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ABSTRACT
Multivariate mixtures are encountered in situations where the data are repeated or clustered
measurements in the presence of heterogeneity among the observations with unknown pro-
portions. In such situations, the main interest may be not only in estimating the component
parameters, but also in obtaining reliable estimates of the mixing proportions. In this paper,
we propose an empirical likelihood approach combined with a novel dimension reduction
procedure for estimating parameters of a two-component multivariate mixture model. The per-
formance of the new method is compared to fully parametric as well as almost nonparametric
methods used in the literature.
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1. Introduction

Mixture models provide a flexible way of mod-
elling complex data obtained from a population with
observed or unobserved heterogeneity. Mixture mod-
els have been applied in astronomy, biology, fishery,
human genetics, and other scientific areas of research.
See Titterington, Smith, and Makov (1985), Lind-
say (1995), McLachlan and Peel (2000), and references
therein.

We consider a special multivariate mixture model
where repeated measurements are available for each
subject. Let X1, . . . ,Xn be independent and identi-
cally distributed (i.i.d.) d-variate random vectors from
a finite mixture model with m components. If the ele-
ments of the vector Xi are independent conditional on
belonging to a subpopulation, then the mixture density
is given by

h(x) =
m∑
j=1

πj

d∏
r=1

fjr(xr), (1)

where πj’s are mixing proportions such that
∑m

j=1
πj = 1, πj > 0 for all j, and f (·), with or without sub-
scripts, denotes a univariate density function.

The above data structure is quite common espe-
cially in social sciences where measurements are taken
repeatedly for various reasons. For example, the goal
of research on preschool children’s inclusion task
responses is to study different solution strategies with
which young children solve a given cognitive task. The
solution strategy is often called the latent variable since

it is hidden and unobservable. A group of preschool
children can be considered as a sample from a mixture
modelwhere the components correspond to the various
solution strategies; see Thomas andHorton (1997). In a
simplified setting, one could assume that there are two
main solution strategies which lead to a mixture model
with two components.

Many researchers studied the nonparametric iden-
tifiability of the above multivariate mixture model.
Hall and Zhou (2003) showed that the model (1) is
always nonparametrically unidentifiable when d=2
andm=2. Under somemild regularity conditions, Hall
and Zhou (2003) proved that the two-component mix-
ture model is nonparametrically identifiable for d ≥ 3.
Kasahara and Shimotsu (2014) discussed the identi-
fiability of the number of components in multivari-
ate mixture models in which each component dis-
tribution has independent marginals. Hettmansperger
and Thomas (2000) considered the situation where the
elements of the vector Xi are, not only conditionally
independent, but also identically distributed. Under
such an assumption, the mixture density (1) can be
rewritten as

h(x) =
m∑
j=1

πj

d∏
r=1

fj(xr). (2)

They proposed an almost nonparametric approach to
estimate the mixing proportions. Their key idea is to
categorise data into 0 or 1 by setting an optimal cut
point and then apply the EM algorithm to estimate the
mixing proportion in the resulting binomial mixture
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models. Cruz-Medina, Hettmansperger, and Thomas
(2004) extended the work of Hettmansperger and
Thomas (2000) by transforming the observed vec-
tor into a count vector which leads to a multinomial
mixture model.

To avoid possible loss of efficiency in categorising
continuous data into count data, we propose a nonpara-
metric approach to estimate the mixing proportions
using empirical likelihood (EL). The EL, which was
first introduced by Owen (1988), is a nonparametric
method of inference based on a data-driven likelihood
ratio function. This nonparametric and likelihood-
based approach has become one of the most effective
statistical methods. See Owen (2001) for a compre-
hensive review. As shown in Qin and Lawless (1994),
the EL is a prominent efficient tool in estimating
parameters by incorporating estimating equations into
constrained maximisation of the empirical likelihood
function.

We first develop the proposed methodology for the
3-dimensional mixture models, and later on extend
it to higher dimensions. For the multivariate mixture
model, we propose linking the various moment esti-
mating equations through the EL to provide amore effi-
cient estimation. In the d-dimensional mixture model,
there are 2d − 1 moment estimating equations. When
d is large, it is impracticable to search for the optimal
solution. We propose a simple and intuitive bootstrap-
like modification of the method. First we obtain K
sets of three indices chosen randomly and without
replacement from 1, 2, . . . , d, and then multiply the
K nonparametric likelihoods pertinent to the chosen
indices to obtain the profile empirical likelihood ratio
function.

