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ABSTRACT
Quantile treatment effects can be important causal estimands in evaluation of biomedical treat-
ments or interventions for health outcomes such as medical cost and utilisation. We consider
their estimation in observational studies with many possible covariates under the assumption
that treatment and potential outcomes are independent conditional on all covariates. To obtain
valid and efficient treatment effect estimators, we replace the set of all covariates by lower
dimensional sets for estimation of the quantiles of potential outcomes. These lower dimensional
sets are obtained using sufficient dimension reduction tools and are outcome specific. We justify
our choice from efficiency point of view. We prove the asymptotic normality of our estimators
and our theory is complemented by some simulation results and an application to data from the
University of Wisconsin Health Accountable Care Organization.
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1. Introduction

Causal evaluation of treatment or intervention is com-
monly done by estimating average treatment effect
(ATE). However for health outcomes such as med-
ical cost and utilisation, quantile treatment effect
(QTE) may be more relevant and informative (Abadie,
Angrist, & Imbens, 2002; Cattaneo, 2010; Cher-
nozhukov &Hansen, 2005; Doksum, 1974; Firpo, 2007;
Frölich & Melly, 2010, 2013; Lehman, 1975). As out-
comes tend to be highly skewed to the right, ATE may
not be a proper representative parameter for location.
Furthermore, it is often important to learn about dis-
tributional impacts beyond ATE, such as the effects
on upper (or lower) quantiles of an outcome, which
may be of direct interests to policy makers and other
stakeholders of a programme.

Our study of QTE is motivated by the following
investigation at the University of Wisconsin (UW)
Health System. As of January 1, 2013, the UW Health
System became an Accountable Care Organization
(ACO), which is a network of doctors, clinics and other
health care providers that share financial and medical
responsibility for providing coordinated care to patients
in hopes of limiting unnecessary spending. One strat-
egy pursued by nearly all ACOs is to manage the care to
‘high-need, high-cost’ patients: those with multiple or
complex conditions, often combined with behavioural
health problems or socioeconomic challenges. In par-
ticular, we are asked to evaluate a particular interven-
tion used by the UWHealth System. If the intervention

can reduce the upper quantiles of health care utilisation
quantified by medical cost, then the next step is to sig-
nificantly enhance the nurse team so that intervention
can be extended to a wider population. In essence, we
need to estimate QTEs particularly at an upper level.

To define QTE, we begin with some notation. Let T
be a binary treatment indicator, X be a p-dimensional
vector of pretreatment covariates, and Y0 and Y1 be the
potential outcomes under treatmentsT = 0 andT = 1,
respectively. Since only one treatment is applied, either
Y1 or Y0 is observed, but not both, i.e. what we observe
is Z = TY1 + (1 − T)Y0. With a fixed τ ∈ (0, 1), the
100τ% QTE is defined as θ = q1,τ − q0,τ , where qk,τ
is the τ th quantile of Yk, k = 0, 1; e.g. τ = 0.5, 0.25,
and 0.75 give the difference of medians, lower quartiles,
and upper quartiles, respectively. We focus on the esti-
mation of θ based on a random sample {Zi,Xi,Ti : i =
1, . . . , n} of n observations from (Z,X,T).

Because we only observe Z, θ is often not identifi-
able without any condition. Throughout we assume the
following assumption that is believed to be reasonable
inmany applications (Rosenbaum&Rubin, 1983):T ⊥
(Y0,Y1) |X, i.e. T and the vector of potential outcomes
(Y0,Y1) are independent conditional on X, which is
similar to the ignorable missingness assumption when
we treat T as a missingness indicator and unobserved
Y0 or Y1 as a missing value. Under this assumption, two
types of consistent estimators of QTE θ in causal infer-
ence or closely related context inmissing data have been
proposed in the literature. One type is derived through
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regression on (T = k,X) for k = 0, 1 (Cattaneo, 2010;
Chen, Wan, & Zhou, 2015; Cheng & Chu, 1996; Zhou,
Wan, & Wang, 2008), and the other type is based
on inverse propensity weighting with propensity score
P(T = 1 |X) (Firpo, 2007). A review is given by Cat-
taneo, Drukker, and Holland (2013). Since parametric
methods rely on correct model specifications, non-
parametric estimation of the regression functions or
propensity is often preferred and therefore considered
in what follows.

In our ACO data, however, the dimension p of X
is high and nonparametric estimation of regression
or propensity function using for example the kernel
method is asymptotically inefficient when Yk is related
with only a lower dimensional function of X. Unnec-
essarily using a high dimensional X may also affect
kernel estimation numerically. Our main task is study-
ing covariate dimension reduction to facilitate stable
and efficient estimation of QTE.

If inverse propensity weighting is applied, it seems
that covariate dimension reduction is to find a linear
function ST of X with the smallest dimension such that
T ⊥ X | ST . Unfortunately, Hahn (1998) indicated that
in the estimation of ATE, using such an ST provides
no improvement in estimation efficiency over using the
entire X. Because the outcome (Y1,Y0) is involved in
the estimation of ATE, Hahn (2004) suggested finding
a linear function SY0,Y1 of X with the smallest pos-
sible dimension such that (Y0,Y1) ⊥ X | SY0,Y1 , which
also implies T ⊥ (Y0,Y1) | SY0,Y1 . The resulting ATE
estimator is asymptotically more efficient than the esti-
mator using the entire X unless SY0,Y1 = X. De Luna,
Waernbaum, and Richardson (2011) further consid-
ered an Smin which removes the components in SY0,Y1
that are unrelated to T. This Smin is the smallest dimen-
sional S ⊆ SY0,Y1 that satisfies T ⊥ SY0,Y1 | S, which also
implies T ⊥ (Y0,Y1) | Smin. However, it is proved in the
Appendix that the asymptotic variance using Smin is
larger than that of SY0,Y1 unless Smin = SY0,Y1 ; see also
Brookhart et al. (2006), Shortreed and Ertefaie (2017).

Note that the estimation of θ = q1,τ − q0,τ can be
done by estimating q0,τ and q1,τ separately and then
taking the difference. If a linear function SYk of X satis-
fies Yk ⊥ X | SYk and has the smallest dimension, then
SYk has a dimension no larger than that of SY0,Y1 defined
in Hahn (2004), k = 0, 1. Hence, our approach allevi-
ates the curse of dimensionality more and it produces
asymptotically more efficient estimator of θ .

In applications, SY0 and SY1 have to be estimated
using observed data. We adopt the existing nonpara-
metric sufficient dimension reduction methods (Cook
&Weisberg, 1991; Li, 1991; Xia, Tong, Li, & Zhu, 2002)
to construct estimators ŜYk of SYk . We establish the
asymptotic normality for our estimator of θ based on
ŜY0 and ŜY1 , and compare its efficiency with an asymp-
totic efficiency bound. We also compare the perfor-
mances of various estimators in simulation studies and

apply ourmethod to themedical cost data from theUW
Health System.

2. Methods

Without dimension reduction, three types of nonpara-
metric estimators for θ have been proposed in the liter-
ature. The inverse propensity weighting (IPW) method
(Firpo, 2007) is a weighed version of the procedure in
Koenker and Bassett (1978) for the quantile estimation
problem.

The regression (REG) method (Cattaneo, 2010;
Chen et al., 2015) estimates the function mk(x, t) =
E{ρ(Yk, t) |X = x} = E{ρ(Z, t) |T = k,X = x} by
m̂k(x, t) using a nonparametric method and data under
T = k for k = 0, 1 separately, where ρ(s, t) = (s −
t)(τ − 1{s ≤ t}) is the check function (Koenker & Bas-
sett, 1978) and 1{·} is the indicator function. Finally,
Cattaneo et al. (2013) and Chen et al. (2015) com-
bined IPW and REG to obtain the so-called augmented
inverse propensity weighting (AIPW) estimator.

