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ABSTRACT
Suppose thatwe observe y | θ , τ ∼ Np(Xθ , τ−1Ip), where θ is an unknown vectorwith unknown
precision τ . Estimating the regression coefficient θ with known τ has been well studied. How-
ever, statistical properties such as admissibility in estimating θ with unknown τ are not well
studied. Han [(2009). Topics in shrinkage estimation and in causal inference (PhD thesis). Warton
School, University of Pennsylvania] appears to be the first to consider the problem, developing
sufficient conditions for the admissibility of estimating means of multivariate normal distribu-
tions with unknown variance. We generalise the sufficient conditions for admissibility and apply
these results to the normal linear regression model. 2-level and 3-level hierarchical models
with unknown precision τ are investigated when a standard class of hierarchical priors leads
to admissible estimators of θ under the normalised squared error loss. One reason to con-
sider this problem is the importance of admissibility in the hierarchical prior selection, and we
expect that our study could be helpful in providing some reference for choosing hierarchical
priors.
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1. Introduction

Consider a multivariate normal model,

y | θ , τ ∼ Np(θ , τ−1Ip), independently,

w | τ ∼ χ2
m/τ , (1)

where y is a p × 1 observation vector, θ is a
p-dimensional vector of unknown parameters, and τ >

0 is the unknown precision. Statistical properties such
as admissibility for estimating θ can be dated back to
James-Stein (1961) when the error variance is known,
while the admissibility of generalisation of James-Stein
estimator of θ with unknown parameter τ was stud-
ied in Judge, Yancey, and Bock (1983), Fraisse, Raoult,
Robert, and Roy (1990), Robert (2007) and so on. For
estimating θ with the unknown nuisance parameter
τ in the model (1), some authors, such as Strawder-
man (1973), Maruyama and Strawderman (2005) and
Willing and Zhou (2008) studied the minimaxity of
Bayesian estimators of θ under hierarchical priors. The
admissibility of a generalised Bayesian estimator of θ

under a class of noninformative priors was recently
studied in Han (2009). With additional independent
observation w | τ ∼ τ−1χ2

m, Han (2009) found a set of
sufficient conditions for the joint priors of (θ , τ), so that
the generalised Bayesian estimator of θ is admissible
under the squared error loss. In practice, we often need

to consider a normal linear regression model,

y | θ , τ ∼ Nn(Xθ , τ−1In), (2)

whereX is n × p designmatrix with full column rank p,
n > p. It is of great interest to study the admissibility in
estimating the unknown regression coefficients θ with
unknown τ in the normal linear regression model (2).

Several authors have described admissibility as a
powerful tool for selecting satisfactory hierarchical gen-
eralised Bayesian priors. For example, Berger, Straw-
derman, and Tang (2005) pointed out that the ‘use of
objective improper priors in hierarchical modelling is
of enormous practical importance, yet little is known
about which such priors are good or bad. It is important
that the prior distribution not be too diffuse, and study
of admissibility is the most powerful tool known for
detecting an over-diffuse prior’. For known precision
or error variance, Brown (1971) provided the neces-
sary and sufficient condition of the admissible Bayes
estimators under quadratic loss, based on a Marko-
vian representation of the estimation problem. Recent
papers related to the theoretical studies of the admis-
sibility of estimators of θ can be found in Berger
and Strawderman (1996), Berger et al. (2005), Berger,
Sun, and Song (2018), and so on.

However, most of the literature focussed on models
of which variances are given, yet in practical problems,
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the precision or variance is often unknown. For the
admissibility in the model (2), to the best of our knowl-
edge, very few results have been obtained because of the
technical difficulty. The fundamental tool for proving
admissibility for unknown precision is Blyth’s method
(Blyth, 1951), which proposed a sufficient admissi-
bility condition, relating admissibility of an estimator
with the existence of a sequence of prior distribu-
tions approximating this estimator. Based on Blyth’s
results, Han’s (2009) found sufficient conditions for
the joint priors of (θ , τ) for model (1). Sometimes,
those sufficient conditions are strict and difficult to
satisfy. We will generalise the sufficient conditions for
admissibility and apply these results to the normal lin-
ear regression model (2). Using the generalised con-
ditions, a 2-level and 3-level hierarchical models with
unknown precision τ are investigated when a stan-
dard class of hierarchical priors leads to admissible
estimators of θ under the normalised squared error
loss. One motivation to consider this problem is the
importance of admissibility in the hierarchical prior
selection, and we expect that our study could be help-
ful to provide some reference for choosing hierarchical
priors.

The paper is organised as follows. In Section 2,
we introduce the sufficient conditions for admissibil-
ity of the generalised Bayesian estimators of θ for the
model (1), which is studied byHan (2009). In Section 3,
we generalise the sufficient conditions for admissibility
and apply these results to the normal linear regression
model (2). 2-level and a 3-level hierarchical models
with unknown precision τ are investigated in Sections 4
and 5, determining when a standard class of hierarchi-
cal priors leads to admissible estimators of θ under the
normalised squared error loss. Finally, some comments
are made in Section 6.

2. Han’s (2009) results for (1)

Recall the model (1) considered in Han (2009), i.e.

(y | θ , τ) ∼ Np(θ , τ−1Ip), (w | τ) ∼ τ−1χ2
m,

where y = (y1, . . . , yp)′ and w are independent of each
other. Let θ̂ ≡ θ̂(y,w) denote an estimator of θ =
(θ1, . . . , θp)′. Correspondingly, the squared error loss
function of θ̂ becomes

L(θ , τ ; θ̂) = τ(θ̂ − θ)′(θ̂ − θ). (3)

Han (2009) studied a class of prior density for (θ , τ)

with assumption

π(θ , τ) = π0(θ | τ)π1(τ ). (4)

Consequently, the generalised Bayes estimator for the
normal mean θ is the posterior mean of θ , given

by

θ̂B(y,w) =

∫
IRp
∫∞
0 τθ f1(y | θ , τ)f2(w | τ)

π0(θ | τ)π1(τ ) dτ dθ∫
IRp
∫∞
0 τ f1(y | θ , τ)f2(w | τ)

π0(θ | τ)π1(τ ) dτ dθ

, (5)

where

f1(y | θ , τ) ∝ τ p/2 exp
(
−τ

2
‖y − θ‖2

)
,

f2(w | τ) ∝ w(m−2)/2τm/2 exp
(
−τw

2

)
.