Our simulation results show that, when the paramet-
ric model is correctly specified, our EL estimators per-
form similarly to the parametric estimators. However,
when the parametric model is misspecified, the EL esti-
mators perform uniformly better than the parametric
estimators and the almost nonparametric estimators.

The paper is organised as follows. The proposed
empirical likelihood approach for multivariate mixture
model and its theoretical properties are presented in
Section 2. The extension to d-dimensional (d>3) mix-
tures is also presented. Simulation studies and real data
analysis are provided in Section 3.Discussions are given
in Section 4.

2. Methodology

We first discuss the methodology for the three-variate
mixture model, and then extend to multivariate mix-
tures with higher dimensions.

2.1. Three-variatemixturemodel

Let X = (X1,X2,X3)
T be a 3-dimensional random vec-

tor with distribution function H(x) and joint probabil-

ity density function

h(x) = π

3∏
i=1

f1(xi) + (1 − π)

3∏
i=1

f2(xi), (3)

where 0 ≤ π ≤ 1, and the component density func-
tions f1 and f2 are different but unspecified. This model
is a special case of model (2) withm=2 and d=3.

The parameters of interest are the expectations of
the random variables and the mixing proportion π .
Suppose μ0 and μ1 are the expected values of the two
components:

μ0 =
∫

xf1(x) dx, μ1 =
∫

xf2(x) dx,

and that they satisfyμ0 < μ1.We then have the follow-
ing moment estimating equations

E(X1X2X3) = πμ3
0 + (1 − π)μ3

1,

E(X1X2) = E(X1X3) = E(X2X3)

= πμ2
0 + (1 − π)μ2

1,

E(X1) = E(X2) = E(X3) = πμ0 + (1 − π)μ1.

There are seven estimating equations in total with three
unknown parameters (π ,μ0,μ1).

Let xi = (xi1, xi2, xi3)T, i = 1, . . . , n, be i.i.d. obser-
vations from the multivariate mixture model (3), and
pi = dH(xi). According to Owen (1988), the EL func-
tion based on the observed data is

n∏
i=1

dH(xi) =
n∏

i=1
pi. (4)

Let θ = (π ,μ0,μ1)
T. For the distribution H(x) under

study, feasible pi’s satisfy

n∑
i=1

pi = 1, pi ≥ 0, and
n∑
i=1

pig(xi, θ) = 0, (5)

where

g(xi, θ) = (g1(xi, θ), gT2 (xi, θ), gT3 (xi, θ))T (6)

with g1(xi, θ) = xi1xi2xi3 − πμ3
0 − (1 − π)μ3

1,

g2(xi, θ) =
⎛⎝xi1xi2 − πμ2

0 − (1 − π)μ2
1

xi1xi3 − πμ2
0 − (1 − π)μ2

1
xi2xi3 − πμ2

0 − (1 − π)μ2
1

⎞⎠ and

g3(xi, θ) =
⎛⎝xi1 − πμ0 − (1 − π)μ1
xi2 − πμ0 − (1 − π)μ1
xi3 − πμ0 − (1 − π)μ1

⎞⎠ .

Inference on θ is usually made through their profile
likelihood, which is obtained by maximising (4) with
respect to pi’s subject to the constraints in (5). Up to
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a constant not depending on θ , the resulting empirical
log-likelihood is

�(θ) = −
n∑

i=1
log{1 + λTg(xi, θ)},

where λ is the Lagrange multiplier determined by

1
n

n∑
i=1

g(xi, θ)

1 + λTg(xi, θ)
= 0.

We can show that in a O(n−1/3) neighbourhood of the
true values of θ , λ = λ(θ) is determined uniquely by
an implicit function of θ . We denote the maximum
empirical likelihood estimators as θ̂ = (π̂ , μ̂0, μ̂1)

T.
Their asymptotic properties are given in the following
theorem by Qin and Lawless (1994). When θ takes its
true value θ0, we write g(x, θ0) to be g(x) for short.

Theorem 2.1: Under the regularity conditions specified
inQin and Lawless (1994). As n goes to infinity,

√
n(θ̂ −

θ0)
d−→ N(0,V1), where

V1 =
[

E

{
∂g(X)

∂θ

}T
{Eg(X)gT(X)}−1

E

{
∂g(X)

∂θ

}]−1

.

With (1(X1 ≤ t), 1(X2 ≤ t), 1(X3 ≤ t)) in place of
X, we can estimate the underlying distribution func-
tions F1(t) and F2(t). The asymptotic normality of the
resulting empirical likelihood estimators can be estab-
lished in a similar way to Theorem 2.1.