For each k, let SYk = B�
k X with Yk ⊥ X | SYk , where

B�
k denotes the transpose of a p × dk deterministic

matrix with the smallest possible dk, k = 0, 1. As a
consequence of Theorem 2.1 stated below, estimators
using SYk as covariate sets are asymptotically more effi-
cient than those using X as covariate set when dk < p
(if dk = p, then SYk = X). In the estimation of ATE,
Hahn (2004) recommended to replace X by SY0,Y1 ,
but the dimension of SY0,Y1 is no smaller than that of
SYk , which leads to efficiency loss as a consequence of
Theorem 2.1.

In applications, SYk has to be estimated by ŜYk =
B̂�
k X, and we adopt a nonparametric sufficient dimen-

sion reduction method to construct B̂k (Cook & Weis-
berg, 1991; Li, 1991;Ma and Zhu, 2012; Xia et al., 2002).
Since the distribution of Yk |X is the same as Z |X,T =
k, we separately estimate SYk using the observed data
(Zi,Xi) in group T = k. To estimate the dimensions of
SY0 and SY1 , we adopt consistent criteria such as BIC-
type criteria introduced by Zhu, Zhu, and Feng (2010)
and bootstrap based criteria.

Let ŜYk,i = B̂�
k Xi, i = 1, . . . , n, k = 0, 1. In our IPW

method, we estimate the propensity πk(sk) = P(T =
k | SYk = sk) by π̂k(sk) using a nonparametric method
for k = 0, 1 separately. The IPW estimator of θ is
θ̂IPW = q̂IPW1,τ − q̂IPW0,τ , where

q̂IPWk,τ = argmint
n∑

i=1

T(k)i ρ(Zi, t)
π̂k(ŜYk,i)

, k = 0, 1, (1)

and T(1)i = Ti, T
(0)
i = 1 − Ti.

The REG method estimates mk(sk, t) = E{ρ(Yk, t) |
SYk = sk} by m̂k(sk, t) using a nonparametric method
for k = 0, 1 separately, and estimates θ by θ̂REG =
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q̂REG1,τ − q̂REG0,τ , where

q̂REGk,τ = argmint
n∑

i=1
m̂k(ŜYk,i, t), k = 0, 1. (2)

We can combine IPW and REG to obtain our AIPW
estimator, θ̂AIPW = q̂AIPW1,τ − q̂AIPW0,τ , where

q̂AIPWk,τ = argmint
n∑

i=1

[
T(k)i ρ(Zi, t)
π̂k(ŜYk,i)

− T(k)i − π̂k(ŜYk,i)
π̂k(ŜYk,i)

m̂k(ŜYk,i, t)

]
, k = 0, 1.

(3)

To estimate mk(sk, t) and πk(sk) in (1)–(3), we use the
nonparametric kernel estimators (Silverman, 1986):

m̂k(sk, t) =
∑n

i=1 T
(k)
i ρ(Zi, t)KHk(ŜYk,i − sk)∑n

i=1 T
(k)
i KHk(ŜYk,i − sk)

,

π̂k(sk) =
∑n

i=1 T
(k)
i KHk(ŜYk,i − sk)∑n

i=1KHk(ŜYk,i − sk)
, k = 0, 1,

where KHk(sk) = det(H−1
k )Kk(H−1

k sk), Kk(·) is a dk-
dimensional kernel function, dk is the dimension of ŜYk ,
and Hk is the bandwidth matrix. When ŜYk is stan-
dardised, we consider Hk = hknIdk with scalar band-
width hkn and identity matrix Idk (Hardle, Muller,
Sperlich, & Werwatz, 2004). As in Hu, Follmann,
and Wang (2014), the nonparametric kernel estima-
tors are computed using the rth order Gaussian product
kernel with standardised covariates. The bandwidth we
used here is hkn = Cn−2/(2rk+dk), where rk is the order
of Kk, k = 0, 1. To determine the constant C we adopt
the J-fold cross validation, i.e. we select C that min-
imises

∑J
j=1(θ̂ − θ̂−j)

2, where J is the total number of
folds and θ̂−j is the estimator of θ with all data but not
those in the jth fold, j = 1, . . . , J. We use J = 10 in our
simulations in Section 3.

The following theorem establishes the asymptotic
normality of estimators in (1)–(3) and assesses the effi-
ciency of estimators.

Theorem 2.1: Assume the conditions stated in the
Appendix. Let θ̂ (S0, S1) be one of θ̂IPW, θ̂REG, and θ̂AIPW
in (1)–(3) with ŜYk replaced by Sk = B�

k X satisfying
Yk ⊥ X | Sk, k = 0, 1, and let θ̂ (Ŝ0, Ŝ1) be the same
estimator with Sk replaced by its estimator Ŝk = B̂�

k X,
where

√
nvec(B̂k − Bk) = n−1/2∑n

i=1 ψk(Xi,Zi,Ti)+
op(1) for some functions ψk with E(ψk(X,Z,T)) = 0,
k = 0, 1, vec(M) is a column vector whose components
are elements of a matrix M, and op(1) denotes a quantity
converging to 0 in probability. Thenwe have the following
conclusions.

(i)
√
n{θ̂ (S0, S1)− θ} is asymptotically normal with

mean 0 and variance

V∗
S0,S1 = var

{
E(g1(Y1) | S1)− E(g0(Y0) | S0)

}
+
∑
k=0,1

E
{
var(gk(Yk) | Sk)
P(T = k | Sk)

}
, (4)

where gk(Yk) = −(1{Yk ≤ qk,τ } − τ)/fk(qk,τ ) and fk is
the p.d.f. of Yk, k = 0, 1.

(ii)
√
n{θ̂ (Ŝ0, Ŝ1)− θ} is asymptotically normal with

mean 0 and variance

VS0,S1 = V∗
S0,S1 + var

⎧⎨
⎩
∑
k=0,1

c�k ψk(X,Z,T)

⎫⎬
⎭

+ 2cov

⎧⎨
⎩
∑
k=0,1

c�k ψk(X,Z,T), S(X,Z,T)

⎫⎬
⎭ ,

(5)

where

ck = −vec

(
E

[
cov(X,T | Sk)
πk(Sk)

{
∂E(gk(Yk)|Sk)

∂Sk

}�])
,

and

S(X,Z,T) =
∑
k=0,1

(−1)(k−1)

[
T(k)

πk(Sk)
{gk(Yk)

− E(gk(Yk) | Sk)} + E(gk(Yk) | Sk)
]
.

Theorem 2.1(i) justifies our choice of Sk = SYk .
V∗
S0,S1 in (A1) is in fact the semiparametric efficiency

bound of estimating θ following the ideas in Bickel,
Klaassen, Ritov, and Wellner (1993), Hahn (1998) and
Firpo (2007). Details can be found in LemmaA.1 in the
Appendix.However, in practice, the IPWestimatormay
not have enough estimation efficiency, as it does not
fully extract the information contained in the auxiliary
variables. While, the REG and AIPW estimators use all
observed covariates to improve estimation efficiency.

By (A1) and Jensen’s inequality, among all lin-
ear functions (S0, S1) satisfying Yk ⊥ X | Sk, k = 0, 1,
V∗
S0,S1 is minimised when Sk has the smallest possible

dimension, i.e. Sk = SYk , k = 0, 1. In particular, this
applies to S0 = S1 = SY0,Y1 proposed in Hahn (2004),
since the dimension of SY0,Y1 is no smaller than that of
SYk .

The sum of last two terms on the right hand side
of (5) quantifies the price we may pay for estimat-
ing Bk by B̂k. There is an efficiency loss due to esti-
mating SYk by ŜYk when this sum is positive, while
it is possible that this sum is negative so that we
have an efficiency gain. If we further include the
covariates related to T, i.e. consider SYk,T being the
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smallest possible dimensional Sk satisfying T ⊥ X | Sk
and Yk ⊥ X | Sk, k = 0, 1, then cov(X,T | Sk) = 0 and
ck = 0, hence, θ̂ (ŜY0,T , ŜY1,T) and θ̂ (SY0,T , SY1,T) are
asymptotically equivalent. However, it is generally not
a good idea to use (ŜY0,T , ŜY1,T), because each SYk,T has
a dimension no smaller than that of SYk and therefore
both θ̂ (ŜY0,T , ŜY1,T) and θ̂ (SY0,T , SY1,T) is less efficient
than θ̂ (SY0 , SY1) according to Theorem 2.1. Although
θ̂ (ŜY0 , ŜY1) may be less efficient than θ̂ (SY0 , SY1) due
to the estimation of SYk , it may still be more efficient
than θ̂ (ŜY0,T , ŜY1,T). Some simulation results are given
in Section 3.