Let m(y,w, τ) be the marginal likelihood function of
(y,w, τ) with the form

m(y,w, τ) =
∫
IRp

f1(y | θ , τ)f2(w | τ)

× π0(θ | τ)π1(τ ) dθ .

From Brown (1971), the generalised Bayes estimator
in (5) can be expressed as

θ̂B(y,w) = y +
∫∞
0 ∇ym(y,w, τ) dτ∫∞
0 τm(y,w, τ) dτ

, (6)

where ∇ denotes the gradient. Let S denote the ball of
radius 1 at the origin in IRp and Sc be the complement of
S, defined a ∨ b = max(a, b). For the hierarchical Bayes
model (1), Han (2009) studied the admissible gener-
alised Bayes estimators θ̂B(y,w) under the following
sufficient conditions.

Condition 1.
∫
Sc
∫∞
0 (1/τ)(π0(θ | τ)/‖θ‖2 log(‖θ‖

∨ 2))π1(τ ) dτ dθ < ∞;
Condition 2.

∫
Sc
∫∞
0 π0(θ | τ)π1(τ ) dτ dθ < ∞;

Condition 3.
∫
Sc
∫∞
0 τ‖θ‖2π0(θ | τ)π1(τ ) dτ dθ

< ∞;
Condition 4.

∫
Sc
∫∞
0 (1/τ)(‖∇θπ0(θ | τ)‖2/π0

(θ | τ))π1(τ ) dτ dθ < ∞;
Condition 5. For any positive constant B,

∫
‖θ‖2<B∫

τ<B π0(θ | τ)π1(τ ) dτ dθ < ∞;
Condition 6. Define two sequences of functions

hj(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if‖θ‖ < 1;

1 − log(‖θ‖)
log j

, 1 ≤ ‖θ‖ ≤ j;

0, ‖θ‖ > j,

and

lj(τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if τ < 1;

1 − log(τ )

log j
, 1 ≤ τ ≤ j;

0, τ > j.

(7)

WriteHj(θ | τ) = hj(θ)π0(θ | τ) andLj(τ ) = lj(τ )

π1(τ ). There is a constant C>0, such that∫
S
∫∞
0 τ f1(y | θ , τ)f2(w | τ)Hj(θ | τ)Lj(τ ) dτ dθ∫

Sc
∫∞
0 τ f1(y | θ , τ)f2(w | τ)Hj(θ | τ)Lj(τ ) dτ dθ

< C, ∀ y,w.
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Theorem2.1 (Han, 2009): Consider themodel (1)with
the prior densities π0(θ | τ) and π1(τ ) satisfying Condi-
tions 1–6. If π0(θ | τ) is decreasing with respect to ‖θ‖,
the corresponding generalised Bayes estimator (6) for θ is
admissible under the squared error loss function (3).

3. Main results for (2)

We are primarily interested in the normal linear
regression model (2). For the model (2), we let ỹ =
(X′X)−1Xy denote the least squared estimators of θ ,
and w = y′(In − X(X′X)−1X′)y be the usual residual
sum squares errors (SSE). Then

ỹ | θ , τ ∼ Np(θ , τ−1(X′X)−1), and

w | τ ∼ τ−1χ2
n−p, (8)

independently. Here we obtain w automatically with
m=n−p. For the model (2), consider the normalised
squared error loss function of θ̂ given by

L(θ , τ ; θ̂) = τ(θ̂ − θ)′X′X(θ̂ − θ). (9)

The corresponding risk function of θ̂ is

R(θ , τ ; θ̂) = Eθ ,τL(θ , τ ; θ̂), θ ∈ IRp. (10)

An estimator θ̂1 is inadmissible if there exists another
estimator whose risk function is nowhere bigger and
somewhere smaller. If no such better estimator exists,
θ̂1 is admissible.

For the model (2), to obtain the admissible estima-
tor of θ under the normalised squared error loss (9), we
define

δB(y) = (T′)−1θ̂B(T′ỹ,w), (11)

where T is a p × pmatrix such that T′(X′X)−1T = Ip.

Lemma 3.1: For the model (1), assume the estimator
θ̂B(y,w) in (6) is admissible under the loss function (3).
Then the estimator δB(y) in (11) is admissible under the
normalised squared error loss (9) for the model (2).

Proof: Note that the model (2) is equivalent to (8). It
yields that

(T′ỹ | θ , τ) ∼ Np(T′θ , τ−1Ip). (12)

It follows from the admissibility of θ̂B(y,w) under the
model (1) that the estimator θ̂B(T′ỹ,w) for T′θ is
admissible under the loss function

L(T′θ , τ ; θ̂B(T′ỹ,w)) = τ
[
θ̂B(T′ỹ,w) − T′θ

]′
×
[
θ̂B(T′ỹ,w) − T′θ

]
= τ

[
(T′)−1θ̂B(T′ỹ,w)−θ

]′
(X′X)

×
[
(T′)−1θ̂B(T′ỹ,w) − θ

]
= τ(δB − θ)′X′X(δB − θ).

The proof of this lemma is completed. �

Combining Theorem 1 with Lemma 1, we can reach
the following theorem.

Theorem 3.2: For the model (2) with the prior densities
π0(θ | τ) and π1(τ ) satisfying Conditions 1–6, suppose
that π0(θ | τ) is decreasing with respect to ‖θ‖, then
δB(y) defined in (11) is the admissible estimator of θ

under the normalised squared error loss (9).

Theorem 2.1 applies to the case where π0(θ | τ) is
spherically symmetric of θ and decreases in ‖θ‖. As dis-
cussed in Han (2009), this requirement is not unique
and can be replaced by the following condition.

Condition 7. Denote

u1 =
∫ ∞

0

∫
S
f1(y | θ , τ)f2(w | τ)∇θ

× π0(θ | τ)π1(τ ) dθ dτ , (13)

z1 =
∫ ∞

0

∫
S
τ f1(y | θ , τ)f2(w | τ)

× π0(θ | τ)π1(τ ) dθ dτ , (14)

u2j =
∫ ∞

0

∫
S
f1(y | θ , τ)f2(w | τ)

× ∇θHj(θ | τ)Lj(τ ) dθ dτ , (15)

z2j =
∫ ∞

0

∫
S
τ f1(y | θ , τ)f2(w | τ)

× Hj(θ | τ)Lj(τ ) dθ dτ . (16)

We have

‖u1‖
z1

≤ ‖y‖, (17)

‖u2j‖
z2j

≤ ‖y‖, for any j = 1, 2, . . . . (18)

As an immediate corollary, we have the following result.