2.2. Multivariatemixtures with higher dimensions

We now extend the methodology discussed in the pre-
vious section to the case with d>3. Suppose the d-
variate data wi = (wi1, . . . ,wid)

T, i = 1, . . . , n, arise
from the mixture model with the following mixture
density

h(wi) = π

d∏
j=1

f1(wij) + (1 − π)

d∏
j=1

f2(wij).

In principle, we can adopt the same approach as in the
case d=3 in order to make inferences about θ . When
d is large, however, the number of estimating equations
we must deal with is(

d
d

)
+
(

d
d − 1

)
+ · · · +

(
d
1

)
= 2d − 1,

which can be extremely large. Consequently, it is
impractical to find the optimal solution to embrace that
many estimating equations in the empirical likelihood
setup.

We now propose a simple and intuitive solution to
the high-dimensional problem. Let Md = (d3), and �i

(i = 1, 2, . . . ,Md) be all the possible samples of size 3
from {1, 2, . . . , d} drawn by simple random sampling
without replacement. We randomly select K sets from
{�1, . . . ,�Md} by simple random sampling without
replacement. Let �∗

k = {sk1, sk2, sk3} (k = 1, 2, . . . ,K)
be the resulting K index sets, and uki = (xki, yki, zki)T
denote (wi,sk1 ,wi,sk2 ,wi,sk3)

T.We assume sk1 < sk2 < sk3
for each k, and treat the data with different �∗

k as inde-
pendent samples. The profile empirical likelihood ratio
function of θ based on the selected index sets is

R(θ) = max

{ K∏
k=1

n∏
i=1

(npki)

∣∣∣∣∣
n∑

i=1
pki = 1, pki ≥ 0,

n∑
i=1

pkig(uki, θ) = 0, k = 1, . . . ,K

}
,

where the function g is defined in (6).
Applying the method of constrained optimisation,

we have

G =
K∑

k=1

n∑
i=1

log(npki) − n
K∑

k=1

n∑
i=1

pkiλT
k g(uki, θ)

+
K∑

k=1

γk

( n∑
i=1

pki − 1

)
,

where λk and γk are the Lagrange multipliers. Setting
the first derivative of G with respect to pki to zero, we
have

∂G
∂pki

= 1
pki

− nλT
k g(uki, θ) + γk = 0.

Multiplying both sides of the above equation by pki and
summing over i give

n∑
i=1

pki
∂G
∂pki

= n + γk = 0,

which leads to γk = −n. Therefore, the maximum of∏K
k=1
∏n

i=1(npki) is attained at

p̂ki = 1
n

1
1 + λT

k g(uki, θ)
, k = 1, . . . ,K,

where the Lagrange multipliers λk = λk(θ)’s are the
solutions to

1
n

n∑
i=1

g(uki, θ)

1 + λT
k g(uki, θ)

= 0.

Putting p̂ki back and taking logarithm, we have the
profile empirical log-likelihood ratio function of θ ,

�(θ) = log{R(θ)} = −
K∑

k=1

n∑
i=1

log{1 + λT
k g(uki, θ)}.

We show that with probability tending to one, there
must be a local maximum point in a very small neigh-
bourhood of the true parameter value of θ . Let �∗ =
{�∗

1, . . . ,�
∗
K}.
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Lemma 2.1: Let θ0 = (π∗,μ0∗,μ1∗) be the true value
of θ . Suppose

∫ |x|9 dF0(x) + ∫ |x|9 dF1(x) < ∞, π∗ ∈
(0, 1) and μ0∗ 	= μ1∗, and that F0 and F1 are non-
degenerate distributions. Conditioning on �∗, as n →
∞, �(θ) attains its maximum value at some point θ̂ with
probability 1 in the interior of the ball ‖θ − θ0‖ ≤ n−1/3.
Let λ̂ = (λ̂

T
1 , . . . , λ̂

T
K)T with λ̂i = λ(θ̂). Consequently, θ̂

and λ̂ satisfy

Qkn(θ̂ , λ̂k) = 0 for k = 1, . . . ,K, and

Q0n(θ̂ , λ̂) = 0,

where

Qkn(θ ,λ) = 1
n

n∑
i=1

g(uki, θ)

1 + λT
k g(uki, θ)

,

Q0n(θ ,λ) = 1
n

K∑
k=1

n∑
i=1

1
1 + λT

k g(uki, θ)(
∂g(uki, θ)

∂θ

)T
λk.