In Theorem 2.1, the condition
√
nvec(B̂k − Bk) =

n−1/2∑n
i=1 ψk(Xi,Zi,Ti)+ op(1)with Eψk(X,Z,T) =

0 is satisfied for B̂k obtained using some sufficient
dimension reduction methods (Hsing & Carroll, 1992;
Zhu & Ng, 1995).

3. Simulation

We investigate the finite-sample performance of three
estimators, θ̂IPW, θ̂REG, and θ̂AIPW, with four choices
of linear functions (S0, S1), (1) Sk = SYk , k = 0, 1, (2)
S0 = S1 = SY0,Y1 , (3) Sk = SYk,T , k = 0, 1, and (4) S0 =
S1 = ST . For each choice of (S0, S1), we consider esti-
mators using the true (S0, S1) as well as (Ŝ0, Ŝ1) by
sufficient dimension reduction. Thus, we consider a
total of 3 × 4 × 2 = 24 cases. In each case, we con-
sider the estimation of the QTEs with τ = 25%, 50%,
and 75%, under two different sample sizes n = 200 and
n = 1000.

In the first simulation, X = (X1, . . . ,X7)
� with

independent N(0, 1) components, P(T = 1 |X) = exp
(2X4){1 + exp(2X4)}−1, Y0 = 3X1 + 6X2 + 3X3 + ε0,
and Y1 = 10 + 3X1 + 6X2 + 3X3 + 3X4 + ε1, where
εk’s are independent N(0, 1) and are independent of
X. The outcome models are linear in X, the treatment
model is logistic, and the log-conditional treatment
odds is linear in X. Under this model, SY0 , SY1 , and ST
are all one-dimensional, while SY0,Y1 = SY1,T = SY0,T is
two-dimensional.

In the second simulation, X = (X1, . . . ,X7)
� with

independent N(0, 1) components, P(T = 1 |X) = exp
(−2X5 + 0.7X2

6 − 0.5X2
7){1 + exp(−2X5 + 0.7X2

6 −
0.5X2

7)}−1, Y0 = 3(X1 + X2 + 2X3 + 2X4)+ 1.5X2
6 +

ε0, and Y1 = 12 + 3(X1 + X2 + 2X3 + X4 + X5)+
1.5X2

7 + ε1, where εk’s are independent N(0, 1) and are
independent of X. The outcome models are nonlin-
ear in X, the treatment model is logistic, and the log-
conditional treatment odds is nonlinear in X. Under
this setting, each SYk is two-dimensional, ST is three-
dimensional, while SY0,Y1 , SY1,T , and SY0,T are four-
dimensional and not the same.

Based on 1000 simulation runs, we calculate the sim-
ulated relative bias (RB) and standard deviation (SD) in
each scenario. The results for simulations are given in
Tables 1–2, respectively. The following conclusions can
be obtained from the simulation results in Tables 1–2.

(1) When the true (S0, S1) is used, (SY0 , SY1) leads to
the best performance overall, followed by SY0,Y1 ,
(SY0,T , SY1,T), and ST , in agreement with our

Table 1. Relative bias and standard deviation for simulation 1 with true or estimated S0 and S1.

IPW REG AIPW

Estimated True Estimated True Estimated True

S0, S1 RB SD RB SD RB SD RB SD RB SD RB SD

n = 200
θ = 9.6 ST , ST 0.11 1.33 0.09 1.77 0.11 1.38 0.08 1.84 0.09 1.46 0.05 2.04
τ = 0.25 SY0,T , SY1,T 0.09 1.18 0.10 1.08 0.06 1.19 0.08 1.03 0.04 1.26 0.06 1.04

SY0,Y1 , SY0,Y1 0.09 1.09 0.10 1.08 0.09 1.09 0.08 1.03 0.07 1.07 0.06 1.04
SY0 , SY1 0.06 0.96 0.05 0.87 0.05 0.91 0.04 0.85 0.02 0.84 0.01 0.76

θ = 10.0 ST , ST 0.12 1.14 0.08 1.51 0.09 1.19 0.06 1.57 0.08 1.25 0.04 1.72
τ = 0.5 SY0,T , SY1,T 0.10 0.97 0.10 0.92 0.07 1.01 0.07 0.95 0.05 1.00 0.05 0.89

SY0,Y1 , SY0,Y1 0.11 0.94 0.10 0.92 0.08 1.01 0.07 0.95 0.06 0.91 0.05 0.89
SY0 , SY1 0.06 0.75 0.04 0.68 0.04 0.82 0.03 0.75 0.01 0.71 0.01 0.63

θ = 10.4 ST , ST 0.10 1.29 0.07 1.63 0.07 1.32 0.05 1.70 0.06 1.35 0.03 1.82
τ = 0.75 SY0,T , SY1,T 0.08 1.12 0.09 1.08 0.06 1.10 0.06 1.01 0.03 1.05 0.04 0.97

SY0,Y1 , SY0,Y1 0.09 1.10 0.09 1.08 0.06 1.06 0.06 1.01 0.05 0.98 0.04 0.97
SY0 , SY1 0.05 0.83 0.03 0.75 0.03 0.86 0.02 0.81 0.01 0.74 0.01 0.68

n = 1000
θ = 9.6 ST , ST 0.07 0.73 0.06 0.94 0.04 0.83 0.04 1.03 0.02 0.95 0.02 1.17
τ = 0.25 SY0,T , SY1,T 0.08 0.50 0.09 0.50 0.06 0.52 0.06 0.51 0.04 0.52 0.03 0.49

SY0,Y1 , SY0,Y1 0.09 0.49 0.09 0.50 0.05 0.52 0.06 0.51 0.03 0.49 0.03 0.49
SY0 , SY1 0.02 0.36 0.02 0.35 0.01 0.37 0.01 0.36 0.00 0.33 0.00 0.32

θ = 10.0 ST , ST 0.05 0.60 0.04 0.77 0.03 0.66 0.02 0.84 0.01 0.74 0.01 0.92
τ = 0.5 SY0,T , SY1,T 0.07 0.42 0.07 0.42 0.04 0.44 0.04 0.44 0.02 0.42 0.02 0.40

SY0,Y1 , SY0,Y1 0.07 0.42 0.07 0.42 0.03 0.44 0.04 0.44 0.01 0.41 0.02 0.40
SY0 , SY1 0.02 0.30 0.02 0.29 0.01 0.31 0.01 0.30 0.00 0.29 0.00 0.27

θ = 10.4 ST , ST 0.04 0.67 0.04 0.80 0.02 0.73 0.02 0.84 0.01 0.80 0.01 0.93
τ = 0.75 SY0,T , SY1,T 0.06 0.45 0.06 0.44 0.03 0.46 0.03 0.45 0.02 0.44 0.02 0.42

SY0,Y1 , SY0,Y1 0.06 0.44 0.06 0.44 0.03 0.45 0.03 0.45 0.01 0.42 0.02 0.42
SY0 , SY1 0.01 0.31 0.01 0.30 0.01 0.32 0.01 0.32 0.00 0.30 0.00 0.29

RB: relative bias; SD: standard deviation
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Table 2. Relative bias and standard deviation for simulation 2 with true or estimated S0 and S1.

