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ABSTRACT
If a financial derivative can be traded consecutively and its terminal payoffs can be adjusted as
the sum of a bounded process and a stationary process, then we can use the moving average of
the historical payoffs to forecast and the corresponding errors form a generalised mean rever-
sion process. Thus we can price the financial derivatives by its moving average. One can even
possibly get statistical arbitrage fromcertain derivative pricing.Weparticularly discuss the exam-
ple of European call options. We show that there is a possibility to get statistical arbitrage from
Black–Scholes’s option price.
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1. Introduction

In economics, arbitrage is the act of exploiting price
differences between two or more markets: building a
portfolio of deals upon the imbalance, expecting to get
the spread profit. In academia, arbitrage refers to the
cost of the possibility obtaining a risk-free profit after
the transaction is completed. For example, when there
is an arbitrage opportunity, there will be a low buy and
sell high immediately.

The practice of ‘statistical arbitrage’ actually came
together with gambling. Suppose that a dice is rolled
continuously and a gambler may lose 1 dollar each
time when the result is ‘1’ or wins 1 dollar otherwise.
Denote by Sn the gambler’s gain after n tries, then Sn/n
is approximately 2

3 for large n. That is the law of large
numbers in probability theory on which based the the-
ory of mathematical statistics. Furthermore the strong
law of large numbers tells us that when n → ∞, Sn/n
approaches to 2

3 with probability 1. However, that is
not an arbitrage opportunity for this gambler as he still
has a chance to lose no matter how large n is. Mor-
gan Stanley started in the early 1980s (see Gregory van
Kipnis’ foreword to Pole, 2007) to apply ‘statistical arbi-
trage’ to get profit from the stock market. Nevertheless,
the returns in the stock market are not independent as
rolling dices, so many mathematical models were cre-
ated, of which most would be possibly never published
due to profitability. In Pole (2007), AndrewPole showed
many important historical examples, ‘rules’, and struc-
tural models of statistical arbitrage. In academic use,
an arbitrage is risk-free; in common use, as in statis-
tical arbitrage, it may refer to expected profit, though
losses may occur, and in practice, there are always
risks in arbitrage, some minor (such as fluctuation of
prices decreasing profit margins), some major (such as

devaluation of a currency or derivative). In academic
use, an arbitrage involves taking advantage of differ-
ences in price of a single asset or identical cash flows;
in common use, it is also used to refer to differences
between similar assets (relative value or convergence
trades), as in merger arbitrage.

There have been a few more general academic
definitions of statistical arbitrage since that time on.
Hogan, Jarrow, and Warachka (2002) defined ‘Statisti-
cal Arbitrage’ by four conditions that the discounted
cumulative value v(t) should satisfy: (1) v(0) = 0; (2)
limt→∞ E[v(t)] > 0; (3) limt→∞ Var(v(t))/t = 0; (4)
limt→∞ P[v(t) < 0] = 0. Their Condition (3) excluded
the cases where v(t) is the sum of independent iden-
tically distributed outcomes, and thus excluded our
dice game and most of casino games. According to
Lo (2010), ‘Statistical Arbitrage’ refers to highly tech-
nical short-term mean-reversion strategies involving
large numbers of securities (hundreds to thousands,
depending on the amount of risk capital), very short
holding periods (measured in days to seconds), and
substantial computational, trading and information
technology (IT) infrastructure.Wang andZheng (2014)
simplified the definition to repeatedly trading a basket
of assets according to the same algorithm and get an
accumulated profit with statistically stable positive rate.
Moreover, the concept of the ergodic theorem of sta-
tionary process was applied into the practice of statisti-
cal arbitrage inWang andZheng (2014).Wewill further
this discussion to derivative pricing in this paper. We
will discuss the time series with bounded trend compo-
nent, of which the increments have some nice property
as mean reversion.