Lemma 2.1 implies that the proposed EL estima-
tor θ̂ is consistent. Based on Lemma 2.1, we further
establish the asymptotic normality of θ̂ in the follow-
ing theorem. This result is an extension of Theorem 1
in Qin and Lawless (1994). It embraces the correlation
structure of the selected elements within the random
vectors.

Theorem 2.2: Assume the conditions of Lemma 2.1. Let
S11 = E{g(X)gT(X)}, S12 = ST21 = −E{∂g(X)/∂θT},
and

�off = 1
K(K − 1)

∑
1≤k	=j≤K

E{g(uk1)gT(uj1)|�∗}.

Conditioning on �∗, as n goes to infinity,
√
n(θ̂ − θ0)

converges in distribution to N(0,V2), where

V2 = 1
K

(S21S−1
11 S12)

−1

+ K − 1
K

(S21S−1
11 S12)

−1(S21S−1
11 )

�off (S−1
11 S12)(S21S

−1
11 S12)

−1.

If there are no common elements in �∗
k and

�∗
j , then E{g(uk1)gT(uj1) | �∗} = 0. Further, if d is

quite large, and there are no common elements
in any pair of �∗

k and �∗
j (k 	= j), then �off = 0,

and V2 = (S21S−1
11 S12)

−1/K. At the other extreme,
if �∗

k = �∗
1 for k = 2, . . . ,K, then �off = S11, and

V2 = (S21S−1
11 S12)

−1. Therefore, the second term in V2
stands for the efficiency loss due to the fact that some
data are used more than once.

3. Simulation studies and data analysis

3.1. Simulation studies

We have carried out simulations to evaluate the finite-
sample performance of the proposed empirical likeli-
hood estimators (EL). For comparison, we have also
considered two of its competitors: the maximum like-
lihood estimators (ML) under the multivariate nor-
mal mixture model, and the almost nonparamet-
ric estimators based on multinomial mixtures (Cruz-
Medina et al. (2004); MN for short). Both the ML
and MN estimators can be calculated by the EM
algorithm.

We generate data from the mixture model (3). Dif-
ferent specifications of component distributions f1 and
f2 are listed below:

(a) (Normal mixtures) f1 and f2 are the density func-
tions of N(μ1, 1) and N(μ2, 1), respectively. Here
μ1 = 0 and μ2 = 1 or 2.

(b) (Non-central t mixtures) f1 and f2 are the density
functions of t(r, a(r)μ1) and t(r, a(r)μ2), respec-
tively. Here t(r, a(r)μ) denotes a t-distribution
with r degrees of freedom, non-centrality param-
eter a(r)μ, and mean μ, where a(r) = (2/r)
(�(r/2)/�((r − 1)/2)). Here r=4, μ1 = 0, and
μ2 = 1.5 or 2.

(c) (Chi-square mixtures) f1 and f2 are the density
functions of χ2

μ1
and χ2

μ2
. Here μ1 = 5 and μ2 =

10 or 20.

For each setting, we generate 1000 samples with sample
size n=400, d=3 or 6, and π = 0.2, 0.5, or 0.8. When
d=6, we set K=8 in the proposed EL method. We
calculate the biases and standard deviations of the esti-
mators under comparison, and summarise the results
in Tables 1–3.

Let us first examine Table 1, where the multivari-
ate normal mixture model is correctly specified. As
expected, the ML estimators have the smallest stan-
dard deviations in all cases and the smallest absolute
biases in most cases. The proposed EL estimators per-
form very similarly to the ML estimators and both
of them are uniformly better than the MN estima-
tors. As μ2 goes further away from μ1 = 0, all esti-
mators have decreasing standard deviations. This may
be because the two component distributions in the
mixture model also get further away from each other.
When π increases from 0.2 to 0.8, the performances
of all the three estimators for μ1 are getting better,
while those for μ2 are getting worse. This is proba-
bly because as π increases, the multivariate normal
mixture contains increasing information about μ1 but
decreasing information about μ2. All the three esti-
mators for π have better performance when π lies in
the middle than on the boundaries of its parameter
space.
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Table 1. Biases (%) and standard deviations (%) (in parentheses) of different estimators based on 1,000 simulations with n= 400.
Data were generated from the multivariate mixture model with f1 and f2 being N(μ1, 1) and N(μ2, 1), respectively. Here μ1 = 0,
μ2 = 1 or 2 and d= 3 or 6.