IPW REG AIPW

Estimated True Estimated True Estimated True

S0, S1 RB SD RB SD RB SD RB SD RB SD RB SD

n = 200
θ = 12.7 ST , ST −0.07 1.61 −0.06 1.74 −0.06 1.71 −0.04 1.89 −0.05 1.75 −0.03 1.90
τ = 0.25 SY0,T , SY1,T −0.06 1.31 −0.07 1.38 −0.05 1.29 −0.06 1.34 −0.03 1.25 −0.05 1.24

SY0,Y1 , SY0,Y1 −0.05 1.25 −0.07 1.36 −0.03 1.22 −0.05 1.31 −0.02 1.15 −0.04 1.19
SY0 , SY1 −0.02 1.04 −0.04 1.10 −0.01 1.09 −0.02 1.12 0.01 0.97 −0.01 0.96

θ = 12.0 ST , ST −0.08 1.47 −0.08 1.64 −0.07 1.54 −0.06 1.79 −0.06 1.58 −0.05 1.81
τ = 0.5 SY0,T , SY1,T −0.05 1.16 −0.08 1.27 −0.04 1.16 −0.06 1.22 −0.02 1.16 −0.05 1.15

SY0,Y1 , SY0,Y1 −0.05 1.14 −0.08 1.23 −0.03 1.14 −0.05 1.21 −0.02 1.04 −0.04 1.09
SY0 , SY1 −0.02 0.95 −0.04 1.03 −0.01 1.00 −0.02 1.01 0.01 0.90 −0.01 0.88

θ = 11.3 ST , ST −0.09 1.63 −0.09 1.81 −0.08 1.68 −0.07 1.94 −0.07 1.75 −0.05 2.03
τ = 0.75 SY0,T , SY1,T −0.06 1.29 −0.09 1.41 −0.04 1.28 −0.06 1.33 −0.03 1.27 −0.06 1.29

SY0,Y1 , SY0,Y1 −0.06 1.26 −0.08 1.37 −0.04 1.25 −0.06 1.32 −0.02 1.20 −0.05 1.27
SY0 , SY1 −0.02 1.16 −0.04 1.23 −0.01 1.10 −0.02 1.12 0.00 1.06 −0.01 1.07

n = 1000
θ = 12.7 ST , ST −0.05 0.70 −0.05 0.84 −0.03 0.76 −0.03 0.92 −0.02 0.79 −0.02 0.93
τ = 0.25 SY0,T , SY1,T −0.03 0.55 −0.06 0.62 −0.01 0.57 −0.04 0.62 0.00 0.53 −0.03 0.55

SY0,Y1 , SY0,Y1 −0.02 0.50 −0.06 0.61 0.00 0.52 −0.03 0.59 0.01 0.47 −0.02 0.50
SY0 , SY1 0.00 0.43 −0.02 0.47 0.01 0.45 −0.01 0.48 0.02 0.42 0.00 0.42

θ = 12.0 ST , ST −0.07 0.60 −0.07 0.76 −0.05 0.66 −0.04 0.84 −0.03 0.68 −0.03 0.88
τ = 0.5 SY0,T , SY1,T −0.03 0.50 −0.07 0.54 −0.02 0.50 −0.04 0.55 0.00 0.48 −0.03 0.48

SY0,Y1 , SY0,Y1 −0.02 0.42 −0.07 0.51 −0.01 0.44 −0.03 0.51 0.01 0.41 −0.02 0.45
SY0 , SY1 0.00 0.38 −0.02 0.40 0.01 0.40 −0.01 0.42 0.01 0.37 0.00 0.38

θ = 11.3 ST , ST −0.08 0.72 −0.08 0.87 −0.06 0.76 −0.06 0.96 −0.04 0.81 −0.04 1.00
τ = 0.75 SY0,T , SY1,T −0.04 0.60 −0.08 0.64 −0.02 0.59 −0.05 0.61 0.00 0.58 −0.04 0.60

SY0,Y1 , SY0,Y1 −0.03 0.53 −0.08 0.62 −0.01 0.53 −0.04 0.58 0.01 0.50 −0.03 0.55
SY0 , SY1 0.00 0.45 −0.03 0.50 0.01 0.46 −0.01 0.48 0.01 0.43 0.00 0.44

RB: relative bias; SD: standard deviation

asymptotic results discussed in Section 2 and
proved in the Appendix.

(2) When estimator (ŜY0 , ŜY1) is used, the resulting
estimators of θ are in general less efficient than
those based on the true (SY0 , SY1), but they are still
better than the estimators based onother choices of
(S0, S1) regardless of whether the true or estimated
(S0, S1) is used.

(3) The performances of estimators using the true
(SY0,T , SY1,T) and (ŜY0,T , ŜY1,T) are quite similar
when n = 1000, in agreement with the asymp-
totic results in Theorem 2.1 and our discussion
after Theorem2.1. They areworse than those using
(ŜY0 , ŜY1).

(4) Consistent with the asymptotic theory, the perfor-
mance of estimators using ST is the worst, and the
efficiency loss is substantial in most cases. Note
that using estimated ST is actually better than using
the true ST .

(5) Regarding the three different estimation methods,
θ̂REG and θ̂AIPW have very comparable perfor-
mances and are recommended in practice.

4. Real data analysis

As we mentioned in the introduction, the University of
Wisconsin Health System became an Accountable Care
Organization (ACO) and implemented aComplexCare
Management (CCM) programme since January 1, 2013.
In particular, a team of nurses take responsibility for

Figure 1. Boxplots of observed annualised payment amount
(in thousands) for overall, CCM group T = 1, and non-CCM
group T = 0.

coordinating and implementing complex patients’ care
plan. The CCM is very intensive in time and resources
and therefore it is important to evaluate its specific
value.

We demonstrate the proposed estimation methods
in a data set resulted from the University of Wiscon-
sin Health ACO study where the primary outcome Z is
the annualised payment amount in thousands. The data
set consists of 894 patients with 186 in the CCM group
(T = 1) and 708 not in the CCM group (T = 0).
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Table 3. Estimates and standard errors (SE) for the University of Wisconsin Health ACO data.

IPW REG AIPW

S0, S1 Estimate SE Estimate SE Estimate SE

25% QTE ST 0.16 1.00 0.52 1.10 0.39 1.15
SY0,Y1 0.47 0.91 0.57 0.84 0.47 0.89
SY0 ,SY1 0.47 0.92 −0.10 0.81 0.47 0.88

50% QTE ST 2.82 2.67 1.59 2.76 3.31 2.64
SY0,Y1 3.21 2.52 2.34 2.63 3.27 2.46
SY0 , SY1 3.27 2.41 3.57 2.42 3.27 2.37

75% QTE ST −6.09 4.74 −5.31 4.65 −6.33 4.62
SY0,Y1 −8.51 3.92 −5.14 3.90 −8.38 3.82
SY0 , SY1 −8.38 3.83 −8.65 3.72 −8.14 3.76

ATE ST −2.36 3.72 −2.54 3.83 −2.11 3.53
SY0,Y1 , SY0,Y1 −5.68 3.09 −3.41 2.93 −6.03 3.05
SY0 , SY1 −5.42 2.93 −5.89 2.78 −5.24 2.87

SE: standard error by bootstrapping

Two issues with this dataset actually motivated our
study. First, the distribution of annualised payment is
right-skewed as shown by the box plots in Figure 1
for all patients and two groups. The overall median,
mean, 75% quantile, and maximum of observed pay-
ment are about 13, 31, 41, and 376 thousand dol-
lars, respectively. This suggests the need for estimating
quantile treatment effects. Second, the dataset consists
of three discrete and ninety-four continuous covari-
ates including medicare status, baseline payments, as
well as other baseline characteristics of patients. Thus,
dimension reduction is needed in nonparametric ker-
nel estimation.

For sufficient dimension reduction, we adopt the
semiparametric directional regressionmethodproposed
by Ma and Zhu (2012). After sufficient dimension
reduction, ST has 7 dimensions, SY0 has 5 dimensions,
SY1 has 8 dimensions, and SY0,Y1 has 13 dimensions.

Results for three choices of (S0, S1) considered in
simulation are shown in Table 3 for estimating ATE
andQTEwith τ = 25%, 50%, and 75%. Standard errors
(SE) for all estimates are calculated using the bootstrap
with 200 replications.

From Table 3, the 25% and 50% QTEs are not sig-
nificant by all methods. When SYk or SY0,Y1 is used, the
75%QTE is significantly less than 0, and in terms of SE,
the estimate using SYk , k = 0, 1, is more efficient than
the estimate using SY0,Y1 . However, the estimate of 75%
QTE using ST is inefficient due to the large variation of
using ST so that the result is insignificant.

