εp� ≥ ε2p(r)
if r > 1 is a large number

for some function ε2p given by ε2p(r) : (1,+∞) −→
R, r �−→ (2rp)1/r − 1.

Proof: By replacing n ≈ rp, and δ� = rp − p, (9),
becomes

BFPEPp� ≈
(

2r
2r − 1

)((2r−1)p−d�−1)/2

×
(

r
2p(r − 1)2

)(p−d�)/2 ( r − 1
rρ�p

)(pr−d�)/2
.

(17)

(a) Suppose that the Reduced Model M� is true
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Using the asymptotic results of ρ�p given in
Section 1, (17) becomes

BFPEPp� ≈
(

2r
2r − 1

)((2r−1)p−d�−1)/2

×
(

r
2p(r − 1)2

)(p−d�)/2
.

So for large value of p, we have

BFPEPp� ≈

⎧⎪⎪⎨
⎪⎪⎩

(
1
p

)p/2
if r > 1 is a fixed constant(

1
2rp

)p/2
if r is a large number

.

In both cases, for large p, we get

lim
n→+∞BFPEPp� = 0,

Thus the Bayes factor of the full model Mp against
the reduced modelM� is consistent under the reduced
modelM�.

(b) Suppose that the Full Model Mp is true
Using the asymptotic results of ρ�p given in

Section 1, (17) becomes

BFPEPp� ≈
(

r
2p(r − 1)2

)(p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2
(1 + ε)(rp−d�)/2,

or

BFPEPp� ≈
[(

2r
2r − 1

)2r−1 r(1 + ε)r

2p(r − 1)2

]p/2

×
(

(2r − 1)(r − 1)2(1 + ε)−1p
r2

)d�/2

×
(
1 − 1

2r

)1/2
. (18)

So for large p, we have

BFPEPp� ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1
p

)p/2
if r > 1 is a fixed constant(

(1 + ε)r

2rp

)p/2
(2rp)d�/2

if r is a large number

Thus working as in the proof of Theorem 2.2 we con-
clude that the Bayes factor of the full model Mp ver-
sus the reduced model M� is consistent under the full
model Mp if and only if limn→+∞ εp� ≥ ε2p(r) when r
is large and goes to infinity. �

2.3. When the power δ� = p

Third, we consider the case where the power is equal to
the dimension of the full model and studying the con-
sistency when the dimension p = dim(Mp) of the full
modelMp is either a fixed constant number or large and
goes to infinity.

Under this set-up, (7) becomes:

BFPEPp� = 2
�(n − p)
�2(

n−p
2 )

×
∫ π/2

0

(sinϕ)n−d�−1(cosϕ)n−p−1

(p + sin2 ϕ)(n−p)/2

(pρ�p + sin2 ϕ)(n−d�)/2
dϕ.

2.3.1. When dim(M�) = O(1) and dim(Mp) = O(1)

Theorem 4: Let δ� = p and the sample size n increases
and being strictly greater than the dimension of the
full model Mp. Furthermore, suppose that the dimen-
sion of both models, under consideration, are fixed non-
negative natural numbers, i.e. dim(M�) = d� = O(1)
and dim(Mp) = p = O(1), where p > d� > 1. Then
when sampling from model Mj, where j is either � or p
we have:

lim
n→+∞BFPEPp� =

{
Constant > 0 if j = �

+∞ if j = p
.

Proof: For δ� = p, (8) becomes

BFPEPp� ≈
(

1
2p

)(p−d�)/2 ( 1
ρ�p

)(n−d�)/2
(19)

Then we consider the following two cases.
(a) Suppose that the Reduced Model M� is true
Using the asymptotic results of ρ�p given in

Section 1, (19) becomes

BFPEPp� ≈
(

1
2p

)(p−d�)/2
.

Since p and d� are constants, with p > d� > 1, we get

lim
n→+∞BFPEPp� = lim

n→+∞

(
1
2p

)(p−d�)/2
= Constant>0.

Thus, the Bayes factor of the full model Mp versus the
reduced model M� is inconsistent under the reduced
modelM�.

(b) Suppose that the Full Model Mp is true
Using the asymptotic results of ρ�p given in

Section 1, (19) becomes

BFPEPp� ≈ e(n/2) log(1+ε).

and thus

lim
n→+∞BFPEPp� = +∞.

