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Efficient GMM estimation with singular system of moment conditions

Zhiguo Xiao
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ABSTRACT
Standard generalised method of moments (GMM) estimation was developed for nonsingular
system of moment conditions. However, many important economic models are characterised
by singular system of moment conditions. This paper shows that efficient GMM estimation
of such models can be achieved by using the reflexive generalised inverses, in particular the
Moore–Penrose generalised inverse, of the variance matrix of the sample moment conditions
as the weighting matrix. We provide a consistent estimator of the optimal weighting matrix and
establish its consistency. Potential issues of using generalised inverse and some remedies are
also discussed.
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1. Introduction

Over the past several decades, a great deal of statisti-
cians’ efforts has been devoted to the statistical infer-
ence of moment condition models, i.e., models where
the linkage between parameter and data is specified
through a set of moment restrictions (also known as
estimating equations). Technically, a moment condi-
tion model specifies that the data generating process of
observations Z1, . . . ,Zn satisfies

E
[
g(Zi,β0)

] = 0, (1)

where g is a R
K-valued known function and β0 is the

R
p-valued parameter of interest, and K ≥ p. The pop-

ularity of moment condition models is partially due to
that a parametric likelihood form may be too strong
for many real applications or scientific theories. When
the dimension of parameter of interest equals the num-
ber of moment conditions, the parameter is said to
be just-identified, and the classical approach of the
method of moments can be applied for parameter esti-
mation. In practice, amajority of themoment condition
models investigated by applied researchers, such as the
models for assets pricing and dynamic panel data, are
over-identified. The generalised method of moments
(GMM) of Hansen (1982) is one of the most popular
techniques that are designed for the estimation of over-
identified moment condition models (see, e.g., Hansen
&West, 2002 and Hall, 2005).

Like many other classical statistical methods, GMM
comes with the price of a set of regularity condi-
tions which warrant its validity. Although in most

applications those regularity conditions are not bind-
ing, some of them can be violated in interesting cir-
cumstances. This paper is concerned with the efficient
GMMestimation when one of the regularity conditions
of standard GMM, that the covariance matrix of the
moment vector evaluated at the true parameter be of
full rank, is violated. A typical such kind of violation
appears when the system of moment conditions is sin-
gular, i.e., some components of the moment functions
are linear combinations of each other.

Singular systems of moment conditions exist in a
wide variety of economic studies, such as the consumer
expenditure function analysis (Barten, 1969, 1977),
the market share analysis (Rao, 1972; Weiss, 1968),
the production function estimation (Dhrymes, 1962),
the translog utility function analysis (Berndt & Chris-
tensen, 1974), the linearised dynamic stochastic gen-
eral equilibrium (DSGE) modelling (Bierens, 2007;
Ireland, 2004), the errors-in-variables analysis with
panel data (Biørn, 2000; Biørn & Klette, 1998; Wans-
beek, 2001; Xiao, Shao, & Palta, 2010a, 2010b; Xiao,
Shao, Xu, & Palta, 2007), the multivariate random-
effects meta-analysis models (Chen, Hong, & Riley,
2014; Riley, Abrams, Lambert, Sutton, & Thomp-
son, 2007) and the non-Gaussian ARMA models
(Alessi, Barigozzi, & Capasso, 2011; Leeper, Walker,
& Yang, 2013; Mountford & Uhlig, 2009; Velasco
& Lobato, 2018).

In a linear regression model with known sin-
gular disturbance covariance matrix, Theil (1971)
showed that a generalised Aitken-like estimator using
the Moore–Penrose generalised inverse is best linear
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unbiased. Following Theil (1971), Kreijger and
Neudecker (1977) proposed two optimality criteria
to obtain best linear unbiased estimators. Within the
same context, Dhrymes and Schwarz (1987) discussed
the existence issue of the estimators using generalised
inverses. Haupt andOberhofer (2006) proposed an esti-
mator which does not use the generalised inverses and
allows for additional exogenous restrictions, collinear-
ities and generalised adding-up. Bierens and Swan-
son (2000) and Bierens (2007) suggested that one can
obtain parameter estimate by maximising the infor-
mation content of the singular system. Ireland (2004)
and Lai (2008) proposed adding random noises to
the singular system to implement maximum likelihood
estimation.