Theorem 3.3: For the model (2), assume that the prior
densities π0(θ | τ) and π1(τ ) satisfy Conditions 1–7.
Then estimator δB(y) in (11) for θ is admissible under
the normalised squared error loss (9).

It might be difficult to show that the π0(θ | τ) is a
decreasing function of ‖θ‖. Interestingly, this require-
ment can be relaxed to the requirement that π0(θ | τ)

is a decreasing function of its component, θ2i , for i =
1, . . . , p.

Lemma 3.4: For the model (1) with given τ , π0(θ |
τ) is a decreasing function of θ2i , for i = 1, . . . , p, then
Condition 7 holds.
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Proof: For any given y, there is an orthogonalmatrixQ,
such that Qy = (‖y‖, 0, . . . , 0)′. Without loss of gener-
ality, we can transform the coordinate system of θ such
that y = (‖y‖, 0, . . . , 0)′. Then,

f1(y | θ , τ) = (2π)−p/2τ p/2 exp
(

−τ
‖y‖2 + ‖θ‖2

2

)

× exp
(
τθ1‖y‖

)
.

It is easy to verify that the ith coordinate of u1 is

v1i =
∫ ∞

0

∫
S
f1(y | θ , τ)f2(w | τ)

× ∂π0(θ | τ)

∂θi
π1(τ ) dθ dτ . (19)

Since π0(θ | τ) is a function of (θ21 , . . . , θ
2
p ), f1(y |

θ , τ)f2(w | τ)(∂π0(θ | τ)/∂θi)π1(τ ) is an odd function
for θi when i = 2, . . . , p. It yields v12 = · · · = v1p = 0.
Therefore, ‖u1‖ = |v11| and ‖u1‖/z1 = |v11|/z1.

Let f (y,w, θ , τ) be the joint density of (y,w, θ , τ), i.e.

f (y,w, θ , τ) = f1(y | θ , τ)f2(w | τ)π0(θ | τ)π1(τ ).

Using (19), we get

∫ ∞

0

∫
S

∂f (y,w, θ , τ)

∂θ1
dθ dτ

=
∫ ∞

0

∫
S

∂f1(y | θ , τ)

∂θ1
f2(w | τ)

× π0(θ | τ)π1(τ ) dθ dτ

+
∫ ∞

0

∫
S
f1(y | θ , τ)f2(w | τ)

× ∂π0(θ | τ)

∂θ1
π1(τ ) dθ dτ

=
∫ ∞

0

∫
S
(‖y‖ − θ1)τ f (y,w, θ , τ) dθ dτ + v11.

(20)

By the Divergence Theorem (Katz, 2005),

∫ ∞

0

∫
S

∂f (y,w, θ , τ)

∂θ1
dθ dτ

=
∫ ∞

0

∫
∂S
f (y,w, θ , τ) dθ2 · · · dθp dτ , (21)

where ∂S is the boundary of S. Combining (20)
and (21), we get

v11 =
∫ ∞

0

∫
∂S
f (y,w, θ , τ) dθ2 · · · dθp dτ

−
∫ ∞

0

∫
S
(‖y‖ − θ1)τ f (y,w, θ , τ) dθ dτ .

Then, we have

v11
z1

=
∫∞
0
∫
∂S f (y,w, θ , τ) dθ2 · · · dθp dτ∫∞

0
∫
S τ f (y,w, θ , τ) dθ1 · · · dθp dτ

−
∫∞
0
∫
S(‖y‖ − θ1)τ f (y,w, θ , τ) dθ dτ∫∞

0
∫
S τ f (y,w, θ , τ) dθ1 · · · dθp dτ

=
∫∞
0
∫
∂S f (y,w, θ , τ) dθ2 · · · dθp dτ∫∞

0
∫
S τ f (y,w, θ , τ) dθ1 · · · dθp dτ

− ‖y‖ +
∫∞
0
∫
S θ1τ f (y,w, θ , τ) dθ dτ∫∞

0
∫
S τ f (y,w, θ , τ) dθ1 dτ

.

Clearly,
∫∞
0
∫
∂S f (y,w, θ , τ) dθ2 · · · dθp dτ∫∞

0
∫
S τ f (y,w, θ , τ) dθ1 · · · dθp dτ

≥ 0.

Since f (y,w, θ , τ) can be written by

f (y,w, θ , τ) = (2π)−p/2τ p/2 exp
(

−‖y‖2 + ‖θ‖2
2

τ

)

× exp(‖y‖θ1τ)f2(w|τ)π0(θ | τ)π1(τ ),

and π0(θ | τ) is symmetric about θ1, then∫∞
0
∫
S θ1τ f (y,w, θ , τ) dθ dτ∫∞

0
∫
S τ f (y,w, θ , τ) dθ1 dτ

≥ 0.

Therefore,
v11
z1

≥ −‖y‖.

Since π0(θ | τ) is an even function for θ1 and decreas-
ing in θ21 , then v11 < 0. Therefore, we have ‖u1‖/z1 =
|v11|/z1 ≤ ‖y‖. With the same argument as above, we
have ‖u2‖/z2j ≤ ‖y‖, for any j = 1, 2, . . .. �

Consequently, we obtain the following result.

Theorem 3.5: For the model (2), assume that the prior
densities π0(θ | τ) and π1(τ ) satisfy Conditions 1–6. If
for any given τ > 0, π0(θ | τ) is decreasing in θ2i , i =
1, . . . , p. the estimator δB(y) in (11) for θ is admissible
under the normalised squared error loss (9).

Sometimes, π0(θ | τ) is not strictly a decreasing
function of its component, θ2i , for i = 1, . . . , p, but it
could be a decreasing function of the components of
some given orthogonal transformation. The following
lemma shows that such cases also work.

Lemma 3.6: Consider the model (1). Suppose there
is an orthogonal matrix H, such that u = Hθ =
(u1, . . . , up)′, and π0(θ | τ) is a decreasing function of
u2i , for i = 1, . . . , p, then Condition 7 holds.
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Proof: It is easy to verify that the Jacobian of the trans-
formation u = Hθ = (u1, . . . , up)′ is J = |∂θ/∂u| = 1,
and ‖θ‖ = ‖u‖. Note that

‖u1‖ =
∥∥∥∥
∫ ∞

0

∫
�

f1(H′y | u, τ)f2(w | τ)

× ∇uπ0(H′u | τ)π1(τ ) du dτ
∥∥∥∥ ,

where f1(H′y | u, τ) is the normal density function of
H′y with mean u and variance τ−1Ip, and � = {u :
‖u‖ ≤ 1}. Similarly, we have

z1 =
∫ ∞

0

∫
�

τ f1(H′y | u, τ)f2(w | τ)

× π0(H′u | τ)π1(τ ) du dτ .