Since 75% QTE is significantly negative, the result
indicates that receiving CCM intervention effectively
helps reducing medical payment for the high-cost
patients. But CCM intervention is not so useful for
the low-cost or median-cost patients, as 25% and 50%
QTEs are not significant. These results may be useful
for decision making in ACO.

For comparison, we also include estimates of ATE
and SE. The results in the last block of Table 3 show that
ATE is not significant by all methods. It is interesting to
see that estimates of ATE are all negative whereas esti-
mates of 50% QTE are all positive although they are

not significant, which may be caused by fact that the
distribution of annualised payment is right-skewed.

The example shows the usefulness of assessing QTEs
with different percentages. If we only estimate ATE, no
useful conclusion can be made in this example. Even
if we check 50% QTE instead of ATE because of the
existing skewness, we still cannot obtain any useful
conclusion.
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Appendices

Appendix 1. Semiparametric efficiency bound
of estimating θ with Sk
Throughout the Appendix, the S, Sk, SYk , SY0,Y1 , ST , Smin
are linear functions of X, i.e. S = B�X with B being a p × d
matrix, Sk = B�

k X with Bk being a p × dk matrix, etc.

Lemma A.1: Assume T ⊥ (Y0,Y1) |X and Yk ⊥ X | Sk, and
the distribution of Yk has density fk with fk(qk,τ ) > 0, k = 0,
1. A lower bound for the asymptotic variance of any asymptot-
ically normal estimator of θ = q1,τ − q0,τ is given by

V∗
S0,S1 = var

{
E(g1(Y1)|S1)− E(g0(Y0)|S0)

}
+
∑
k=0,1

E
{
var(gk(Yk) | Sk)
P(T = k | Sk)

}
, (A1)

where gk(Yk) = −(1{Yk ≤ qk,τ } − τ)/fk(qk,τ ), k = 0, 1. If
Yk ⊥ X | Sk, Yk ⊥ X | S′

k, and L(Sk) ⊆ L(S′
k), k = 0, 1, then

V∗
S0,S1 ≤ V∗

S′
0,S

′
1
, whereL(S) denotes the linear space generated

by columns of B for S = B�X.

Proof of Lemma A.1: Our derivation of the efficiency bound
mimics the proof in Firpo (2007) which is a direct appli-
cation of the semiparametric efficiency theory from Bickel
et al. (1993). Following the proof of Firpo (2007), one may
easily see that knowing T |X = T | ST won’t change the semi-
parametric efficiency bound, which is similar with the ATE
case in Hahn (1998). In our proof for Lemma A.1, one only
needs to carefully keep S1 and S0 separate in the derivation.
The construction of the efficient influence function is more
involved algebraically. We only provide a sketch of the proof
for the case Sk = SYk here. The density of (Y0,Y1,T,X) at
(y0, y1, k, x) is

q(y0, y1, k, x) = g(y0, y1 | x)π(x)k{1 − π(x)}1−kf (x),

where g(y0, y1 | x) denotes the conditional distribution of
(Y0,Y1) given X, f (x) denotes the marginal distribution of
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X and π(x) = P(T = 1 |X = x). The density of (Z,T,X) at
(z, k, x) is then equal to

q(z, k, x) = {g1(z | x)π(x)}k{g0(z | x)(1 − π(x))}1−kf (x)

= {h1(z | Sy1)π(x)}k{h0(z | Sy0)(1 − π(x))}1−kf (x),

where g1(· | x) = ∫
g(y0, · | x) dy0, g0(· | x) = ∫

g(·, y1|x) dy1.
The second equality holds because by the definition of
SY1 , SY0 , there exist functions h1 and h0 that g1(· | x) =
h1(· | Sy1) and g0(· | x) = h0(· | Sy0). For a regular parametric
submodel q(z, k, x) with parameter w,

qω(z, k, x) = {h1(z | Sy1 ,ω)π(x,ω)}k

× {h0(z | Sy0 ,ω)(1 − π(x,ω))}1−kf (x,ω).

The score function of this parametric submodel is

s(z, k, x |ω) = ks1(z | Sy1 ,ω)+ (1 − k)s0(z | Sy0 ,ω)

+ {k − π(x,ω)} ∂
∂ω
π(x,ω)

π(x,ω){1 − π(x,ω)} + d(x,ω),

where d(x,ω) = f (x,ω)−1(∂f (x,ω)/∂ω), s1(z | Sy1 ,ω) =
h1(z | Sy1 ,ω)−1(∂h1(z | Sy1 ,ω)/∂ω), s0(z | Sy0 ,ω) = h0(z |
Sy0 ,ω)−1(∂h0(z | Sy0 ,ω)/∂ω). Therefore, the tangent space is
equal to

T =
{
ks1(z | Sy1)+ (1 − k)s0(z | Sy0)

+ a(x)(k − π(x))+ d(x) : where (s0, s1, d, a)

satisfies
∫

sj(z | Syj)hj(z | Syj) dy = 0,

×
∫

d(x)f (x) dx = 0 and a(x)is unrestricted
}
.

For the parametric submodel with parameter ω under con-
sideration, qk,τ (ω), the τ -th quantile for Yk, k = 0, 1, satisfies
0 = Eω(1{Yk ≤ qk,τ (ω)} − τ) = ∫ ∫

(1{z ≤ qk,τ (ω)} − τ)hk
(z | SYk ,ω) dzf (x,ω) dx. Let θ(ω) = q1,τ (ω)− q0,τ (ω), and
remember gk(Yk) = −(1{Yk ≤ qk,τ } − τ)/fk(qk,τ ), k = 0, 1.
By an application of Leibnitz’s rule,

∂θ(ω)

∂ω
=
∫ ∫

g1(z)s1(z | Sy1 ,ω)h1(z | Sy1 ,ω)f (x,ω) dz dx

+
∫

Eω
(
g1(z)− g0(z) |X = x

)
d(x,ω)f (x,ω) dx

−
∫ ∫

g0(z)s0(z | Sy0 ,ω0)h0(z | Sy0)f (x,ω) dz dx.

Let

F(Z,T,X) = T{g1(Z)− E(g1(Z) | SY1)}
P(T = 1 | SY1)

− (1 − T){g0(Z)− E(g0(Z) | SY0)}
1 − P(T = 1 | SY0)

+ E(g1(Z)− g0(Z) |X),
and the true parameter ω is ω = ω0, i.e. θ = θ(ω0), then we
have

E {F(Z,T,X)s(Z,T,X |ω0)}

= E
[
T{g1(Z)− E(g1(Z) | SY1)}

P(T = 1 | SY1)
s(Z,T,X |ω0)

]

− E
[
(1 − T){g0(Z)− E(g0(Z)|SY0)}

1 − P(T = 1 | SY0)
s(Z,T,X |ω0)

]

+ E
[
E(g1(Z)− g0(Z) |X)s(Z,T,X |ω0)

]
. (A2)

For the three terms in (A2), after some algebra, we have,
respectively,

E
[
T{g1(Z)− E(g1(Z) | SY1)}

P(T = 1 | SY1)
s(Z,T,X |ω0)

]

= E[{g1(Y1)− E(g1(Y1)|SY1)}s1(Y1 | SY1 ,ω0)],

× E
[
(1 − T){g0(Z)− E(g0(Z)|SY0)}

1 − P(T = 1 | SY0)
s(Z,T,X |ω0)

]

= E[{g0(Z)− E(g0(Z) | SY0)}s0(Y0 | SY0 ,ω0)],

× E[{E(g1(Z)− g0(Z) |X)}s(Z,T,X |ω0)]

= E{E(g1(Y1)− g0(Y0) |X)d(X,ω0)}.
Therefore, E{F(Z,T,X)s(Z,T,X |ω0)} = ∂θ(ω0)/∂ω. The
efficiency bound is the expected square of the projection of
F on T . Because F ∈ T , the projection of F on T is itself. The
conclusion follows. �

For the second part of Lemma A.1, suppose S0, S1 satisfy
L(S0) ⊇ L(SY0), L(S1) ⊇ L(SY1). Since
V∗
SY1 ,SY0

= Var{E(g1(Y1) |X)− E(g0(Y0) |X)}

+ E
{
Var(g1(Y1) |X)
P(T = 1 | SY1)

}
+ E

{
Var(g0(Y0) |X)
P(T = 0 | SY0)

}
,

V∗
S1,S0 = Var{E(g1(Y1) |X)− E(g0(Y0) |X)}

+ E
{
Var(g1(Y1) |X)
P(T = 1 | S1)

}
+ E

{
Var(g0(Y0) |X)
P(T = 0 | S0)

}
.