In the GMM literature, White (1986) showed that
if the estimating function g is of the form g = (g′

1, g
′
2)

′
such that: (i)�1 = E[g1(Zi,β0)g1(Zi,β0)

′] is nonsingu-
lar and (ii) components of g2 are linear combinations of
g1, then the efficientGMMestimator is theminimiser of

Jn(β) = nḡn(β)′�−ḡn(β), (2)

where ḡn(β) = 1
n

n∑
i=1

g(Zi,β) and �− is a reflexive gen-

eralised inverse of

� = E
[
g(Zi,β0)g(Zi,β0)

′] . (3)

However, in practice, the aforementioned represen-
tation of g is generally not readily obtainable (see,
e.g., Schneeweiss, 2014; Velasco & Lobato, 2018; Xiao
et al., 2010b).

The purpose of this article is to develop an efficient
GMM estimator for a singular system of moment con-
ditions with general form. An earlier effort appeared
in Xiao (2008), which is proposed using the reflex-
ive generalised inverses to deal with the singularity.
Schneeweiss (2014) independently discussed similar
ideas.

The rest of the paper is organised as follows. In
Section 2, we briefly review the GMM methodology,
the concepts of generalised inverses and some results of
the reflexive generalised inverses. We present our main
result in Section 3. Section 4 discusses further issues
such as the estimation of optimal weighting matrix and
the method of adding noises, and Section 5 concludes.
Proofs of results are relegated to the Appendix.

2. GMM and generalised inverses

We first make a brief introduction of the standard
GMM method. For book-length detailed account,
see Hall (2005). For simplicity we assume that the
data Z1, . . . ,Zn are i.i.d. Assume also that K>p, i.e.,
the model is over-identified. Since the number of

restrictions on parameter is greater than the dimension
of parameter, in general it is impossible to obtain
an estimator of the parameter by using method of
moments, i.e., by setting the samplemoment ḡn equal to
zero. The idea ofGMMbyHansen (1982) is tominimise
a quadratic norm of ḡn:

Jn(β) = nḡn(β)′Wnḡn(β), (4)

whereWn is a positive semidefinite matrix. Under a set
of regularity conditions including that� being positive
definite, and assumingWn converges in probability to a
positive semi-definite matrixW, β̂GMM , the minimiser
of (4), is a consistent estimator for β0 and has limiting
distribution

√
n(β̂GMM − β0)

d→ N(0,V(W)),

where V(W) = (G′WG)−1G′W�WG(G′WG)−1 with
G = E[ ∂g(Zi,β0)

∂β
]. The lower bound ofV(W) is achieved

atW = �−1, i.e.,

V(W) ≥ V(�−1)

in the sense of being nonnegative definite, for any
W. In practice, a consistent estimator of �−1 can be
set as

�̂−1 =
[
1
n

n∑
i=1

[
g(Zi, β̃)g(Zi, β̃)′

]]−1

, (5)

where β̃ is a consistent estimator of β0. A typical choice
of β̃ is a GMM estimator with W = IK , the identity
matrix of order K. Note that �̂−1 converges in proba-

bility to �−1 because 1
n

n∑
i=1

[g(Zi, β̃)g(Zi, β̃)′] converges

in probability to�, and more importantly,� is positive
definite.

Next we review the concepts of generalised inverses
of a matrix and some of their properties.

Definition 2.1: Let A be a real l × s matrix. An s × l
real matrix A− may have one or all of the following
properties:

(i) AA−A = A;
(ii) A−AA− = A−;
(iii) (AA−)′ = AA−;
(iv) (A−A)′ = A−A.

If A− satisfies (i), it is called a generalised inverse
of A; if A− satisfies (i) and (ii), it is called a reflexive
generalised inverse (or g2-inverse) of A; if A− satis-
fies (i) –(iv), it is called theMoore–Penrose generalised
inverseofA. TheMoore–Penrose generalised inverse of
a matrix A is unique and is denoted by A+ hereafter.1

1 For the existence and uniqueness of the Moore–Penrose generalised inverse, see, e.g., Penrose (1955) and Abadir and Magnus (2005, pp. 284–285).
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We list some of the important properties of the gen-
eralised inverses by the following two propositions,
proof of which can be achieved by direct verification
and therefore is omitted.2 Proposition 1 states that
when the matrix of interest has natural factorisation
with certain structure, some of its generalised inverses
can be easily derived.

Proposition 2.1: (i) Let � = [A′
1 A′

2]
′�1[A′

1 A′
2],

where A1 and �1 are nonsingular square matrices. Then
�− =

[
(A−1

1 )′�−1
1 A−1

1 0
0 0

]
is a reflexive generalised inverse

of �.
(ii) Let � = A�1A′, where A is of full column rank

and �1 is nonsingular, then any reflexive generalised
inverse �− of � satisfies A′�−A = �−1

1 . Moreover, we
have A+ = (A′A)−1A′, and

�+ = (A+)′�−1
1 A+ = A(A′A)−1�−1

1 (A′A)−1A′.