Since π0(H′u | τ) s a decreasing function of u2i , for i =
1, . . . , p, from Lemma 3.4, for any y and w, we have∥∥∥∥

∫ ∞

0

∫
�

f1(H′y | u, τ)f2(w | τ)

× ∇uπ0(H′u | τ)π1(τ ) du dτ
∥∥∥∥

≤ ‖H′y‖
∫ ∞

0

∫
�

τ f1(H′y | u, τ)f2(w | τ)

× π0(H′u | τ)π1(τ ) du dτ ,

i.e. ‖u1‖ ≤ z1‖y‖. With the same argument as above,
we have ‖u2‖/z2j ≤ ‖y‖, for any j = 1, 2, . . .. �

Accordingly, we get the following result.

Theorem 3.7: For the model (2), assume that the prior
densities π0(θ | τ) and π1(τ ) satisfy Conditions 1-6. If
there is an orthogonal matrix H, such that u = Hθ =
(u1, . . . , up)′, and π0(θ | τ) is a decreasing function of
u2i , for i = 1, . . . , p, the estimator δB(y) in (11) for θ is
admissible under the normalised squared error loss (9).

In the next two sections, we will apply the above
results to a 2-level and a 3-level hierarchicalmodel, with
unknown variance and a standard class of hierarchical
priors.

4. Admissibility for a 2-level hierarchical
model

4.1. g-Prior

For the model (2), we consider the following class of
hierarchical prior for (θ , τ),

(θ | g, τ) ∼ Np(0, gτ−1(X′X)−1), π1(τ ) ∝ 1
τ k

,
(22)

where k ≥ 0. Zellner (1986) proposed this form of
the conjugate Normal-Gamma family with k=1. Many

authors followed his work, for example, Eaton (1989),
Berger, Pericchi, and Varshavsky (1998), Liang, Paulo,
Molina, Clyde, and Berger (2008) and Bayarri, Berger,
Forte, and Garcła-Donato (2012). From the perspective
of model selection, g acts as a dimensionality penalty
(Liang et al., 2008). For the choice of g, we study two
cases:

Case 1. g is a known positive constant.
Recommendations for g have included the follow-

ing: Kass &Wasserman’s (1995) unit information prior
(g=n), Foster &George’s (1994) risk inflation criterion
(g = p2), Fernández, Ley, & Steel’s (2001) benchmark
prior (g = max(n, p2)) and so on.

Case 2. g is an unknown parameter, and the prior of
g is π2(g).

By integrating out the latent variable g, one can get
the conditional prior of θ given τ > 0,

π0(θ | τ) =
∫ ∞

0

(
τ

2gπ

)p/2

× exp
{
−τθ ′X′Xθ

2g

}
π2(g) dg, (23)

which can be represented as a mixture of g priors.
For Case 2, some priors π2(g) have been previously

considered. Here are two examples.

Example 4.1: Inv-Gamma(v, c), i.e.

π2(g) = cv

�(v)
g−(v+1)e−c/g . (24)

As discussed by Berger and Strawderman (1996), it
results in the multivariate t-prior for θ given τ > 0,
namely

π0(θ | τ) ∝ τ p/2
[
1 + τ

2c
θ ′(X′X)θ

]−(p/2+v)
. (25)

Zellner-Siow (1980) studied the multivariate cauchy
prior for θ , which is one special case of (25) with
v = 1/2 and c = n/2.

Example 4.2: Robust prior (Bayarri et al., 2012):

π2(g) = h1[h3(h2 + p)]h1(h2 + g)−(h1+1)

× 1{g>h3(h2+p)−h2}

∝ (h2 + g)−(h1+1)1{g>h3(h2+p)−h2}, (26)

where h1 > 0, h2 > 0, and h3 ≥ h2/(h2 + p). The
prior (26) has its origins in the robust prior intro-
duced by Strawderman (1971), Berger (1980) and
Berger (1985). As Bayarri et al. (2012) discussed, the
priors proposed by Liang et al. (2008) are particular
cases with h1 = 1

2 , h2 = 1, h3 = 1/(1 + p) (the hyper-
g prior) and h1 = 1

2 , h2 = p, h3 = 1
2 (the hyper-g/n

prior). The prior in Cui and George (2008) has h1 =
1, h2 = 1, h3 = 1/(1 + p).
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For the robust prior (26), it is not straightforward
to obtain the closed form of the marginal conditional
prior for θ given τ . Alternatively, we attempt to get the
boundary of the marginal density of θ given τ .

Lemma 4.3: Define

f (u) ≡
∫ ∞

0

1
vr1(v + c)r2

exp
(
− u
2v

)
dv, (27)

where r1 > 1, r2 ≥ 0 and c > 0, then there are two pos-
itive constants C1 and C2, such that

C1

ur1−1(1 + u)r2
≤ f (u) ≤ C2

ur1−1(1 + u)r2
,

for any u>0.

The proof is given in the Appendix. Applying this
lemma to (23), the resulting prior for θ given τ for
robust prior (26) with h3 = h2/(h2 + p) has the bound-
ary

C1τ

(θ ′X′Xθ)p/2−1(1 + τθ ′X′Xθ)h1+1 ≤ π0(θ | τ)

≤ C2τ

(θ ′X′Xθ)p/2−1(1 + τθ ′X′Xθ)h1+1 , (28)

where p>2.

4.2. Admissibility

We apply the results in Section 3 to determine when the
hierarchical priors (22) result in admissible estimators
of θ under the normalised squared error loss (9).

Theorem 4.4: (Case 1) For the model (2) under the
hierarchical prior (22) with a given g. If 0 ≤ k < 1, the
estimator δB(y) in (11) for θ is admissible under the
normalised squared error loss (9).

The proof of Theorem 4.4 is similar to the proof of
Theorem 4.5 later, thus it is omitted. As discussed by
George and Foster (2000), the choice of g effectively
controls model selection, with large g typically con-
centrating the prior on parsimonious models with a
few large coefficients, whereas small g tends to concen-
trate the prior on saturated models with small coeffi-
cients. Herein, we consider Case 1 from the perspec-
tive of admissibility, not the model selection. From
Theorem 4.4, the choice of fix g has no effect on the
admissibility of estimators δB(y) of θ .