We only need to prove

E
{
Var(g1(Y1) |X)
P(T = 1 | SY1)

}
≤ E

{
Var(g1(Y1) |X)
P(T = 1 | S1)

}
.

By Jensen’s inequity, we have

1
E{E(T | S1) | SY1}

≤ E
{

1
E(T | S1)

∣∣∣∣ SY1
}
.

Thus the conclusion follows from the inequality below.

E
[
Var(g1(Y1) |X)
P(T = 1 | SY1)

]
= E

[
Var(g1(Y1) |X)
E{E(T | S1) | SY1}

]

≤ E
[
Var(g1(Y1) |X)E

{
1

E(T | S1)
∣∣∣∣ SY1

}]

= E
[
E
{
Var(g1(Y1) |X)

E(T | S1)
∣∣∣∣ SY1

}]

= E
{
Var(g1(Y1) |X)
P(T = 1 | S1)

}
.

Appendix 2. Conditions for Theorem 2.1

(C1) Yk is a continuous random variable and for any
fixed τ ∈ (0, 1) there exists a unique qk,τ that P(Yk ≤
qk,τ ) = τ for k = 0, 1.

(C2) πk(Sk) is bounded away from 0 and 1.
(C3) Sk has compact support for k = 0, 1.
(C4) The function πk(Sk), the density function f (Sk) and

E(1{Yk ≤ qk,τ } | Sk) all have bounded partial deriva-
tives with respect to Sk up to rk order, f (Sk)πk(Sk) is
bounded away from 0.

(C5) The kernelKk is bounded up to second order deriva-
tive.
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(C6) The smoothing bandwidth hkn satisfies nh2kn → ∞,
nhdkkn → ∞ and

√
nhrkkn → 0 as n → ∞. Here rk is the

order of the kernelKk.

Appendix 3. Proof of Theorem 2.1

Proof of Theorem 2.1: (i) In the case that Sk = X,
Firpo (2007) proved the asymptotics of θ̂IPW using kernel
method, Chen et al. (2015) proved the asymptotics of θ̂REG
using kernel method. Following the proofs in their papers
and substituting X by Sk,

√
n(θ̂(S0, S1)− θ) is asymptotically

equivalent to

1√
n

n∑
i=1

[
Tig1(Zi)
π1(S1i)

− E
(
g1(Y1)|S1i

) {Ti − π1(S1i)}
π1(S1i)

]

− 1√
n

n∑
i=1

[
(1 − Ti)g0(Zi)

π0(S0i)

−E
(
g0(Y0)|S0i

) {(1 − Ti)− π0(S0i)}
π0i(S0i)

]
+ op(1), (A3)

where Ski is the ith observation of Sk, πk(Ski) = P(T =
k | Sk = Ski) for k = 0, 1. By direct but tedious calcula-
tion, the covariance of the two summation terms in (A3) is
−E(g0(Y0))E(g1(Y1))+ E{E(g0(Y0) | S0)E(g1(Y1) | S1)}.
Their corresponding variances are

Var
[
Tg1(Z)
π1(S1)

− E(g1(Y1) | S1)
π1(S1)

{T − π1(S1)}
]

= Var{E (g1(Y1) | S1
)} + E

{
Var(g1(Y1) | S1)

π1(S1)

}
,

Var
[
(1 − T)g0(Y0)

π0(S0)
− E(g0(Y0)|S0)

π0(S0)
{(1 − T)− π0(S0)}

]

= Var{E (g0(Y0) | S0
)} + E

{
Var(g0(Y0) | S0)

π0(S0)

}
.

Thus the asymptotic variance of θ̂ (S0, S1) is

Var
{
E
(
g1(Y1) | S1

)− E
(
g0(Y0) | S0

)}
+ E

{
Var(g1(Y1) | S1)

π1(S1)

}
+ E

{
Var(g0(Y0) | S0)

π0(S0)

}
.

(ii) Here we only list the proof for regression type estimator
θ̂REG with d0 = d1 = 1. We only derive the difference of q̂1,τ
between using trueBk and estimatedBk for regression estima-
tor, the proof for the q̂0,τ is similar. For simplicity, we denote
S1, B1, h1n, K1, g1(·), π1(·) as S, B, h, K, g(·), π(·) respec-
tively and define Kh(·) = h−1K(·/h) in the following proof.
Let
ij = Kh(B̂�Xj − B̂�Xi)− Kh(B�Xj − B�Xi), it can be
verified that

1
n

n∑
i=1

{∑n
j=1 Tjg(Zj)Kh(B̂�Xj − B̂�Xi)∑n

j=1 TjKh(B̂�Xj − B̂�Xi)

−
∑n

j=1 Tjg(Zj)Kh(B�Xj − B�Xi)∑n
j=1 TjKh(B�Xj − B�Xi)

}

= 1
n

n∑
i=1

{∑n
j=1 Tjg(Zj)Kh(Sj − Si)+∑n

j=1 Tjg(Zj)
ij∑n
j=1 TjKh(Sj − Si)+∑n

j=1 Tj
ij

−
∑n

j=1 Tjg(Zj)Kh(Sj − Si)∑n
j=1 TjKh(Sj − Si)

}

≡ A1 + A2 + A3,

where

A1 = 1
n2

n∑
i=1

n∑
j=1

{
Tjg(Zj)
ij

π(Si)f (Si)
− TjE(g(Zi) | Si)
ij

π(Si)f (Si)

}
,

A2 = − 1
n2

n∑
i=1

n∑
j=1

{
Tjg(Zj)
ij

π(Si)f (Si)

− Tjg(Zj)
ij
1
n
∑n

l=1 TlKh(Sl − Si)+ 1
n
∑n

l=1 Tl
il

}
,

A3 = 1
n2

n∑
i=1

n∑
j=1

Tj
ij

⎧⎪⎨
⎪⎩
E(g(Zi) | Si)
π(Si)f (Si)

− E(g(Zi) | Si)
1
n
∑n

l=1 TlKh(Sl − Si)+ 1
n
∑n

l=1 Tl
il

+
E(g(Zi) | Si)−

∑n
l=1 Tlg(Zl)Kh(Sl−Si)∑n

l=1 TlKh(Sl−Si)
1
n
∑n

l=1 TlKh(Sl − Si)+ 1
n
∑n

l=1 Tl
il

⎫⎪⎬
⎪⎭ .

Since 
ij = Kh(B̂�Xj − B̂�Xi)− Kh(B�Xj − B�Xi), using
aTaylor expansion aroundB�Xj − B�Xi for
ij and plugging
in A1, we have

A1 = (B̂ − B)�

n2

n∑
i=1

n∑
j=1

{
Tj{g(Zj)− E(g(Zi) | Si)}

π(Si)f (Si)

× 1
h

[
K′
(
B�Xj − B�Xi

h

)
Xj − Xi

h

]}
+ op(n−1/2)

≡ (B̂ − B)�

n2

n∑
i=1

n∑
j=1

Qij + op(n−1/2).