Proposition 2.2 points out that the generalised
inverses (including the reflexive generalised inverses)
are not unique and can be obtained by using the sin-
gular value decomposition .3

Proposition 2.2: Let� be an m × n real valued matrix
with rank r>0. Suppose that the singular value decom-
position of� is� = S�T′, where S is m × mwith S′S =
Im, T is n × n with T′T = In, and� = [

�r O
O O

]
, with�r

the diagonal matrix of singular values of � and O the
matrices of zeros. Then

(i)

G = T
[
�−1

r X
Y Z

]
S′ (6)

is a generalised inverse of �, where X, Y and Z are arbi-
trary real valued matrices with appropriate dimension.

(ii)

G = T
[
�−1

r X
Y Y�−1

r X

]
S′ (7)

is a reflexive generalised inverse of�, where X, Y are arbi-
trary real valued matrices with appropriate dimension.

(iii)

G = T
[
�−1

r O
O O

]
S′ (8)

is the Moore–Penrose generalised inverse of �.

White (1986) result on GMMestimation with singu-
lar moment conditions can be stated as follows:

Theorem 2.1 (White, 1986): Suppose there exists a
matrix� such that G = [Il1 �]′G1 and� = [Il1 �]′�1
[Il1 �], where G1 is of full column rank and�1 is l1 × l1
positive definite with l1 ≥ p, then

(i) For any reflexive generalised inverse�− of�,� −
G(G′�−G)−1G′ is independent of the choice of �−, and
� − G(G′�−G)−1G′ ≥ 0.

(ii) For any reflexive generalised inverse�− of�, and
for any W,

(G′WG)−1G′W�WG(G′WG)−1 ≥ (G′�−G)−1.

Hence �− is the optimal weighting matrix. In practice,
one may choose the Moore–Penrose generalised inverse
of �, or a special reflexive generalised inverse

�− =
[
�−1

1 0
0 0

]
.

Remark: Note that (G′�−G)−1 – the asymptotic
covariance matrix of the optimal GMM estimator –
does not depend on �. The basic idea of Theorem 2.1
is as follows. Suppose we have two sets of instrumen-
tal variables, say Z1 and Z2, such that Z1 is linearly
independent and Z2 is a linear combination of Z1, i.e.,
Z2 = Z1α for some constant vector α, then one can
ignore Z2 and use Z1 only as instruments, in doing
so we achieve the same asymptotic efficiency as using
Z = (Z1Z2). The limitation of this result is that to apply
this method we have to sort all instrumental variables
into two groups, such that instrumental variables in
one group are linear combinations of those in the other
group. This can be very tedious in practice. For exam-
ple, in panel data models, there are often a very large
number of instruments and it is in general impossible
to sort out them.

3. Main results

We now establish some basic results about random
vectors with singular covariance matrices.

Lemma 3.1: Let Y = [Y1 . . .Ym]′ be an m × 1 random
vector and r be the rank of the covariance matrix of Y.
Suppose that r<m. Then

(i) There exist a r-dimensional subvector Y(r) =
[Yi1 . . .Yir ]′ of Y such that its covariance matrix
var(Y(r)) is positive definite. The vector Y(r) is called an
essential subvector of Y.

(ii) Let Y−(r) be the (m − r) × 1 vector consisting
of the remaining components of Y. Then there exist an
(m − r) × (m − r) constantmatrix C and an (m − r) ×
1 constant vector d such that

Y−(r) = CY(r) + d, w.p.1.,

where w.p.1. means ‘with probability one’. Hence there
exist anm × r constant matrix B of full column rank and

2 More results on reflexive generalised inverses can be found in Rao and Mitra (1971), Rao (2001), Bapat (2012), Fampa and Lee (2018), and Xu, Fampa,
and Lee (2019).

3 Similar results for square matrices can be found in Bapat (2012, pp. 47–48).
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an m × 1 constant vector d̃ such that

Y = BY(r) + d̃, w.p.1.

(iii) If EY = 0, then d̃ in (ii) is the zero vector. i.e., Y =
BY(r), w.p.1.

Theorem 3.1 is the main result of this paper.