Next, we consider Case 2. The prior density of g
satisfies the following conditions:

Condition A1. π2(g) is a continuous function in
(0,∞);
Condition A2. ∃a ∈ IR, π2(g) = O(ga), as g → 0;
Condition A3. ∃b ≥ 0, π2(g) ∼ Cg−b, as g → ∞
for some constant C>0.

Clearly, two examples of π2(g) discussed in
Section 4.1 satisfy Condition A1–A3 with appropriate
a and b.

Theorem 4.5: (Case 2) For the model (2) with the
hierarchical prior (22), assume π2(g) satisfies Condi-
tion A1–A3. If 0 ≤ k < 1, a> k−1 and k + b > 3, the
estimator δB(y) in (11) for θ is admissible under the
normalised squared error loss (9).

Proof: It is convenient to write X′X = H′DH, where
H is the matrix of eigenvectors corresponding to D =
diag(d1, d2, . . . , dp) with d1 ≥ · · · ≥ dp. Define u =
Hθ = (u1, . . . , up)′. From (23), the conditional prior of
θ given τ > 0 is

π0(θ | τ) =
∫ ∞

0

(
τ

2gπ

)p/2

× exp

{
− τ

2g

p∑
i=1

u2i
di

}
π2(g) dg,

which is a decreasing function of u2i , for i = 1, . . . , p.
From Theorem 3.7, we just need to verify Condi-
tion 1–6. For Condition 1,∫

Sc

∫ ∞

0

1
τ

π0(θ |τ)

‖θ‖2 log(‖θ‖ ∨ 2)
π1(τ ) dτ dθ

=
∫
Sc

∫ ∞

0

∫ ∞

0

1
τ

π0(θ | g, τ)

‖θ‖2 log(‖θ‖ ∨ 2)

× π1(τ )π2(g) dτ dg dθ

≤
∫
Sc

∫ ∞

0

g−p/2

‖θ‖2 log(‖θ‖ ∨ 2)
π2(g)

×
[∫ ∞

0
τ p/2−k−1 exp

(
−dpτ‖θ‖2

2g

)
dτ

]
dg dθ .

If k < p/2, there is a positive constant C, such that∫
Sc

∫ ∞

0

1
τ

π0(θ | τ)

‖θ‖2 log(‖θ‖ ∨ 2)
π1(τ ) dτ dθ

≤ C
∫
Sc

∫ ∞

0

g−p/2

‖θ‖2 log(‖θ‖ ∨ 2)

× π2(g)
(‖θ‖2

g

)−p/2+k

dg dθ

= C
∫
Sc

1
‖θ‖2+p−2k log(‖θ‖ ∨ 2)

dθ

×
∫ ∞

0
g−kπ2(g) dg.

By polar coordinate transformation r = ‖θ‖, the inte-
gration over θ becomes∫

Sc

1
‖θ‖2+p−2k log(‖θ‖ ∨ 2)

dθ

=
∫ ∞

1

1
r3−2k log(r ∨ 2)

dr,
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which is finite if 3 − 2k ≥ 1, i.e. k ≤ 1. Since π2(g)
satisfies Condition A1-A3, there are some postive con-
stants N0 < N1 < N2, C1 and C2 such that

∫ ∞

0
g−kπ2(g) dg =

∫ N0

0
g−kπ2(g) dg

+
∫ N1

N0

g−kπ2(g) dg

+
∫ ∞

N1

g−kπ2(g) dg

≤ C1

∫ N0

0
ga−k dg

+
∫ N1

N0

g−kπ2(g) dg

+ C2

∫ ∞

N1

g−k−b dg,

which is finite if a> k−1, and k+b>1.
For Condition 2,

∫
Sc

∫ ∞

0
π0(θ | τ)π1(τ ) dτ dθ ≤

∫
Sc

∫ ∞

0
g−p/2π2(g)

×
[∫ ∞

0
τ p/2−k exp

(
−dpτ‖θ‖2

2g

)
dτ

]
dg dθ

= �(1 + p/2 − k)
(dp/2)1+p/2−k

∫
Sc

1
‖θ‖2+p−2k dθ

×
∫ ∞

0
g1−kπ2(g) dg,

which is finite if 0 ≤ k < 1, a> k−2 and k+b>2.
For Condition 3,

∫
Sc

∫ ∞

0
τ‖θ‖2π0(θ | τ)π1(τ ) dτ dθ

≤
∫
Sc

∫ ∞

0
‖θ‖2g−p/2π2(g)

×
[∫ ∞

0
τ 1+p/2−k exp

(
−dpτ‖θ‖2

2g

)
dτ

]
dg dθ

= �(2 + p/2 − k)
(dp/2)2+p/2−k

∫
Sc

1
‖θ‖2+p−2k dθ

×
∫ ∞

0
g2−kπ2(g) dg,

which is finite if 0 ≤ k < 1, a> k−3 and k+b>3.
For Condition 4, note that

∇θπ0(θ | τ) = −X′Xθτ p/2+1
∫ ∞

0
g−(p/2+1)

× exp
(

−τθ ′X′Xθ

2g

)
π2(g) dg.

By Cauchy-Schwarz inequality, it yields

‖∇θπ0(θ | τ)‖2 ≤ d21‖θ‖2τ p+2
∫ ∞

0
g−p/2

× exp
(

−τθ ′X′Xθ

2g

)
π2(g) dg

×
∫ ∞

0
g−(p/2+2) exp

(
−τθ ′X′Xθ

2g

)

× π2(g) dg

≤ d21‖θ‖2τ p/2+2π0(θ | τ)

×
∫ ∞

0
g−(p/2+2) exp

(
−dpτ‖θ‖2

2g

)

× π2(g) dg.

Therefore,∫
Sc

∫ ∞

0

1
τ

‖∇θπ0(θ | τ)‖2
π0(θ | τ)

π1(τ ) dτ dθ

≤ d21

∫
Sc

∫ ∞

0

∫ ∞

0
‖θ‖2τ p/2+1g−(p/2+2)

× exp

(
−dpτ‖θ‖2

2g

)
π2(g) dgπ1(τ ) dτ dθ

= d21

∫
Sc

∫ ∞

0
‖θ‖2g−(p/2+2)π2(g)

×
[∫ ∞

0
τ p/2+1−k exp

(
−τ‖θ‖2

2g

)
dτ
]
dg dθ

= �(2 + p/2 − k)
(dp/2)2+p/2−k

∫
Sc

1
‖θ‖2+p−2k dθ

×
∫ ∞

0
g−kπ2(g) dg,

which is finite if 0 ≤ k < 1, a> k−1, and k+b>1.
For Condition 5,∫

‖θ‖2<B

∫
τ<B

π0(θ | τ)π1(τ ) dτ dθ

≤
∫ ∞

0

∫ B

0
g−p/2τ p/2−k

×
[∫

‖θ‖2<B
exp

(
−dpτ‖θ‖2

2g

)
dθ

]
π2(g) dτ dg.