Denote A11 = ∑n
i=1
∑n

j=1 Qij/n2 and Ă11 = ∑n
i=1
∑n

j=1
E(Qij |Xi, g(Zi),Ti)/n2. Note

E
{
1
h
TjK′

(
Sj − Si

h

)(
Xj − Xi

h

)∣∣∣∣ (Xi,Zi,Ti) = (xi, zi, ti)
}

= E
[
E
{
1
h
TjK′

(
Sj − si

h

)
Xj − xi

h

∣∣∣∣ Sj
}]

= E
[
1
h2

K′
(
Sj − si

h

)
E{Tj(Xj − xi) | Sj}

]

= −∂[E{T(X − xi) | S = t}f (t)]
∂t

∣∣∣∣
t=si

+ op(1)

= −E(TX | S = si)f ′(si)− xiπ(si)f ′(si)− xiπ ′(si)f (si)

+ ∂{E(TX | S = t)}
∂t

∣∣∣∣
t=si

f (si)+ op(1),

and

E
{
1
h
Tjg(Zj)K′

(
Sj − si

h

)(
Xj − xi

h

)∣∣∣∣ (Xi,Zi,Ti) = (xi, zi, ti)
}

= E
[
E
{
1
h
Tjg(Zj)K′

(
Sj − si

h

)
Xj − xi

h

∣∣∣∣ Sj
}]

= E
[
1
h2

K′
(
Sj − si

h

)
E{Tjg(Zj)(Xj − xi) | Sj}

]

= −∂{E
(
Tg(Z)(X − xi) | S = t

)
f (t)}

∂t

∣∣∣∣∣
t=si

+ o(1)
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= −E(Tg(Z)X | S=si)f ′(si)−xiπ(si)E(g(Z) | S = si)f ′(si)

+ ∂E(Tg(Z)X | S = t)
∂t

∣∣∣∣
t=si

f (si)

− xiπ ′(si)E(g(Z) | S = si)f (si)− xiπ(si)

×
{
∂E(g(Z) | S = si)

∂S

}
f (si)+ op(1).

Therefore,

Ă11 = 1
n

n∑
i=1

{
cov(TX, g(Z) | S = si)f ′(si)

+ ∂E(Tg(Z)X | S = t)
∂t

∣∣∣∣
t=si

f (si)

−∂E(TX | S = t)
∂t

∣∣∣∣
t=si

E(g(Z) | S = si)f (si)

− xiπ(si)
∂E(g(Z)|S = si)

∂S
f (si)

}
+ op(1)

= − 1
n

n∑
i=1

{
cov(TX, g(Z) | S = si)f ′(si)

+ ∂cov(TX, g(Z) | S = t)
∂t

∣∣∣∣
t=si

f (si)

+ E(TX | S = si)
∂E(g(Z) | S = si)

∂S
f (si)

− xiπ(si)
∂E(g(Z) | S = si)

∂S
f (si)

}
+ op(1)

= (c1)p×1 + op(1),

where

c1 = −E

{
cov(TX, g(Z) | S)f ′(S)+ ∂cov(TX,g(Z) | S)

∂S f (S)
π(S)f (S)

}

+ E

[
{E(TX | S)− Xπ(S)} ∂E(g(Z) | S)

∂S
π(S)

]

= E
[
∂{π(S)−1}

∂S
cov(TX, g(Z) | S)

− cov(X,T | S)
π(S)

∂E(g(Z) | S)
∂S

]
.

It can be seen that the first term in c1 will equal to 0
if Y1 ⊥ X | S, while the second term in c1 will equal to
0 if T ⊥ X | S. Thus when both Y1 ⊥ X | S and T ⊥ X | S
hold, we will have c1 = 0. Let A11j = (1/n)

∑n
i=1 Qij, Ă11j =

(1/n)
∑n

i=1 E(Qij |Xi, g(Zi),Ti)), we have

E(A11 − Ă11)
2 = 1

n2

n∑
j=1

E(A11j − Ă11j)
2 + 2

n(n − 1)

×
∑
j�=k

E(A11j − Ă11j)E(A11k − Ă11k)

= 1
n
E(A11j − Ă11j)

2 = 1
n
{E(A2

11j)−E(Ă2
11j)}

≤ 1
n
E(A2

11j) = op(1).

Thus we have A11 = c1 + op(1), which leads to
√
nA1 = c�1 {√n(B̂ − B)} + op(1).

For A2, we also use a Taylor expansion for
ij:

A2 ≡ − 1
n2

n∑
i=1

n∑
j=1

×
{
Tjg(Zj)
ij

π(Si)f (Si)

− Tjg(Zj)
ij
1
n
∑n

l=1 TlKh(Sl − Si)+ 1
n
∑n

l=1 Tl
il

}

= − 1
n2

n∑
i=1

n∑
j=1

×
[
Tjg(Zj)

h
K′
(
B�Xj − B�Xi

h

)
(B̂ − B)�

×
(
Xj − Xi

h

){
1

π(Si)f (Si)

− 1
1
n
∑n

l=1 TlKh(Sl − Si)
+ 1

n
∑n

l=1 Tl
il

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦+ op(n−1/2).

We then decompose A2 by conditioning on index i, j, that is
we define

Ă2 = − 1
n2

n∑
i=1

n∑
j=1

×
[
Tjg(Zj)

h
K′
(
B�Xj − B�Xi

h

)
(B̂ − B)�

(
Xj − Xi

h

)

× E
{

1
π(Si)f (Si)

− 1
1
n
∑n

l=1 TlKh(Sl − Si)
+ 1

n
∑n

l=1 Tl
il

∣∣∣∣∣∣∣∣
Xi, g(Zi),Ti

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦ .

Since

E

{
1
n

n∑
l=1

TlKh(Sl − Si) | Si
}

= π(Si)f (Si)+ op(1),

E

{
1
n

n∑
l=1

Tlg(Zl)Kh(Sl − Si) | Si
}

= π(Si)E(g(Zi) | Si)f (Si)+ op(1),

using a similar decomposition method as A1, we can also
show

√
nA2

p−→ 0 and
√
nA3

p−→ 0. Thus we proved that

1
n

n∑
i=1

Ê
[
g(Y1i) | Ŝi

]
− 1

n

n∑
i=1

Ê
[
g(Y1i) | Si

]

= 1
n

n∑
i=1

{∑n
j=1 Tjg(Zj)Kh(Ŝj − Ŝi)∑n

j=1 TjKh(Ŝj − Ŝi)

−
∑n

j=1 Tjg(Zj)Kh(Sj − Si)∑n
j=1 TjKh(Sj − Si)

}

= c�1 (B̂ − B)+ op(1/
√
n).

Note that the REG estimator for q1,τ based on estimated S is:

q̂1,τ = argmin
1
n

n∑
i=1

Ê
{
(Y1i − t)(τ − 1{Y1i ≤ t}) | Ŝi

}
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= argmin
n∑
i=1

(
Ê
[
(1{Y1i ≤ q1,τ } − τ)(t − q1,τ ) | Ŝi

]

+Ê
[
(Y1i − t)(1{Y1i ≤ q1,τ } − 1{Y1i ≤ t}) | Ŝi

])
.

Let u = √
n(t − q1,τ ), û = √

n(q̂1,τ − q1,τ ), the optimisation
will change to

û = argmin

{ n∑
i=1

u√
n
Ê
[
(1{Y1i ≤ q1,τ } − τ) | Ŝi

]

+
n∑

i=1
Ê
[
(Y1i − (q1,τ + u/

√
n))(1{Y1i ≤ q1,τ }

− 1{Y1i ≤ q1,τ + u/
√
n}) | Ŝi

]}

Similar with the proof in Firpo (2007), one may check that
the second term equals to n((f1(q1,τ )/2)u2 + op(1)). Hence
we have

û = √
n(q̂1,τ − q1,τ )

= √
n

{
− 1
nf1(q1,τ )

n∑
i=1

Ê
[
(1{Y1i ≤ q1,τ } − τ) | Ŝi

]}

= 1√
n

n∑
i=1

Ê
[
g(Y1i) | Ŝi

]

= 1√
n

n∑
i=1

Ê
[
g(Y1i) | Si

]+ c�1
√
n{(B̂ − B)} + op(1)

= 1√
n

n∑
i=1

[
Tig1(Zi)
π1(S1i)

− E
(
g1(Y1) | S1i

) {Ti − π1(S1i)}
π1(S1i)

]

+ c�1
√
n{(B̂ − B)} + op(1).