The ‘mean reversion’ phenomena is a special case
of stationarity, which suggests that prices and returns
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eventually move back towards the mean or average.
This mean or average can be the historical average of
the price or return or another relevant average such as
the growth in the economy or the average return of an
industry. A typical example ofmean reversion phenom-
ena is the increments of the Ornstein–Uhlenbeck pro-
cess (see, e.g., Karatzas & Shreve, 1987, p. 358). How-
ever, the Ornstein–Uhlenbeck process comes together
with Gaussian law which could not be justified by some
real market data. Thus we will define a generalised dis-
crete timemean reversion process as the increments of a
semi-stationary process which is the sum of a bounded
process and a stationary process. The time average of
a generalised mean reversion process vanishes faster
than that of an ordinary stationary processes with null
mean. Therefore a generalised mean reversion process
is more stable than an ordinary stationary one. We
show in the next section that if we use the moving
average to estimate a time series with bounded trend
component, then the time average of the error van-
ishes in inverse proportion to the time length. As its
application, we give an example of statistical arbitrage
from Black–Scholes’ option price based on estimate of
payoffs with generalised mean reversion errors.

We introduce the concept of generalisedmean rever-
sion process as the increment process of a semi-
stationary process in Section 2. We use Section 3 to
explain some basic facts of option pricing. We use
Section 4 to study the options of the ETFs which
track the main stock indices in the US market. Finally
we show that one may get statistical arbitrage from
Black–Scholes model in the last section.

2. Forecasting withMA

Given a discrete time stochastic process {X(t)}t=0,1,2,...,
it is very important to give an estimate X̃(t + 1)
for X(t + 1) based on the observed information
{X(0),X(1), . . . ,X(t)}. Certainly, the selection of
X̃(t + 1) depends on the selection of the norm of
the error X(t + 1) − X̃(t + 1). When we need to esti-
mate continuously for t = m + 1,m + 2, . . . ,N, then
themost popular ones are the sum of lp−norms (p ≥ 1)
of errors

N∑
t=m+1

{E[|X(t) − X̃(t)|p]}1/p

or the similar ones. However, in many financial appli-
cations, an investor is more interested in the lp-norm of
the accumulated sum:{

E[|
N∑

t=m+1
(X(t) − X̃(t))|p]

}1/p

=
{
E[|

T∑
t=m+1

X(t) −
N∑

t=m+1
X̃(t)|p]

}1/p

. (1)

The economic reason is very simple. If X(t + 1) is
the value of certain financial derivative at time t+ 1
and X(t + 1) − X̃(t + 1) is the loss caused by estimate
X̃(t + 1), then an investor is more interested in the
accumulated lose

∑N
t=m+1(X(t) − X̃(t)) rather than

the sum
∑N

t=m+1 |X(t) − X̃(t)|. For the error norm (1),
the simplest estimate is to use the moving average (ab.
MA)

M(m)(t) = X(t) + X(t − 1) + · · · + X(t − m + 1)
m

(2)

to forecast X(t + 1), which is called the MA model in
time series analysis. We will impose a condition ‘semi-
stationary’ on {X(t)} under which (1) will be bounded
in T for some p ≥ 0.

We say that {X(t)} is a ‘strongly stationary’ process, if
for each positive a, the processes {X(t + a)} and {X(t)}
obey the same probability law. Thus a sequence of inde-
pendent identically distributed random variables is a
strongly stationary process. In the previous example of
continuously rolling dice, if we denoteX(t) = −1when
the tth outcome is ‘1’, and X(t) = 1 otherwise, then
{X(t)} is a strongly stationary process. The weak form
is the weakly stationary process. {X′(t)}t is a ‘weakly
stationary’ process if: (i) E[X′(t)] is a constant; (ii)
Cov(X′(t),X′(t + a)) = Cov(X′(0),X′(a)) for each t.
Certainly, if a strongly stationary process {X(t)} has
its second moments, then {X(t)} is weakly stationary.
The most important property of a strongly stationary
process is the Birkhoff ’s theorem (Loeve, 1977, p. 76).
The time-average (X(1) + X(2) + · · · + X(N))/N of a
strongly stationary process {X(t)} converges with prob-
ability 1. Furthermore, when {X(t)} has the so-called
‘ergodic’ property, then the limit is just its mean.

Definition 2.1: We call {X(t)} a strongly (or weakly)
semi-stationary process if there is a bounded process
{A(t)} such that {X(t) − A(t)} is a strongly (or weakly,
respectively) stationary process.