By polar coordinate transformation r = ‖θ‖2, the inte-
gration over θ becomes

∫
‖θ‖2<B

exp

(
−dpτ‖θ‖2

2g

)
dθ

=
∫ B

0
rp/2−1 exp

(
−dpτ r

2g

)
dr

≤ Cτ−p/2gp/2.
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Therefore,∫
‖θ‖2<B

∫
τ<B

π0(θ | τ)π1(τ ) dτ dθ

≤ C
∫ B

0
τ−k dτ

∫ ∞

0
π2(g) dg,

which is finite if 0 ≤ k < 1, a>−1, and b>1.
Combining these restrictions, we can find that when

0 ≤ k < 1, a> k−1 and k+b>3, Conditions 1–5 hold.
AsHan (2009) discussed, Condition 6 is verymild. Pro-
ceeding in an analogous way on page 47 of Han (2009),
Condition 6 holds. By Theorem 3.7, the estimator δB(y)
in (11) for θ is admissible. �

Weare also interested in admissible estimators under
Inv-Gamma and robust prior for g. Using Theorem 4.5,
we have the following results.

Theorem 4.6: For the model (2) with the hierarchical
prior (22), assume π2(g) is Inv-Gamma(v, c). If 0 ≤ k <

1, and v > 2 − k, the estimator δB(y) in (11) for θ is
admissible.

Proof: By Theorem 4.5 with any constant a> k−1 and
b= v+1, the result holds. �

Theorem 4.7: For the model (2) with the hierarchical
prior (22), assume π2(g) is robust prior (26). If 0 ≤ k <

1, and h1 > 2 − k, the estimator δB(y) in (11) for θ is
admissible.

Proof: From Theorem 4.5 with a=0 and b = h1 + 1,
the proof is completed. �

5. Admissibility for a 3-level hierarchical
model

We also study a 3-level hierarchical model and deter-
mine which elements of the hierarchical prior class
lead to admissible estimators of the θ under normalised
squared error loss.

5.1. Themodel and priors

Consider the following 3-level hierarchical model

Level 1 : (y | θ , τ) ∼ Nn(Xθ , τ−1In);

Level 2 : (θ | β , τ , g) ∼ Np(Zβ , gτ−1A);

Level 3 : (β | λ, τ) ∼ Ns(0, λτ−1B), (29)

where Z is a given p × s matrix with full rank s, β is
the s × 1 unknown vector, A and B are a p × p and
s × s known covariate matrix, respectively, and λ is
an unknown hyperparameter. To simplify the compu-
tation, without loss of generality, we set A = Ip and
B = Is.

Assume π1(τ ) ∝ τ−k, and the prior of g satisfies
the Condition A1–A3. The prior π3(λ) satisfies the
following conditions.

Condition B1. π3(λ) is a continuous function in
(0,∞);
Condition B2. ∃c1, π3(λ) = O(λc1), as λ → 0;
Condition B3. ∃c2 ≥ 0, π3(λ) ∼ Cλ−c2 as λ → ∞
for some constant C>0.

5.2. Admissibility

The following lemma is needed.

Lemma 5.1: For the 3-level hierarchical model (29),
assume π1(τ ) ∝ τ−k, π2(g) satisfies Condition A1–A3,
and π3(λ) satisfies Condition B1–B3. Then

π0(θ | τ) ∝ τ p/2
∫∫

exp
[
−1
2
τθ ′(gIp + λZZ′)−1θ

]

× (g + λ)−s/2g−(p−s)/2π2(g)π3(λ) dg dλ. (30)

Proof: Note that

π0(θ | τ) ∝
∫ ∞

0

∫ ∞

0

∫
IRs

π0(θ | β , τ , g)

π(β | λ)π2(g)π3(λ) dβ dg dλ

∝ τ (p+s)/2
∫ ∞

0

∫ ∞

0

∫
IRs

× exp
(

−τ‖θ − Zβ‖2
2g

− τ‖β‖2
2λ

)

× g−p/2λ−s/2π2(g)π3(λ) dβ dg dλ.

Define β0 = g−1(λ−1Is + g−1Z′Z)−1Z′θ , we have

τ‖θ − Zβ‖2
g

+ τ‖β‖2
λ

= τ(β − β0)
′

× (λ−1Is + g−1Z′Z)

× (β − β0) + τθ ′

× (gIp + λZZ′)−1θ .

Then the marginal distribution of θ given τ ,

π0(θ | τ) ∝ τ p/2
∫ ∞

0

∫ ∞

0
|λ−1Is + g−1Z′Z|−1/2

× exp
[
−1
2
τθ ′(gIp + λZZ′)−1θ

]

× g−p/2λ−s/2π2(g)π3(λ) dg dλ,

which is proportional to (30). The proof is completed.
�

Theorem 5.2: For the 3-level hierarchical model (29),
assume π1(τ ) ∝ τ−k, π2(g) satisfies Condition A1–A3,
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and π3(λ) satisfies Condition B1–B3. Then, the estima-
tor δB(y) in (11) for θ is admissible if 0 ≤ k < 1, b >

3 − k, c2 > 3 + (p − s)/2 − k, and one of the following
conditions holds,

(i) p > s, a > (p − s)/2 + 1, c1 > −1;
(ii) p = s, a > −1, c1 > −1 + k;
(iii) p = s, a > −1 + k, c1 > −1.

Proof: It is convenient to write ZZ′ = �′D�, where
� is the matrix of eigenvectors corresponding to
D = diag(z1, z2, . . . , zp) with z1 ≥ · · · ≥ zp. Herein,
we denote u = �θ = (u1, . . . , up)′. Therefore, from
Lemma 5.1,

π0(θ | τ) ∝ τ p/2
∫∫

exp

[
−τ

2

p∑
i=1

(g + ziλ)−1u2i

]

× (g + λ)−s/2g−(p−s)2π2(g)π3(λ) dg dλ,

which is a decreasing function of u2i , for i = 1, . . . , p.
In addition, there are two positive constant C1 and C2,
such that

π0(θ | τ) ≤ C1τ
p/2
∫∫

exp
(

−C2
τ‖θ‖2
g + λ

)

× (g + λ)−s/2g−(p−s)/2π2(g)π3(λ) dg dλ.