The last equation follows from the proof in Chen et al. (2015),
which is the linearisation for the REG estimator using true S.
Repeat all above procedure for q0,τ , and plug in the linearisa-
tion for (B̂ − B), we could get the linearisation for θ̂ (S0, S1)−
θ , hence Theorem 2.1 is proved. �

Appendix 4. Asymptotic variance comparisons
between using Smin and using SY0,Y1
We first prove that the asymptotic variance using ST will be
larger than using X. Following the proof below, one may also
easily prove using Smin in De Luna et al. (2011) is larger than
V∗
SY0,Y1

unless Smin = SY0,Y1 , by replacing original covariate
set X with SY0,Y1 and replacing ST with Smin. Adapting the
proof for Theorem 2.1, we can find that for any S that satisfies
T ⊥ (Y0,Y1) | S, the asymptotic variance for using (S, S) in θ̂
is

Var{E(g(Y1) | S)− E(g(Y0) | S)}

+ E
{
Var(g1(Y1) | S)

π1(S)

}
+ E

{
Var(g0(Y0) | S)

π0(S)

}
.

Since ST satisfies T ⊥ X | ST , we also have T ⊥ (Y0,Y1) |X
thus T ⊥ (Y0,Y1) | ST . Therefore the asymptotic variance for
θ̂ using ST is:

VST = Var{E(g1(Y1) | ST)− E(g0(Y0) | ST)}

+ E
{
Var(g1(Y1) | ST)

π1(ST)

}
+ E

{
Var(g0(Y0) | ST)

π0(ST)

}
.

The asymptotic variance for θ̂ using X is:

VX = Var{E(g1(Y1) |X)− E(g0(Y0) |X)}

+ E
{
Var(g1(Y1) |X)

π1(X)

}
+ E

{
Var(g0(Y0) |X)

π0(X)

}
.

Therefore

VX − VST = E
[{π−1

1 (X)− 1}Var(g1(Y1) |X)
]

− E
[{π−1

1 (ST)− 1}Var(g1(Y1) | ST)
]

(A4)

+ E
[{π−1

0 (X)− 1}Var(g0(Y0) |X)
]

− E
[{π−1

0 (ST)− 1}Var(g0(Y0) | ST)
]

(A5)

+ 2E
{
E(g1(Y1) | ST)E(g0(Y0) | ST)

}
− 2E

{
E(g1(Y1) |X)E(g0(Y0) |X)

}
. (A6)

Let

a1(ST) =
√

1
π1(X)

− 1 =
√

1
π1(ST)

− 1, a0(ST)

=
√

1
π0(X)

− 1 =
√

1
π0(ST)

− 1.

The expression (A4) equals

E
{
var(a1g1(Y1) |X)− var(a1g1(Y1) | ST)

}
= −Var

{
E(a1g1(Y1) |X)

}+ Var
{
E(a1g1(Y1) | ST)

}
= −E

[
Var

{
E(a1g1(Y1) |X) | ST

}]
.

Similarly, the expression (A5) equals

−E[Var{E(a0g0(Y0) |X) | ST}],
and the expression (A6) equals

−2E[cov{E(g0(Y0) |X),E(g1(Y1) |X) | ST}].
Since a0a1 = 1, therefore

VX − VST = −E
(
Var

[{a1E(g1(Y1) |X)
+ a0E(g0(Y0) |X)} | ST

]) ≤ 0,

which completes the proof.
See Figure 1 for difference choices of Sk and Figure A1

for the comparisons of efficiency of estimator θ̂ based on
different Sk, k = 0, 1.

Appendix 5. Asymptotic variance comparisons
between using SY0,Y1 and using SYk ,T
In this section, we prove that the asymptotic variance
of θ̂ (SY0,Y1 , SY0,Y1) is smaller than asymptotic variance of
θ̂ (SY0,T , SY0,T), followed by those of θ̂ (ST , ST). From the
proof of Theorem 2.1, for all Sk satisfying T ⊥ Yk | Sk, the
asymptotic variance of θ̂ (S1, S0) is

Var
{
E
(
g1(Y1) | S1

)− E
(
g0(Y0) | S0

)}
+ E

{
Var(g1(Y1) | S1)

π1(S1)

}
+ E

{
Var(g0(Y0) | S0)

π0(S0)

}
.

For θ̂ (SY0,Y1 , SY0,Y1) and θ̂ (SY0,T , SY1,T), the asymptotic vari-
ances VSY0,Y1 and V∗

SY0,T ,SY1,T
are

V∗
SY0,Y1

= Var
{
E
(
g1(Y1) | SY0,Y1

)− E
(
g0(Y0) | SY0,Y1

)}
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Figure A1. Five choices of Sk in the space of all linear combinations of X. For (SY0 , SY1) and (SY0,T , SY1,T), the first row are S0 for
estimating Y0 characteristics, the second row are S1 for estimating Y1 characteristics.

+ E
{
Var(g1(Y1) | SY0,Y1)

π1(SY0,Y1)

}
+E

{
Var(g0(Y0) | SY0,Y1)

π0(SY0,Y1)

}

= Var
{
E
(
g1(Y1) | SY1

)− E
(
g0(Y0) | SY0

)}
+ E

{
Var(g1(Y1) | SY1)
π1(SY0,Y1)

}
+ E

{
Var(g0(Y0) | SY0)
π0(SY0,Y1)

}

V∗
SY0,T ,SY1,T

= Var
{
E
(
g1(Y1) | SY1,T

)− E
(
g0(Y0) | SY0,T

)}
+ E

{
Var(g1(Y1) | SY1,T)

π1(SY1,T)

}
+ E

{
Var(g0(Y0) | SY0,T)

π0(SY0,T)

}

= Var
{
E
(
g1(Y1) | SY1

)− E
(
g0(Y0) | SY0

)}
+ E

{
Var(g1(Y1) | SY1)

π1(SY1,T)

}
+ E

{
Var(g0(Y0) | SY0)

π0(SY0,T)

}

= Var
{
E
(
g1(Y1) | SY1

)− E
(
g0(Y0) | SY0

)}
+ E

{
Var(g1(Y1) | SY1)

π1(ST)

}
+ E

{
Var(g0(Y0) | SY0)

π0(ST)

}

Thus we only need to prove

E
{
Var(g1(Y1) | SY1)

π1(ST)

}
≥ E

{
Var(g1(Y1) | SY1)
π1(SY0,Y1)

}

By Jensen’s inequity,

E
{
Var(g1(Y1) | SY1)

π1(ST)

}
= E

{
Var(g1(Y1) | SY1)

π1(X)

}

= E
{
E
[
Var(g1(Y1) | SY1)

π1(X)

∣∣∣∣ SY0,Y1
]}

θ̂(Smin, Smin)

θ̂(ST , ST ) θ̂(SY0,T , SY1,T ) θ̂(SY0,Y1 , SY0,Y1) θ̂(SY0 , SY1)

θ̂(ŜT , ŜT ) θ̂(ŜY0,T , ŜY1,T ) θ̂(ŜY0,Y1 , ŜY0,Y1) θ̂(ŜY0 , ŜY1)

Figure A2. Relative efficiencies of estimators. Solid arrow from
A to B means that A is more asymptotically efficient than B.
Dashed arrow from A to B means that empirically A is more
efficient than B.

= E
{
Var(g1(Y1) | SY1)E

[
1

π1(X)

∣∣∣∣ SY0,Y1
]}

≥ E

{
Var(g1(Y1) | SY1)

1
E
[
π1(X) | SY0,Y1

]
}

= E
{
Var(g1(Y1) | SY1)
π1(SY0,Y1)

}

Hence θ̂ (SY0,Y1 , SY0,Y1) → θ̂ (SY0,T , SY1,T). Note that from
LemmaA.1wehaveV∗

SY0,T ,SY1,T
≤ V∗

X,X , i.e. θ̂ (SY0,T , SY1,T) →
θ̂ (X,X). Then the other result follows from θ̂ (X,X) →
θ̂ (ST , ST), which is proved in the Appendix 4.
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