Therefore, the Bayes factor of the full model Mp ver-
sus the reduced modelM� is consistent when sampling
from the full modelMp. �
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2.3.2. When dim(M�) = O(1) and dim(Mp) = O(n)

Theorem 5: Let δ� = p and suppose that the reduced
model M� has a fixed number of parameters, i.e.
dim(M�) = d� = O(1), as the simple size n increases,
and in the full model Mp the number of parameters
increase with rate dim(Mp) = p = O(n) with

r = lim
n,p→+∞

n
p

> 1, p > d� > 1.

Then:

(1) When sampling from model M�

lim
n→+∞BFPEPp� = 0.

(2) When sampling from model Mp

lim
n→+∞BFPEPp�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if r > 1 is a fixed constant{
0 if limn→+∞εp� < ε1p(r)
+∞ if limn→+∞εp� ≥ ε1p(r)
if r > 1 is a large number

for some function ε1p given by ε1p(r) : (1,+∞) −→
R, r �−→ (2p)1/r − 1.

Proof: By replacing n ≈ rp, and δ� = p, (9) becomes

BFPEPp� ≈
(

r
2(r − 1)p

)(p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2(r − 1
rρ�p

)(pr−d�)/2
.

(20)

(a) Suppose that the Reduced Model M� is true
Using the asymptotic results of ρ�p given in

Section 1, (20) becomes

BFPEPp� ≈
(

r
2(r − 1)p

)(p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2

and then

BFPEPp� ≈
(

r
2(r − 1)p

(
2r

2r − 1

)2r−1
)p/2

×
(

(2r − 1)(r − 1)p
2r2

)d�/2 (
1 − 1

2r

)1/2
.

So for large value of p we have

BFPEPp� ≈

⎧⎪⎪⎨
⎪⎪⎩

(
1
p

)p/2
if r > 1 is a fixed constant(

1
2p

)p/2
if r is a large number

.

(21)

In both cases, for large p, we get

lim
n→+∞BFPEPp� = 0.

Thus the Bayes factor of the full model Mp against
the reduced model M� is consistent under the reduced
modelM�.

(b) Suppose that the Full Model Mp is true
Using the asymptotic results of ρ�p given in

Section 1, (20) becomes

BFPEPp� ≈
(

r
2(r − 1)p

)(p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2
(1 + ε)(rp−d�)/2.

So for large p, we have

BFPEPp� ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1
p

)p/2

if r > 1 is a fixed constant(
(1 + ε)r

2p

)p/2
(2p)d�/2

if r is a large number

and then

BFPEPp�

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
p

)p/2

if r > 1 is a fixed constant⎧⎪⎪⎨
⎪⎪⎩

(2p)d�/2 if
(1 + ε)r

2p
= 1(

(1 + ε)r

2p

)p/2
if

(1 + ε)r

2p

= 1

if r > 1 is a large number

.

Solving the equation (1 + ε)r/2p = 1 for ε, we get
ε = (2p)1/r − 1. Therefore using the function ε1p(r) :
(1,+∞) −→ R, r �−→ (2p)1/r − 1 we have

lim
n→+∞BFPEPp� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if r > 1 is a fixed constant{
0 if limn→+∞εp� < ε1p(r)
+∞ if limn→+∞εp� ≥ ε1p(r)
if r > 1 is a large number

.

Thus, the Bayes factor of the full model Mp versus the
reduced model M� is consistent under the full model
Mp if and only if limn→+∞ εp� ≥ ε1p(r) when r is large
and goes to infinity. �

2.4. When the power δ� = δ

Finally, we consider the case where the power parame-
ter is set equal to a fixed non-negative constant δ, and
studying the consistency when the dimension p of the
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full modelMp is either a fixed constant number or large
and goes to infinity.

Then (7) becomes:

BFPEPp� = 2
�(n − p)
�2(

n−p
2 )

∫ π/2

0

×
(sinϕ)n−d�−1(cosϕ)n−p−1

(δ + sin2 ϕ)(n−p)/2

(δρ�p + sin2 ϕ)(n−d�)/2
dϕ. (22)

2.4.1. When dim(M�) = O(1) and dim(Mp) = O(1)

Theorem 6: Let the sample size n increases and being
strictly greater than the dimension of the full model Mp.
Furthermore, suppose that the dimension of both mod-
els, under consideration, are fixed non-negative natural
numbers, i.e. dim(M�) = d� = O(1) and dim(Mp) =
p = O(1), where p > d� > 1. Under the condition δ� =
δ > 0, when sampling from model Mj, where j is either �

or p we have:

lim
n→+∞BFPEPp�

=

⎧⎪⎨
⎪⎩
0 if j = � and δ is large
Constant > 0 if j = � and δ is not large
+∞ if j = p

.