It is easy to see that for a semi-stationary process
{X(t)}, X(T)/T → 0 with the rate 1/T and the time
average

�X(1) + �X(2) + · · · + �X(N)

N

of the increments �X(t) = X(t + 1) − X(t) of a semi-
stationary process {X(t)} vanishes at the rate 1/N which
is faster than that of an ordinary sequence of indepen-
dent identically distributed random variables, which is
1/

√
N.

A time series {x(t)} is often to be considered as a
sequence of data which can be written as

x(t) = m(t) + S(t) + ε(t),
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where m(t) is the deterministic trend component, S(t)
is the seasonal component and ε(t) is a weakly sta-
tionary process (see Wang & Zheng, 2014, p. 101, for
example). Since S(t) is periodic, it is bounded. If m(t)
is also bounded, then {x(t)} is a weakly semi-stationary
process. We are going to use MA to forecast a weakly
semi-stationary time series and the cumulated error has
mean vanishes at the rate 1/T.

The increment of a semi-stationary process has the
properties which are very similar to the so-called mean
reversion process. The Mean Reversion phenomena in
stock prices have been studied for more than three
decades. This theory suggests that prices and returns
eventually move back towards the mean or average.
This mean or average can be the historical average of
the price or return or another relevant average such as
the growth in the economy or the average return of an
industry (see, e.g., Ansley, Spivey, & Wrobleski, 1977;
Fama & French, 1988; Mukherji, 2011; Poterba & Sum-
mers, 1988). Its typical mathematical model is the Orn-
stein–Uhlenbeck process of which the increments can
be written as

dX(t) = θ(μ − X(t)) dt + σ dW(t), (3)

where μ, θ(> 0) and σ(> 0) are constants. dX(t)
and dW(t) are the increments of X(t) and Brownian
motion W(t) respectively. Since the above equation is
not taught in ordinary text books of probability the-
ory, we briefly explain its meaning here. One considers
dW(t) as the noise and σ as its magnitude. (X(t) − μ)

is the distance from the mean μ. So this process has a
drift θ(μ − X(t)) push its path back to the mean. If we
denote X(t) − μ = Y(t), then

dY(t) = −θY(t) dt + σ dW(t),

which has its integral form (seeKaratzas&Shreve, 1987,
p. 358).

Y(t) = Y(0) exp{−θ t} + σ

∫ t

0
exp{θ(s − t)} dW(s).

Thus

X(t) = (X(0) − μ) exp{−θ t}

+ σ

∫ t

0
exp{θ(s − t)} dW(s) + μ,

which is strongly stationary if X(0) has Gaussian dis-
tribution with mean μ and variance σ 2/2θ . However,
it is known that this process does not precisely match a
lot of data experimentally. Therefore we need a more
general definition. If we fix {Y(t)} and set X(t) =
Y(t) + μ, then X(t) satisfies (3) and they have same
increments:

X(t + 1) − X(t)

= Y(t + 1) − Y(t), (t = 0, 1, 2, . . .).

Hence, from the uniqueness in law of the Ornstein–
Uhlenbeck process (for fixed initial stationary distribu-
tion, μ, θ and σ ), we get the following.

Lemma 2.2: For fixed θ and σ , the probability law
of the increments {X(t + 1) − X(t)}t=0,1,2,... of station-
ary Ornstein–Uhlenbeck process do not depend on the
mean μ.

The above Lemma inspired us to introduce the
following.

Definition 2.3: Let {U(t)}t=1,2,... be a stochastic pro-
cess. If there is a strongly (or weakly) semi-stationary
process {X(t)}t=0,1,2,... such that U(t) = �X(t),
(t = 1, 2, . . .), then {U(t)} is called a generalised
strongly (or weakly, respectively) Mean Reversion pro-
cess and {X(t)} is its integrated process. Furthermore, if
the integrated process is strongly (or weakly) stationary,
then {U(t)} is called strongly (or weakly, respectively)
Mean Reversion process.

Thus the time average

U(1) + · · · + U(N)

N
= X(N) − X(0)

N
→ 0

with rate 1/N.
We have easily that

m∑
t=1

t
m
X(t) +

N∑
t=m+1

[X(t) − M(m)(t − 1)]

=
m∑
t=1

t
m
X(t) +

N∑
t=m+1

[
X(t) − 1

m

m∑
i=1

X(t − i)

]

=
m∑
t=1

t
m
X(t) +

N∑
t=m+1

X(t)

− 1
m

m∑
i=1

N∑
t=m+1

X(t − i)

=
m∑
i=1

m + 1 − i
m

X(N + 1 − i)

=
m∑
t=1

t
m
X(N − m + t).