For the technical reasons, we first consider Condition 2.
Note that∫

Sc

∫ ∞

0
π0(θ | τ)π1(τ ) dτ dθ ≤ C1

∫
Sc

∫ ∞

0

∫ ∞

0

×
{∫ ∞

0
τ p/2−k exp

(
−C2

τ‖θ‖2
g + λ

)
dτ
}

× (g + λ)−s/2g−(p−s)/2π2(g)π3(λ) dλ dg dθ

= C1
�(1 + p/2 − k)

C1+p/2−k
2

∫
Sc

1
‖θ‖2+p−2k dθ

×
∫∫

(λ + g)1+(p−s)/2−kg−(p−s)/2

× π2(g)π3(λ) dg dλ.

The integration over θ is finite if k<1. For simplicity,
denote l = 1 + (p − s)/2 − k and h = (p − s)/2. If 0 ≤
k < 1, we have l>0.

Note that∫ ∞

0

∫ ∞

0
(λ + g)1+(p−s)/2−kg−(p−s)/2π2(g)π3(λ) dg dλ

=
{∫ 1

0

∫ 1

0
+
∫ 1

0

∫ ∞

0
+
∫ ∞

1

∫ 1

0
+
∫ ∞

1

∫ ∞

1

}

× (λ + g)lg−hπ2(g)π3(λ) dg dλ

≡ I1 + I2 + I3 + I4. (31)

Clearly,

I1 ≤ 2l
∫ 1

0
g−hπ2(g) dg ×

∫ 1

0
π3(λ) dλ,

which is finite if a>h−1 and c1 > −1. Clearly,

I4 ≤ 2l
∫ ∞

1
gl−hπ2(g) dg ×

∫ ∞

1
λlπ3(λ) dλ,

which is finite if b>1−h+l and c2 > 1 + l. Similarly,
it is easy to verify that I2 + I3 is finite if a>h−1,
b>1−h+l, c1 > −1 and c2 > 1 + l. Therefore, (31)
is finite if a > (p − s)/2 − 1, b > 2 − k, c1 > −1 and
c2 > 2 + (p − s)/2 − k.

Similarly, for Condition 3,

∫
Sc

∫ ∞

0
τ‖θ‖2π0(θ | τ)π1(τ ) dτ dθ

≤ C′
1

∫
Sc

1
‖θ‖2+p−2k dθ

×
∫∫

(λ + g)2+(p−s)/2−kg−(p−s)/2

× π2(g)π3(λ) dg dλ, (32)

where C′
1 is a postive constant.

Clearly, 2 + (p − s)/2 − k > 0 if 0 ≤ k < 1. As in
the proof of Condition 2, (32) is finite if 0 ≤ k <

1, a > (p − s)/2 − 1, b > 3 − k, c1 > −1 and c2 > 3 +
(p − s)/2 − k.

For Condition 4, from Lemma 5.1, note that

∇θπ0(θ | τ) = −τ p/2+1
∫∫

(gIp + λZZ′)−1θ

× exp
[
−1
2
τθ ′(gIp + λZZ′)−1θ

]

× (g + λ)−s/2g−(p−s)/2π3(λ)

× π2(g) dg dλ.

We will consider two cases, i.e. p> s and p = s, respec-
tively. If p> s, ‖(gIp + λZZ′)−1θ‖ ≤ g−1‖θ‖. It yields

‖∇θπ0(θ | τ)‖2 ≤ ‖θ‖2τ p+2

×
(∫∫

exp
[
−1
2
τθ ′(gIp + λZZ′)−1θ

]

× (g + λ)−s/2g−(p−s)/2−1π3(λ)π2(g) dg dλ
)2

≤ ‖θ‖2τ p/2+2π0(θ | τ)

×
∫∫

exp
[
−1
2
τθ ′(gIp + λZZ′)−1θ

]

× (g + λ)−s/2g−(p−s)/2−2

× π3(λ)π2(g) dg dλ

≤ C1|θ‖2τ p/2+2π0(θ | τ)

∫∫
exp

(
−C2

τ‖θ‖2
g + λ

)

× (g + λ)−s/2g−(p−s)/2−2π2(g)π3(λ) dg dλ.
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In the second step, we apply the Cauchy-Schwartz
inequality. Therefore,

∫
Sc

∫ ∞

0

1
τ

‖∇θπ0(θ | τ)‖2
π0(θ | τ)

π1(τ ) dτ dθ

≤ C1

∫
Sc

∫∫
‖θ‖2

{∫ ∞

0
τ 1+p/2−k

× exp
(

−C2
τ‖θ‖2
g + λ

)
dτ
}

(g+λ)−s/2g−(p−s)/2−2

× π2(g)π3(λ) dg dλ dθ

= C′
1

∫
Sc

1
‖θ‖2+p−2k dθ ×

∫∫
(λ + g)(p−s)/2+2−k

× g−(p−s)/2−2π2(g)π3(λ) dg dλ. (33)

As in the proof of Condition 3, (33) is finite if 0 ≤ k <

1, a > (p − s)/2 + 1, b>1−k, c1 > −1 and c2 > 3 +
(p − s)/2 − k.

If p= s, there is a positive constant C3, such that

‖(gIp + λZZ′)−1θ‖ ≤ C3(g + λ)−1‖θ‖.