Theorem 3.1: Consider GMM estimation for model (1)
with � defined by (3). Suppose it is known that the
components of g(Zi,β0) are linearly dependent (with
probability one). Then any reflexive inverse of � is an
optimal weighting matrix. Particularly, we can use the
Moore–Penrose generalised inverse �+.

Let �− be an arbitrary reflexive generalised inverse
of�. Then the asymptotic variancematrix of the GMM
estimator using �− as the weighting matrix is

V(�−) = (G′�−G)−1G′�−��−G(G′�−G)−1

= (G′�−G)−1,

where G = E[ ∂g(Zi,β0)
∂β

]. A natural question is whether
V(�−) is a constant matrix independent of the
choice of �−. The answer is yes. To see this, sup-
pose the essential subvector of g(Zi,β0) is g(r)(Zi,β0)

= (gi1(Zi,β0), . . . , gir(Zi,β0))
′, with g(Zi,β0) = Bg(r)

(Zi,β0) (w.p.1.). Let G1 = E[ ∂g(r)(Zi,β0)
∂β ′ ] and �1 =

var(g(r)(Zi,β0)). Then we have G = BG1, B′�−B =
�−1

1 , hence

V(�−) = (G′�−G)−1 = (G′
1B

′�−BG1)
−1

= (G′
1�

−1
1 G1)

−1,

which is independent of the choice of �−, as the
essential vector and the corresponding matrices G1
and �1 are unrelated to �−. We also see that V(�−)

remains the same if we use another essential vector, as
(G′�−G)−1 = (G′�+G)−1 is unrelated to the choice of
the essential vectors. More details can be found in the
proof of Theorem 3.1 in the Appendix.

Judging from the asymptotic distributions we can
see that GMM estimation usingmoment conditions (1)
and the reflexive generalised inverses as weighting
matrix is asymptotically equivalent to the efficient
GMM using moment conditions E[g(r)(Zi,β0)] = 0.
In some situations, one can figure out the essen-
tial subvector g(r)(Zi,β), then efficient GMM estima-
tion can be based on E[g(r)(Zi,β0)] = 0 directly. For
instance, in the errors-in-variables analysis of panel
data, Xiao et al. (2010a) and Xiao et al. (2010b) found
that one can obtain g(r)(Zi,β) by using singular value

decomposition.However, such simple decomposition is
not available in general and it can be very inconvenient,
if not impossible, to find the essential vector g(r)(Zi,β).
Theorem 2 tells us that whatever this subvector is, the
GMM estimator using any of the reflexive generalised
inverses, and theMoore–Penrose generalised inverse in
particular, as the weighting matrix will always have the
same asymptotic variance as the efficient GMM based
on E[g(r)(Zi,β0)] = 0.

4. Further issues

4.1. Optimal weightingmatrix estimation

Now we discuss consistent estimation of �+. Let β̃ be

a consistent estimator of β0 and �̂n = 1
n

n∑
i=1

[g(Zi, β̃)

g(Zi, β̃)′]. Then �̂n → � in probability under normal
regularity conditions. A natural candidate estimator of
�+ is �̂+

n .
It is well known that if a sequence of nonsingular

square matrices {An} converges to a nonsingular square
matrix A, then A−1

n → A−1.4 However, if A is singu-
lar, and An → A, we may not necessarily have that
A+
n → A+. 5 AssumingAn → A andA is singular, then

a necessary and sufficient condition for A+
n → A+ is:

Theorem 4.1 (Stewart, 1969): Let {An} be a sequence
of real m × n matrices converging to a m × n matrix A.
Then A+

n → A+ if and only rank(An) = rank(A) for n
large enough.

We now prove that �̂+
n is a consistent estima-

tor for �+. By Theorem 4.1, we need only to show
that rank(�̂n) = rank(�) when n is large enough. By
Lemma 3.1, there exists a constant matrix B of full
column rank, such that w.p.1.,

�̂n = 1
n

n∑
i=1

[
Bgr(Zi, β̃)g(r)(Zi, β̃)′B′

]

= B

(
1
n

n∑
i=1

[
g(r)(Zi, β̃)g(r)(Zi, β̃)′

])
B′.

Since the components of g(r)(Zi,β) are linear indepen-
dent for any β ,

rank

(
1
n

n∑
i=1

[
g(r)(Zi, β̂)g(r)(Zi, β̂)′

])
= r = rank(�),

for any n. Therefore rank(�̂n) = rank
(

1
n

n∑
i=1

[g(r)

(Zi, β̂)g(r)(Zi, β̂)′]
)

= rank(�), and �̂+
n converges to

�+ in probability.