Thus we have

Lemma 2.4:

N∑
t=m+1

[X(t) − M(m)(t − 1)]

=
m∑
i=1

i
m
X(N − m + i) −

m∑
i=1

i
m
X(i).
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Since
∑m

i=1(i/m)X(t − m + i) is a finite linear com-
bination of the values at different time of a strongly
(or weakly) stationary processes, which is also strongly
(weakly, respectively) stationary, we get

Theorem 2.5: When {X(t)} is a strongly (or weakly)
semi-stationary process, the error process {X(t + 1) −
M(m)(t)} is a generalised strongly (or weakly, respec-
tively) mean reversion process and the accumulate error
is strongly (or weakly, respectively) semi-stationary such
that ∑N

t=m+1(X(t) − M(m)(t − 1))
N

→ 0

with rate 1/N.

Therefore, if {X(t)} is a sequence of financial deriva-
tives in the market, which is semi-stationary, then we
can use {M(m)(t − 1)} to forecast its values with errors
forming a generalised mean reversion process. Hence
the errors have mean nearly 0 in long run. In particular,
we will consider option prices in the next section.

The ergodic theorem for stationary process has
its weak point. It cannot be applied to an arbitrary
subsequence of a stationary process. For example,
when X is a standard Gaussian random variable, then
{X,−X,X,−X, . . .} is a strongly stationary process.
However, one can easily choose a subsequence which
has no convergent time average. Indeed, if we choose
{X,−X,−X,−X,X,X,X,X,X,X,X,X,X,X,−X,−X,
. . .}, then its time average will take values X/2 and
−(X/2) repeatedly. Therefore, we need the following.

Lemma 2.6: Suppose that {Xj} is a weakly station-
ary sequence. If {Xji} is a subsequence and mini{|ji −
ji+1|} ≥ J, then for any ε > 0,

P

[∣∣∣∣∣ 1N
N∑
i
Xji − E[X1]

∣∣∣∣∣ ≥ ε

]

≤ 1
ε2

[
Var(X1)

N
+ sup

i≥J
|Cov(X1,X1+i)|

]
.

Proof.

E

∣∣∣∣∣ 1N
N∑
i
Xji − E[X1]

∣∣∣∣∣
2

≤ 1
N2

N∑
i=1

Var(Xji) + 2
N2

N∑
i<k

Cov(Xji ,Xjk)

Thus we get the result by simplification and the classical
Chebyshev’s inequality in probability theory.

3. Price of option

The basic idea of Black–Scholes–Merton’s theory (Black
& Scholes, 1973; Merton, 1973) is that the option price

of an asset depends only on the current price S(t) of
the asset, mature time, strike price, volatility and risk-
free interest rate. It is also known that the real traded
prices of various options in the market are quite differ-
ent from those theoretical ones, so that the concepts of
‘implied volatility’ and ‘stochastic volatility’ were intro-
duced (Canina & Figlewski, 1993; Chrisensen & Prab-
hala, 1998; Dumas, Fleming, & Whaley, 1998; Hes-
ton, 1993; Poon & Granger, 2003) as attempts to fill
the gap between the theoretical ones and the real mar-
ket ones. In the last two decades, many mathematicians
and statisticians introduced a lot of more sophisticated
stochastic models in order to describe more accurately
the movement of stock price and its option prices.
Among them, the volatility study always attracts the
main interests.

In the basic Black–Scholes’s model, stock share price
is assumed to be a geometric Brownianmotion. That is,

S(t) = S(0) exp
{
σW(t) −

(
σ 2

2
− μ

)
t
}
.