Therefore, using the Cauchy-Schwartz inequality,

‖∇θπ0(θ | τ)‖2 ≤ C4‖θ‖2τ p/2+2π0(θ | τ)

×
∫∫

exp
(

−C2
τ‖θ‖2
g + λ

)

× (g + λ)−p/2−2π2(g)π3(λ) dg dλ,

where C4 = C1C2
3. Thus,

∫
Sc

∫ ∞

0

1
τ

‖∇θπ0(θ | τ)‖2
π0(θ | τ)

π1(τ ) dτ dθ

≤ C4

∫
Sc

∫∫
‖θ‖2

×
{∫ ∞

0
τ 1+p/2−k exp

(
−C2

τ‖θ‖2
g + λ

)
dτ
}

× (g + λ)−p/2−2π2(g)π3(λ) dg dλ dθ

= C′
4

∫
Sc

1
‖θ‖2+p−2k dθ

×
∫∫

(λ + g)−kπ2(g)π3(λ) dg dλ, (34)

where C′
4 is a positive constant. Note that the integra-

tion over θ is finite if 0 ≤ k < 1.
If k ≥ 0,

∫ ∞

0

∫ ∞

0
(λ + g)−kπ2(g)π3(λ) dg dλ

≤
∫ ∞

0
π2(g) dg

∫ ∞

0
λ−kπ3(λ) dλ,

which is finite if a > −1, b > 1, c1 > −1 + k and c2 >

1 − k. Meanwhile,

∫ ∞

0

∫ ∞

0
(λ + g)−kπ2(g)π3(λ) dg dλ

≤
∫ ∞

0
g−kπ2(g) dg

∫ ∞

0
π3(λ) dλ,

which is finite if a > −1 + k, b > 1 − k, c1 > −1 and
c2 > 1.

For Condition 5, note that
∫

‖θ‖2<B

∫
τ<B

π0(θ | τ)π1(τ ) dτ dθ

≤ C1

∫ B

0

∫∫
τ p/2−k

×
{∫

‖θ‖2<B
exp

(
−C2

τ‖θ‖2
g + λ

)
dθ
}

× (g + λ)−s/2g−(p−s)/2π2(g)π3(λ) dλ dg dτ .

By polar coordinate transformation r = ‖θ‖2, the inte-
gration over θ becomes

∫
‖θ‖2<B

exp
(

−C2
τ‖θ‖2
g + λ

)
dθ

=
∫ B

0
rp/2−1 exp

(
−C2

τ r
g + λ

)
d

≤ C5τ
−p/2(g + λ)p/2,

where C5 is a positive constant. Therefore,

∫
‖θ‖2<B

∫
τ<B

π0(θ | τ)π1(τ ) dτ dθ

≤ C5

∫ B

0
τ−k dτ ×

∫ ∞

0

∫ ∞

0
(λ + g)(p−s)/2

× g−(p−s)/2π2(g)π3(λ) dg dλ, (35)

which is finite if 0 ≤ k < 1, a > (p − s)/2 − 1, b >

1, c1 > −1 and c2 > 1 + (p − s)/2.
Combining the above results, Conditions 2–5 hold

if (k, a, b, c1, c2) satisfy the conditions as this theorem
states. For Condition 1,

∫
Sc

∫ ∞

0

1
τ

π0(θ | τ)

‖θ‖2 log(‖θ‖ ∨ 2)
π1(τ ) dτ dθ

≤ C1

∫
Sc

∫∫
1

‖θ‖2 log(‖θ‖ ∨ 2)

×
{∫ ∞

0
τ p/2−k−1 exp

(
−C2

τ‖θ‖2
g + λ

)
dτ
}

× (g + λ)−s/2g−(p−s)2

× π2(g)π3(λ) dg dλ dθ
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≤ C6

∫
Sc

1
‖θ‖2+p−2k dθ

×
∫∫

(λ + g)(p−s)/2−kg−(p−s)/2

× π2(g)π3(λ) dg dλ, (36)

whereC6 is a positive constant. If p = s, (36) can be pro-
ceeded as (34). If p > s, it is easy to verify that (36) is
finite if 0 ≤ k < 1, a > (p − s)/2 + 1, b > 3 − k, c2 >

3 + (p − s)/2 − k, c1 > −1. Proceeding in an anal-
ogous way on page 47 of Han (2009), Condition 6
also holds. By Theorem 3.7, estimator (11) for θ are
admissible. �

6. Comments

In Section 2, we listed the sufficient conditions for
admissibility of the estimators of θ with unknown τ ,
which was developed by Han (2009). In Section 3,
we generalise the sufficient conditions for admissibility
and apply these results to the normal linear regression
model (2). We have to admit that those sufficient con-
ditions are still not optimal enough. Sometimes, we
can’t obtain satisfactory results utilising the conditions
directly. In our paper, we consider π1(τ ) ∝ τ−k for
the prior of τ . The condition of k for admissibility is
0 ≤ k < 1. Unfortunately, we can’t prove the admissi-
bility for the boundary point k = 1, which is of great
interest since it is the natural extension of Stein’s har-
monic prior (Stein, 1981) to the unknown variance
problem. In follow-up work, we will try to explore the
more powerful sufficient conditions for admissibility
of the estimators of θ with unknown τ . One promis-
ing method for this problem may be by Blyth’s method
(Blyth, 1951), discovering an appropriate sequence of
finite measures.
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Appendix

A.1 Proof of Lemma 4.3

To simplify the computation, without loss of generality, we set
c= 1. Let x = u/v, then

f (u) =
∫ ∞

0

1
(u/x)a(u/x + 1)b

u
x2

exp(−x/2) dx

= u1−a
∫ ∞

0

xa+b−2

(u + x)b
exp(−x/2) dx.

One just needs to consider

C1

(1 + u)b
≤
∫ ∞

0

xa+b−2

(u + x)b
exp(−x/2) dx ≤ C2

(1 + u)b
.

(A1)
The integral can be written by{∫ 1

0
+
∫ ∞

1

}
xa+b−2

(u + x)b
exp(−x/2) dx ≡ I1 + I2.

For the lower bound of I1 and I2, we have

I1 ≥
∫ 1

0

xa+b−2

(u + 1)b
exp(−x/2) dx = C∗

1
1

(1 + u)b
,

I2 ≥
∫ ∞

1

xa−2

(u + 1)b
exp(−x/2) dx = C∗

2
1

(1 + u)b
,

where C∗
1 = ∫ 1

0 xa+b−2 exp(−x/2) dx and C∗
2 = ∫∞

1 xa−2

exp(−x/2) dx. For the upper bound of I1 and I2, we have

I1 ≤
∫ 1

0

xa+b−2

(u + 1)bxb
exp(−x/2) dx = C∗

3
1

(1 + u)b
,

I2 ≤
∫ ∞

1

xa+b−2

(u + 1)b
exp(−x/2) dx = C∗

4
1

(1 + u)b
,

where C∗
3 = ∫ 1

0 xa−2 exp(−x/2) dx and C∗
4 = ∫∞

1 xa+b−2

exp(−x/2) dx. Therefore, let C1 = C∗
1 + C∗

2 and C2 = C∗
3 +

C∗
4 . We get (A1). The lemma is proved.
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