4 A sequence of realm × nmatrices {An} is said to converge to am × nmatrix A if ‖An − A‖ → 0, where ‖ · ‖ is a matrix norm, such as the Euclidean norm
or ‖A‖ = sup

‖x‖=1
{‖Ax‖}.

5 For example, consider An =
[

1− 1
n 1− 1

n2

1− 1
n2

1

]
and A = [

1 1
1 1

]
. Then An → A. Since An is invertible, A+

n = A−1
n → [−∞ ∞

∞ −∞
]
. Hence A+

n � A+ =
[

1
2

1
2

1
2

1
2

]
.
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Even though using generalised inverses is theoreti-
cally sound, it can be unstable, i.e., small perturbation of
a singular matrix may result in large deviation from its
generalised inverses.6 Therefore, one must be cautious
when using generalised inverses. We suggest that one
should first try to find the essential subvector g(r). In
case that g(r) is not easily obtainable, the method intro-
duced below can be used as an alternative to generalised
inverses.

4.2. Imposing randomnoises

To avoid the potential bias caused by generalised
inverses, we can add randomly generated noises to the
system to make it nonsingular, as Bierens (2007) and
Lai (2008) did in themaximum likelihood estimation of
singular systemof equations. Specifically, letU1, . . . ,Un
be i.i.d. K × 1 random vectors generated from the
multivariate normal distribution with mean zero and
covariance matrix σ 2IK , and assume that U1, . . . ,Un
are independent from Z1, . . . ,Zn. Define h(Zi,Ui,β) =
g(Zi,β) + Ui, for i = 1, . . . , n. Then β0 is the solution
of the set of moment conditions

E [h(Zi,Ui,β)] = 0. (9)

The set of moment conditions (9) is nonsingular,
since � = E[h(Zi,Ui,β0)h(Zi,Ui,β0)

′] = � + σ 2IK
> 0. Let β̃GMM be an efficient GMM estimator of
β0 based on (9), then the asymptotic distribution

of β̃GMM is
√
n(β̃GMM − β0)

d→ N(0, (G′�−1G)−1).
Since (G′�−1G)−1 > (G′�−1G)−1, for any σ > 0,
β̃GMM is asymptotically less efficient than β̂GMM . How-
ever, the loss of efficiency can be controlled since
(G′�−1G)−1 → (G′�−1G)−1, as σ → 0. Similar to
Lai (2008), one can also generate m independent
samples of U1, . . . ,Un, obtain m GMM estimators
β̃1
GMM , . . . , β̃m

GMM and then construct a new estimator

by β̃A
GMM = 1

m

m∑
j=1

β̃
j
GMM .7 Since β̃A

GMM combines infor-

mation in β̃1
GMM , . . . , β̃m

GMM , in theory it is asymptoti-
cally more efficient than any of β̃1

GMM , . . . , β̃m
GMM . It is

of interest to investigate the asymptotic distribution and
finite sample performance of β̃A

GMM in a future study.

5. Concluding remarks

Since the moment condition models do not require
researchers to specify the likelihood function of the
data generating process, they have been widely used by
econometricians to model economic theories. Though
it is desirable that the moment conditions constructed
from economic theory are linearly independent, in

practice thismay not always be the case. Sometimes sin-
gularity is inherent in the model or is caused by some
singular transformations. In this paper, we extended
the efficient GMM estimation to linearly dependent
moment condition models. The result can be viewed
as a natural extension of the standard GMM theory,
since the generalised inverse of a matrix is a natural
extension of the inverse of a matrix. Though in theory
using generalised inverses yields efficientGMMestima-
tors, in practice one must be cautious of using them,
in light of the following two concerns. First, using gen-
eralised inverses ignores the intrinsic structure of the
moment conditions, which sometimes contains impor-
tant information. Second, the generalised inverses of a
singular matrix are unstable, which could induce seri-
ous bias of the resulting GMM estimator. Therefore
when there is singularity in the system, a practical strat-
egy is to obtain an essential moment vector and apply
GMM to it. In case an essential moment vector is not
available, we can add random noises to the moment
conditions and obtain GMM estimators based on the
new set of moment conditions.We suggest using gener-
alised inverses with discretion. The results in this paper
might also shed light on other popular statistical meth-
ods (such as the empirical likelihood) for estimating
equations with singularity.
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Appendix: Proofs of results