Proof: For δ� = δ, (8) becomes

BFPEPp� ≈
(

1
2δ

)(p−d�)/2 ( 1
ρ�p

)(n−d�)/2
(23)

Then we consider the following two cases.
(a) Suppose that the Reduced Model M� is true
Using the asymptotic results of ρ�p given in

Section 1, (23) becomes

BFPEPp� ≈
(

1
2δ

)(p−d�)/2
.

Since p and d� are constants, with p > d� > 1, if δ is
large, we get

lim
n→+∞BFPEPp� = 0,

while if δ is not large, we get

lim
n→+∞BFPEPp� = Constant > 0.

Thus, the Bayes factor of the full model Mp versus
the reduced modelM� is consistent under the reduced
modelM�, only for large values of δ.

(b) Suppose that the Full Model Mp is true
Using the asymptotic results of ρ�p given in

Section 1, (23) becomes

BFPEPp� ≈
(

1
2δ

)(p−d�)/2
(1 + ε)(n−d�)/2

≈ e(n/2)(−((p−d�)/n) log(2δ)+log(1+ε)).

Thus

lim
n→+∞BFPEPpi = +∞.

Therefore, the Bayes factor of the full model Mp ver-
sus the reduced modelM� is consistent when sampling
from the full modelMp. �

2.4.2. When dim(M�) = O(1) and dim(Mp) = O(n)

Theorem 7: Let δ� = δ > 0 and suppose that the
reduced model M� has a fixed number of parameters, i.e.
dim(M�) = d� = O(1), as the simple size n increases,
and in the full model Mp the number of parameters
increase with rate dim(Mp) = p = O(n) with

r = lim
n,p→+∞

n
p

> 1, p > d� > 1.

Then:

(1) When sampling from model M�

lim
n→+∞BFPEPp� =

⎧⎪⎨
⎪⎩
0 ifδ > β1(r)
+∞ ifδ < β1(r)
Constant > 1 ifδ = β1(r)

for a continuous and decreasing function β1 :
(1,+∞) −→ R, r �−→ (2r/(2r − 1))2r−1(r/
2(r − 1)).

(2) When sampling from model Mp

lim
n→+∞BFPEPp�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if δ > β2(r)
+∞ if δ < β2(r)
+∞ if δ = β2(r) and large
Constant > 0 if δ = β2(r) and small

for a continuous function β2 : (1,+∞) −→ R,
r �−→ β1(r)(1 + r)r.

Proof: By replacing n ≈ rp and δ� = δ, (9) becomes

BFPEPp� ≈
(

r
2(r − 1)δ

)(p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2 (r−1
rρ�p

)(pr−d�)/2
.

(24)

(a) Suppose that the Reduced Model M� is true
Using the asymptotic results of ρ�p given in

Section 1, (24) becomes

BFPEPp� ≈
(

r
2(r − 1)δ

)(p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2
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and then

BFPEPp� ≈
(

r
2(r − 1)δ

(
2r

2r − 1

)2r−1
)p/2

×
(

(2r − 1)(r − 1)δ
r2

)d�/2 (
1 − 1

2r

)1/2
.

We consider the following cases:

• If (r/2(r − 1)δ)(2r/(2r − 1))2r−1 = 1 ⇒ δ = β1(r)
then

BFPEPp� ≈
(

2r
2r − 1

)(r−1)d�
(
1 − 1

2r

)1/2
.

Thus for any r>1

lim
n→+∞BFPEPp� = Constant > 0.

• If (r/2(r − 1)δ)(2r/(2r − 1))2r−1 
= 1 for large val-
ues of p we get

BFPEPp� ≈
(

r
2(r − 1)δ

(
2r

2r − 1

)2r−1
)p/2

.

Then if
◦ (r/2(r − 1)δ)(2r/(2r − 1))2r−1 < 1 ⇒

δ > β1(r)

lim
n→+∞BFPEPp� = 0.

◦ (r/2(r − 1)δ)(2r/(2r − 1))2r−1 > 1 ⇒
δ < β1(r)

lim
n→+∞BFPEPp� = +∞.