The main mathematical tool in Black–Scholes’s the-
ory is Cameron–Martin–Girsanov’s theorem (Karatzas
& Shreve, 1987, p. 190) which states that up to a
bounded time T, the induced probability measures cor-
responding to differentμ are equivalent. Therefore one
can choose the probability measure which makes the
geometric Brownian motion a martingale (μ = 0) to
get the call option price c through taking the mathe-
matical expectation of

(S(T) − K)+ = c +
∫ T

0
H(t) dS(t),

whereH(t) is the hedge,K is the strike price andT is the
mature time. Therefore the call option price is just the
mathematical expectation of (S(T) − K)+ with respect
to the risk neutral (μ = 0) probability measure. How-
ever, some limit property cannot be keptwhenT → ∞.
For example, log S(T)/T → −(σ 2/2 − μ) depending
onμ. Therefore in long run, some results deduced from
real market price might be different to those deduced
from the risk neutral one.

Let us fix a positive integer T. The payoff of ai shares
of European call option with mature time at (i + 1)T
and strike price Ki (i = 0, 1, 2, 3, . . .) is

aiVi+1 = ai(S((i + 1)T) − Ki)
+.

Denote byQi the option price per share paid at time iT,
then a buyer’s profit at time (i + 1)T will be

aiCi+1 = aiVi+1 − aiQi

= ai(S((i + 1)T) − Ki)
+ − aiQi.

If we can find a sequence of {(Ki, ai)}i such that
{aiVi+1}i form a semi-stationary sequence, then we
may apply Theorem 2.5 to use its moving averages to
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estimate the payoffs {aiVi+1}i based on the market data
and taken as {aiQi} such that the error terms {aiCi} are
generalised mean reversion.

In order to get such a stationary sequence, we
may choose (at time iT) Ki = kS(iT) and ai = 1/S(iT)

where k is a prefixed positive percentage constant.
Denote by qi the cost (at time iT) for purchasing ai
shares of option, then the terminal payoff and the
buyer’s profit will be

vi+1 =
(
S((i + 1)T)

S(iT)
− k

)+
and

ci+1 =
(
S((i + 1)T)

S(iT)
− k

)+
− qi,

which can also be considered the corresponding val-
ues percentage to the original asset prices. In prac-
tice, in order to get profit percentage continuously,
we may fix a large constant C and just trade C/S(jT)

shares of optionswith strike price kS(jT) (both rounded
out to the nearest adequate digits). In Black–Scholes’s
model, {S((i + 1)T)/S(iT)}i are just the exponential
functions of the increments of Brownianmotion, which
are independent and identically distributed Gaussian
random variables. So the price qi is the mean of
(S((i + 1)T)/S(iT) − k)+ under the risk-neutral mea-
sure, which is a constant. Therefore {vi}i and {ci}i are
both strongly stationary processes in Black–Scholes’
theory. Furthermore, the error terms {ci}i are indepen-
dent identically distributed in Black–Scholes’ formula,
of which the time average converges slower than that of
generalised mean reversion process.

By Lemma 2.6, if Cov(v1, vj) → 0, and {vjk}k is a
subsequence such that mink{jk+1 − jk} is sufficiently
large, then 1/N

∑N
i vji will be close to E[v1]. Its special

case is the logarithmic return of Heston model (Hes-
ton, 1993), which is strongly stationary and ergodic,
Cov(c1, cN) → 0 (when N → ∞).

In Black–Scholes–Merton’s theory, the only undeter-
mined factor is the volatility σ . In practice, the investors
quite often use the near term sample variance to esti-
mate the volatility at time t. That is,

σ̂ 2(t) = 1
n − 1

t−1∑
j=t−n

[
(log S(j + 1) − log S(j))

− 1
n

t−1∑
i=t−n

(log S(i + 1) − log S(i))

]2

(4)

for large n. However, if we use the above σ̂ (n)with large
n for a unified volatility in Black–Scholes formula, the
result would be not good. So very often the investors use
smaller n to estimate the volatility of S(t) near t, which
is just Heston’s price with ρ = 0 (Heston, 1993; Poon
& Granger, 2003).

From the above discussion, we have four different
candidates for option prices: (1) the percentage prices

{qi} are the moving averages {M(iT)}; (2) {qi} are the
historical call option prices in the real market; (3) {qi}
are Black–Scholes’ prices with unified volatility σ̂ ; (4)
{qi} are Black–Scholes’ prices with moving volatility
σ̂ (t). We will use Market data to show that the cumu-
lated error is stationary in Case (1). We will also illus-
trate the cumulated errors in the other three cases for
comparison.