Proof of Lemma 1: Let
 = var(Y), and
 = T
(

�r 0
0 0

)
T′

be the spectrum decomposition of 
, with T′T = TT′ = Im.
Let T = [T1 T2], then

T′T =
[
T′
1

T′
2

]
[T1 T2] =

[
T′
1T1 T′

1T2
T′
2T1 T′

2T2

]
= Im,


 = T
[
�r 0
0 0

]
T′ = T1�rT′

1,

hence T′
2T1 = 0, and var(T′

2Y) = T′
2VT2 = T′

2T1�rT′
1T2 =

0. Hence there exists an (m − r) × 1 constant vector c such
T′
2Y = c. Let T′

2 = [t1 . . . tm], with rank(T′
2) = q := m − r.

Suppose tj1 . . . tjq are linearly independent, then

T′
2Y = [t1 · · · tm] [Y1 · Ym]′

= t1Y1 + · · · + tmYm

= [
tj1 . . . tjq

] [
Yj1 · Yjq

]′ + T̂Y−(q),

hence [tj1 . . . tjq ][Yj1 · Yjq ]′ + T̂Y−(q) = c, i.e.,

Y(q) =[Yj1 · Yjq
]′ =− [tj1 . . . tjq

]−1 T̂Y−(q) + [
tj1 . . . tjq

]−1 c.

Let C = −[tj1 . . . tjq ]−1T̂, d = [tj1 . . . tjq ]−1c, we get Y(q) =
CY−(q) + d, i.e., Y−(r) = CY(r) + d. Since Y(r) and Y−(r) are
subvectors of Y, there exists a m × m nonsingular matrix A
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such that

Y = A
[
Y(r)

Y−(r)

]
= A

[
Y(r)

CY(r) + d

]
= A

[
I
C

]
Yr + A

[
0
d

]
,

i.e., Y = BY(r) + d̃, with B = A
[ I
C
]
, d̃ = A

[ 0
d
]
. Hence

var(Y) = B′var(Y(r))B. Since B = A
[ I
C
]
is of full column

rank, rank(var(Y)) = rank(var(Y(r))) = r. This shows that
var(Y(r)) is nonsingular. �

Proof of Theorem 3.1: Let V(W) denote the asymptotic
variance of the GMM estimator using weighting matrix W.
Then V(W) = (G′WG)−1G′W�WG(G′WG)−1. Let �− be
a reflexive generalised inverse of �. Then we have

V(�−) = (G′�−G)−1G′�−��−G(G′�−G)−1

= (G′�−G)−1.

HenceV(W)−V(�−)=(G′WG)−1G′W[� − G(G′�−G)−1

G′]WG(G′WG)−1. To establishV(W) − V(�−) ≥ 0, we just
need to show that � − G(G′�−G)−1G′ ≥ 0. Let rank(�) =
r. By Lemma 3.1, there exist a subvector g(r)(Zi,β0) =
(gi1(Zi,β0), . . . , gir (Zi,β0))

′ and a matrix B of full column

rank such that g(Zi,β0) = Bgr(Zi,β0) a.s., with �1 =
var(g(r)(Zi,β0))positive definite. Then� = var(g(Zi,β0)) =
B�1B′, andG = E[ ∂g(Zi ,β0)

∂β
] = BG1, withG1 = E[ ∂g(r)(Zi ,β0)

∂β ′ ].
Hence

� − G(G′�−G)−1G′ = B�1B′ − BG1(G′�−G)−1G′
1B

′

= B
[
�1 − G1(G′�−G)−1G′

1
]
B′.

So we just need to show that �1 − G1(G′�−G)−1G′
1 ≥ 0. By

Proposition 2.1, B′�−B = �−1
1 , hence

�1 − G1(G′�−G)−1G′
1

= �1 − G1(G′
1B

′�−BG1)
−1G′

1

= �1 − G1(G′
1�

−1
1 G1)

−1G′
1

= �
1
2
1

[
I − �

− 1
2

1 G1(G′
1�

−1
1 G1)

−1G′
1�

− 1
2

1

]
�

1
2
1

≥ 0,

since I − �
− 1

2
1 G1(G′

1�
−1
1 G1)

−1G′
1�

− 1
2

1 is idempotent and
symmetric. �


	1. Introduction
	2. GMM and generalised inverses
	3. Main results
	4. Further issues
	4.1. Optimal weighting matrix estimation
	4.2. Imposing random noises

	5. Concluding remarks
	Disclosure statement
	Funding
	Notes on contributor
	References
	Appendix: Proofs of results


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


