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I congratulate the authors on an excellent overview of
an important research area. Sufficient dimension reduc-
tion methods are based on the model-free driving con-
ditionthat Y I X | PsX, where X € R? is multivariate
and potentially high-dimensional, Ps is the projec-
tion onto the dimension reduction subspace S C R?.
Equipped with variable selection and variable screening
techniques, many modern sparse sufficient dimension
reduction methods have been developed in the past
few years, and they can work really well in the model
development stage of high-dimensional data analysis.
This review paper is very timely and provides a thor-
ough overview of sparse sufficient dimension reduction
methods and sheds lights on future research directions.

Specific contributions of this paper include the fol-
lowing. First of all, it recasts many moment-based suf-
ficient dimension reduction methods as a generalised
eigen-decomposition problem and also as a constrained
trace optimisation (Equation (2.1) in the paper). These
two formulations are crucial for studying sparse suf-
ficient dimension reduction in high-dimensional set-
tings where p>n or p > n. This paper also pro-
vides a comprehensive overview of the key develop-
ments in sparse sufficient dimension reduction liter-
ature, from the first paper by Ni et al. (2005), to the
newest theoretical and computational breakthrough in
Tan et al. (2020). Various techniques for sparse suffi-
cient dimension reduction are discussed, including the
shrinkage and regularised estimation, variable screen-
ing and the trace pursuit, and the sequential pro-
cedures. Advantages and possible pitfalls of different
approaches are well explained by the authors. Finally,
the paper provides the theoretical foundations for
establishing the minimax rates of convergence for esti-
mating a sparse dimension reduction subspace. Further
calculations are also included to provide insights about
second-order dimension reduction methods such as
SAVE and DR.

This paper is inspiring for substantive research in
high-dimensional multivariate statistics, and encour-
aging for current and future studies in dimension

reduction. In what follows, I draw two connections
which may be suggestive of future directions.

1. Least squares formulations

In the seminal work of Li and Duan (1989), a well-
known connection between the ordinary least square
estimator in the regression of ¥ on X € R? and the
one-dimensional dimension reduction subspace can be
derived. Specifically, consider the following bivariate
loss function,

La+b'X,Y),
e.g L(u,v) = (u— )% (1)

L(u,v) is convex in u,

and define the unique minimiser as follows,

— . T
(o, B) = arg Jmin, E{L(a+b" X, Y)}. (2)

Then under the linearity condition of dimension reduc-
tion subspace, it was shown that 8 is contained in
the central subspace (or any dimension reduction sub-
space).

A direct consequence of this somewhat surprising
result is that one can simply use OLS to extract the
direction in nonlinear models of the following form,

Y =g(y'X,e), (3)

where g is some unknown function, ¢ is the error term,
and y € RP*? spans the central subspace under this
model. The model (3) is known as the single-index
model when d =1, and the multiple-index model
when d > 1. Then Li-Duan Theorem (Li & Duan, 1989,
Theorem 2.1) implies that the solution 8 from ordinary
least squares estimation, or more generally from (2), lies
within the central subspace: B € span(y) = Syjx.

For single-index models, this means that 8 from OLS
fitting, (o, B) = argmingp E{(Y —a — b'X)?2}, is the
same as p in population up to a scalar multiplication
(i.e. B = c -y for some constant ¢ # 0). As such, we
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might still use OLS to study regression graphics even
when there is a nonlinear relationship between Y and
X (Cook, 1998). In high-dimensional setting, one may
replace OLS with its penalised version such as LASSO
regression and achieve consistent variable selection
and directional estimation (Neykov, Lin, et al., 2016;
Neykov, Liu, et al., 2016).

For multiple-index models and model-free sufficient
dimension reduction, the (sparse) estimation of the
central subspace is much more challenging. In high-
dimensional sparse sufficient dimension reduction, it is
thus desirable to have a penalised least squares formula-
tion. Indeed, as this paper points out, the computation-
ally tractable and rate optimal sparse SIR is eventually
obtained by the adaptive estimation scheme based on
a least squares formulation (Tan et al., 2020). Finally,
the paper concludes that ‘Since SAVE and DR can not be
rewritten as a least-square formulation, we do not define
refined sparse SAVE and DR estimator’. Not surprisingly,
developing theoretical solid and computationally feasi-
ble methods for high-dimensional SAVE and DR is very
challenging and requires substantial efforts.

2. Sparse/constrained canonical correlation

As discussed in Section 3.1 of this paper, sparse suf-
ficient dimension reduction subspace can be obtained
by the C? method: constrained canonical correlation
(Zhou and He, 2008). The idea is to estimate the con-
strained canonical variates between the B-spline basis
functions of response transformation, 7 (Y) € R"+kn,
where m is the spline order and k, is the number of
interval knots in B-spline transformation, and the pre-
dictor X € R?. Then this procedure can be viewed as
an estimation for sparse SIR directions. However, as
the authors noted, this method may not be directly
applicable to very high-dimensional settings, at least in
theory. In the past few years, there are some advances in
both the theoretical and computational aspects of high-
dimensional canonical correlation analysis. In Mai and
Zhang (2019), they solved the sparse canonical cor-
relation analysis (CCA) problem using an iterative
penalised least squares approach. This new iterative
penalised least squares approach can be directly applied
to estimate the sparse sufficient dimension reduction
directions when combined with B-spline transforma-
tions of the response.

To illustrate the idea, we consider the estimation
of the leading CCA directions. For a multivariate X €
RP? and a multivariate Y € RY, the leading CCA direc-
tions are defined through a pair of linear combinations
aTY and BTX such that the correlation between them
are maximised. When max(p, q) > n, the sparse CCA
problem assumes that the population solution o] €
R4 and B} € R? are both sparse so that we can esti-
mate them with a limited sample size. Then the leading
sparse CCA directions can be obtained by solving the
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following constrained optimisation problem,

> @'Y - BTX)?
i=1

@, B) =arg min
B gaeRq,ﬁeRP

+ Ao llells + Aq 1Bl (4)

subject to constraints that a’Sya =1and BTExB =
1. Note that the data are centred so that Y ; X; = 0
and Y7 Y; = 0, also that the sample covariance Ty
and Tx do not need to be positive definite. Then it can
be shown that, the above optimisation can be solved by
iteratively solving the following two LASSO regression
problems. Specifically, the sparse CCA solutions can be
obtained as follows,

n

~ . 2T Ty 2

& = arg min .El(ﬂIXi_a Yi)® + Aalleeln,
i=

~

o

U = —— (5)
Ve Zya
n
5 - ~Tv  aTy.2
B = arg min I;(oclYl BYX)* + hglBl,
5 B
b= ©)
B XxB
For sequential sparse CCA directions, & € R and
BreRP, k=1,2,..., we can use the similar itera-

tive penalised least squares formulation after deflation
of the data from the previous (k — 1) estimated direc-
tions. Theoretical results show that this approach can
consistently estimate the population directions (any fix
number of pairs k=1,...,K) with an overwhelm-
ing probability in ultra-high dimensions log(p + q) =
o(n). More importantly, due to its simplicity, the itera-
tive penalised least squares approach can be extremely
fast and scalable — even much faster than some exist-
ing convex formulations. This approach might be use-
ful for sparse sufficient dimension reduction when the
response is multivariate and even high-dimensional.
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