4. Statistics with real market data

The strong stationarity of logarithmic return is implied
in the most popular mathematical models for asset
prices. If we choose the trading volume inversely pro-
portional to the current price, then the consecutive
payoffs will be strongly stationary as discussed in the
previous section. Thus we can use the moving averages
{M(iT)} to estimate a this sequence and the errors will
be mean reversion according to Theorem 2.5. In this
section, we use the data of ETFs DIA, QQQ, SPY for
main stock indices in the US market to illustrate the
cumulated buyer’s profit percentage, which is also the
cumulated percentage errors, to compare with that of
Black–Scholes’.

We consider the buyers successive profits

ci+1 =
(
S((i + 1)T)

S(iT)
− k

)+
− qi

for the prices {qi} defined in the four cases listed at
the end of the previous section, which are also the
cumulated errors of the corresponding option pricing.

The first thing is to test the stationarity. We have
checked by the ADF test with Matlab software pack-
age and the hypothesis that ‘{ci+1} has a unit root’ is
rejected with 95% of confidence, for the trading data
of SPY (the ETF tracing S&P500), QQQ (the ETF trac-
ing NASDAQ) and DIA (the ETF tracing DOW) under
various k and T. In other words, {ci+1} can be statis-
tically considered as a stationary process. For example,
whenwe take S(t) as the price of SPY, take k = 0.98 and
T = 7, Figure 1 shows the successive weekly trading
profit sequence {ci+1} when qi = M(iT) (m = 6) from
6th January 1995 through the end of July 2015.

We also found that if qi is the weekly expired per-
centage option prices in the real market (with kS(jT)

rounded out to the nearest strike price in the market),
{ci+1} still pass the ADF test for SPY, QQQ and DIA
data with various k and T.

The parameter k may assume any value. For sim-
plicity, we just list the results for k = 0.98, 1 and
1.02 here. We discuss two time scales for T: (a)
weekly expired options; (b) monthly expired options.
For weekly expired options, we consider to trade call
options between the closing time of neighbouring Fri-
days. Thus if we purchase 1/S(jT)(j = 1, 2, . . . , n) unit
of call option at time jT with mature time (j + 1)T
and strike price K = kS(jT), the profit by time (j + 1)T
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Figure 1. The successive profit sequence {X(j)} from 6th January 1995.
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Figure 2. The daily price of SPY from 3rd January 1995 through 2nd July 2015.

will be cj+1, and the cumulated profit by time (j + 1)T
is

∑j
i=1 ci+1. In that case, we can take T = 7 calen-

dar days except for very few holidays. Similarly, when
we consider the monthly expired options, we trade the
options at the 3rd Friday of neighbouring months. In
that case, actually T = 30 or 31 (except for February).
We compare the cumulated profits of the following four
prices:

Line 1: {qi} are the moving average {M(iT)};
Line 2: {qi} are the historical call option price in the

real market;
Line 3: {qi} are Black–Scholes’ price with unified

volatility σ̂ ;
Line 4: {qi} are Black–Scholes’ price with moving

volatility {σ̂ (iT)}.

We should mention some technical points here: (a)
when there was no trade at the closing time, we use
the mean of bid and ask price as our last price; (b) the
strike prices {kS(jT)} are rounded out to the nearest
available strike prices in the market; (c) all our data are
percentage priced; (d) the parameter n in (4) is cho-
sen according to the usual method applied in the real

market (Poon & Granger, 2003) and the selection of m
in (2) is less crucial. Actually we found that there is no
much differences whenm is chosen between 2 and 12.

4.1. SPY analysis

Figure 2 shows the daily price of SPY from 3rd January
1995 through 2nd July 2015.

We have SPY trading data of monthly expired
options from 21st January 2005 through 20th March
2015, and its trading data of weekly expired options
from 1st July 2011 through 27th March 2015. Thus
we can show our cumulative profits of corresponding
options in those two periods respectively.

4.1.1. SPY results under different k values
Figures 3–5 show the cumulated profits of both
monthly and weekly expired options of SPY under dif-
ferent k values.

4.2. QQQ analysis

Figure 6 shows the daily price ofQQQ from10thMarch
1999 through 2nd July 2015.