Thus, the Bayes factor of the full model Mp versus
the reduced modelM� is consistent under the reduced
modelM� if and only if the power δ > β1(r).

(b) Suppose that the Full Model Mp is true
Using the asymptotic results of ρ�p given in

Section 1, (24) becomes

BFPEPp� ≈
(

r
2(r − 1)δ

)(p−d�)/2

×
(

2r
2r − 1

)((2r−1)p−d�−1)/2
(1 + ε)(pr−d�)/2 ,

or

BFPEPp� ≈
[(

2r
2r − 1

)2r−1 r(1 + ε)r

2(r − 1)δ

]p/2

×
(

(2r − 1)(r − 1)δ
r2(1 + ε)

)d�/2 (
1 − 1

2r

)1/2
.

We consider the following cases

• If (2r/(2r − 1))2r−1(r(1 + ε)r/2(r − 1)δ) = 1 ⇒
δ = β2(r) then BFPEPp� ≈ ((2r − 1)(r − 1)δ/
r2(1 + ε))d�/2(1 − 1/2r)1/2 and for large values of δ
we have

lim
n→+∞BFPEPp� ≈ lim

n→+∞

(
2δ

1 + ε

)d�/2
= +∞,

while if δ is not large

lim
n→+∞BFPEPp� ≈ lim

n→+∞

(
2δ

1 + ε

)d�/2
=Constant>0.

• If (2r/(2r − 1))2r−1(r(1 + ε)r/2(r − 1)δ) 
= 1, for
large value p we have BFPEPp� ≈ ((2r/(2r − 1))2r−1

(r(1 + ε)r/2(r − 1)δ))p/2. Then if
(1) (2r/(2r − 1))2r−1(r(1 + ε)r/2(r − 1)δ) < 1⇒

δ > β2(r)

lim
n→+∞BFPEPp� = 0.

(2) (2r/(2r − 1))2r−1(r(1 + ε)r/2(r − 1)δ) > 1⇒
δ < β2(r)

lim
n→+∞BFPEPp� = +∞.

Thus, the Bayes factor of the fullmodelMp versus the
reduced modelM� is inconsistent under the full model
Mp if δ > β2(r) or when δ = β2(r) and δ is small. �

3. Summary and conclusions

In this paper, we examined the asymptotic behaviour
of the power-expected-posterior methodology when

Table 1. Consistency of BFPEPp� when model M� has dimension
dim(M�) = i = O(1) and δ� ∈ {n, n − p}.

M� is correct Mp is correct

p = O(1) Consistent Consistent
p = O(n) Consistent Consistent if

limn→+∞ εp� ≥
ε2p(r) for large r

Table 2. Consistency of BFPEPp� when model M� has dimension
dim(M�) = i = O(1) and δ� = p.

M� is correct Mp is correct

p = O(1) Inconsistent Consistent
p = O(n) Consistent Consistent if

limn→+∞ εp� ≥
ε1p(r) for large r

Table 3. Consistency of BFPEPp� when model M� has dimension
dim(M�) = i = O(1) and δ� = δ > 0.

M� is correct Mp is correct

p = O(1) Consistent if δ is large Consistent
p = O(n) Consistent if δ > β1(r) Consistent if

δ < β2(r) or if
δ = β2(r) and
large



STATISTICAL THEORY AND RELATED FIELDS 171

comparing nested normal linear models. Emphasis was
given on the consistency of the Bayes factor of the full
modelMp versus a generic submodelM�. The number
of parameters of the simplestmodelM� was kept always
fixed, while for the full model was set of order O(nα),
where α ∈ {0, 1}. We investigated the effect of the prior
power parameter δ�, by examining four different sce-
narios. In each case, the ‘true’ model was set equal to
eitherM� orMp. Tables 1–3 summarise our findings.

The consistency properties of the Power-Expected-
Posterior (PEP) prior Bayes factors are eminently rea-
sonable, assuming that we are sampling from either of
the candidate models. It is always consistent for fixed
dimensions of the candidate models and even in the
difficult situation on which the alternative model can
grow with the sample size, for the situations described
in Tables 1– 3, the PEP Bayes factor is consistent, unless
the alternative model is extremely close to the null
model, in which case, we conjecture, the lack of con-
sistency is not a critical issue, at least for prediction
purposes.
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