We have QQQ trading data of monthly expired
options from 15th February 2002 through 17th April
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Figure 3. The cumulated profits of SPY options when k = 0.98: (a) monthly expired options and (b) weekly expired options.
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Figure 4. The cumulated profits of SPY options when k = 1: (a) monthly expired options and (b) weekly expired options.
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Figure 5. The cumulated profits of SPY options when k = 1.02: (a) monthly expired options and (b) weekly expired options.
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Figure 6. The daily price of QQQ from 10th March 1999 through 2nd July 2015.
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Figure 7. The cumulated profits of QQQ options when k = 0.98: (a) monthly expired options and (b) weekly expired options.
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Figure 8. The cumulated profits of QQQ options when k = 1: (a) monthly expired options and (b) weekly expired options.
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Figure 9. The cumulated profits of QQQ options when k = 1.02: (a) monthly expired options and (b) weekly expired options.
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Figure 10. The daily price of DIA from 20th January 1998 through 2nd July 2015.
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Figure 11. The cumulated profits of DIA options when k = 0.98: (a) monthly expired options and (b) weekly expired options.
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Figure 12. The cumulated profits of DIA options when k = 1: (a) monthly expired options and (b) weekly expired options.
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Figure 13. The cumulated profits of DIA options when k = 1.02: (a) monthly expired options and (b) weekly expired options.
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Figure 14. Cumulated gain against Black–Scholes price: (a) when k = 0 and (b) when k = 0.9.
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Figure 15. The autocorrelation function.

2015, and trading data of weekly expired options from
1st July 2011 through 27th March 2015.

4.2.1. QQQ results under different k values
Figures 7–9 show the cumulated profits of both
monthly and weekly expired options of SPY under dif-
ferent k values.

4.3. DIA analysis

Figure 10 shows the daily price of DIA from 20th Jan-
uary 1998 through 2nd July 2015.

We have DIA trading data of monthly expired
options from 21st June 2002 through 17th April 2015,
and trading data of weekly expired options from 10th
August 2012 through 27th March 2015.

4.3.1. DIA results under different k values
Figures 11–13 show the cumulated profits of both
monthly and weekly expired options of SPY under dif-
ferent k values.

5. Possibility of statistical arbitrage

From the above data analysis, we can easily find that
the errors of our moving average pricing of option are
mean reversion and the cumulated error is stationary.
When the strike price is sufficiently low, then the asset
price will be always above the strike price and the call
option will be always executed. So that the buyer at
Black–Scholes’ option price can always take statistical
arbitrage in long run. Let us take T = 7. If one investor
continuously purchase at time iT call option for 1/S(iT)

share expired at (i + 1)T according to Black–Scholes’
price, then Figure 14 shows his cumulated profit in the
last 22 years (01/29/1993–07/02/2015) when k = 0 and
k = 0.9.
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Figure 16. Cumulated gain against Black–Scholes price.
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Figure 17. Cumulated gain against Black–Scholes price with stochastic volatility.
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However, there are still many problems left. For
example, what happens if only some of the profits {ci+1}
occur? That is, the partial sum of a strongly stationary
sequence may not have a convergent mean if its terms
are not uncorrelated as shown in Section 2. However,
we can apply Lemma 2.6 to construct statistical arbi-
trages if the covariance function of {ci+1} tends to 0
quick enough.

We show here another more practical example to
get statistical arbitrage from Black–Scholes’ call option.
The following graph shows that when qi = M(iT),
m = 6 and T = 7, the sample autocorrelation function
of ci+1 tends to 0 (Figure 15).

Thus if cik is a subsequence such thatmink{ik+1 − ik}
is sufficiently large, we can apply Lemma 2.1 to get
their mean sufficiently close to 0. Denote by Q(iT) the
Black–Scholes’ price. Our strategy is: (a) whenM(iT) −
Q(iT) > 0.01 and the previous trade was made at least
9 weeks ago, buy 1/S(iT) of call option at Q(iT); (b)
when Q(iT) − M(iT) > 0.0005 and the previous trade
was made at least 9 weeks ago, sell 1/S(iT) call option
at Q(iT). Figure 16 shows our cumulated profit and
Figure 17 gives our profit against Black–Scholes price
with moving volatility. Thus we can get statistical arbi-
trage from the mean, which is similar to the case of
high-frequency trading (see Wang & Zheng, 2014).
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