d= 3 d= 6

Method π μ1 μ2 π μ1 μ2

π = 0.2,μ2 = 1
EL 3.34(14.96) −4.5(33.33) 2.33(11.54) 0.97(6.52) 0.18(14.11) 0.49(4.95)
MN 16.78(19.18) 13.84(40.78) 10.38(16.05) 2.46(9.62) −20.72(25.32) 5.83(5.96)
ML 2.19(11.32) −1.33(23.21) 1.45(8.56) 0.24(3.89) −0.07(8.73) 0.08(3.28)

π = 0.2,μ2 = 2
EL 0.29(3.25) 0.61(13.31) 0.27(4.96) −0.05(2.39) −0.10(7.34) −0.06(2.98)
MN 1.74(5.43) −32.19(28.69) 10.57(7.03) 0.08(2.53) −46.28(13.04) 10.53(3.53)
ML 0.10(2.46) 0.16(9.20) 0.07(3.75) 0.01(2.09) 0.11(5.00) 0.14(2.42)

π = 0.5,μ2 = 1
EL 0.72(13.16) −1.09(15.10) 2.46(15.25) −0.2(6.37) −0.39(6.81) −0.14(6.89)
MN 0.94(13.75) −6.76(23.29) 8.86(23.67) −0.3(5.50) −13.79(10.83) 13.04(11.17)
ML −0.2(10.45) −1.37(11.76) 0.66(11.46) −0.29(4.35) −0.28(4.70) −0.25(4.81 )

π = 0.5,μ2 = 2
EL 0.06(3.68) 0.09(6.54) 0.22(6.49) −0.16(2.87) 0.01(4.06) −0.28(3.98)
MN 0.00(4.15) −16.14(16.52) 16.42(16.16) −0.15(2.78) −19.97(7.75) 19.64(6.88)
ML 0.00(2.94) −0.04(4.94) 0.11(4.96) −0.17(2.63) −0.10(2.94) −0.16(3.08)

π = 0.8,μ2 = 1
EL −3.34(15.06) −2.09(11.78) 4.23(34.49) −0.97(7.08) −0.38(5.06) 0.17(14.21)
MN −17.77(20.32) −10.54(16.36) −14.67(41.56) −2.17(8.89) −5.83(5.81) 21.41(22.80)
ML −3.71(13.25) −2.26(9.88) −0.95(25.60) −0.53(3.90) −0.23(3.28) −0.37(8.70)

π = 0.8,μ2 = 2
EL −0.37(3.36) −0.24(5.07) −0.07(13.19) 0.01(2.36) −0.12(3.09) −0.29(7.01)
MN −1.95(6.22) −10.16(7.70) 32.08(32.32) −0.24(4.00) −10.3(4.17) 45.26(19.93)
ML −0.25(2.37) −0.14(3.81) 0.06(8.70) 0.07(2.09) −0.07(2.42) 0.12(4.61)

Table 2. Biases (%) and standard deviations (%) (in parentheses) of different estimators based on 1,000 simulations with n= 400.
Dataweregenerated fromthemultivariatemixturemodelwith f1 and f2 being t(4,μ1)and t(4,μ2/{

√
2�(3/2)/�(2)}), respectively.

Hereμ1 = 0,μ2 = 1.5 or 2 and d= 3 or 6.

d= 3 d= 6

Method π μ1 μ2 π μ1 μ2

π = 0.2,μ2 = 1.5
EL 3.45(15.40) −7.18(50.85) 3.84(21.38) −0.49(5.90) −3.91(20.41) −1.44(7.11)
MN 9.79(15.66) −14.9(82.18) 51.68(46.55) 1.08(7.48) −71.86(67.91) 59.47(43.38)
ML 61.85(12.85) 101.00(22.48) 66.01(59.61) 56.13(21.56) 95.17(35.27) 38.41(37.84)

π = 0.2,μ2 = 2
EL 1.13(8.87) −2.98(37.27) 0.92(13.61) −0.46(3.92) −2.47(16.23) −1.53(6.36)
MN 3.42(8.78) −51.51(87.04) 59.89(60.83) 0.67(5.98) −92.36(66.26) 79.47(59.61)
ML 58.3(19.12) 128.91(42.01) 77.41(164.19) 17.33(29.78) 41.3(64.06) 21.8(68.62)

π = 0.5,μ2 = 1.5
EL −0.56(12.44) −3.27(21.17) 1.19(22.59) −0.93(5.99) −1.50(9.17) −1.98(9.76)
MN −0.42(11.04) −31.21(48.91) 61.71(65.51) 0.01(4.61) −42.77(35.48) 85.2(55.73)
ML 30.44(11.70) 53.29(16.19) 21.03(52.65) 15.15(16.04) 29.22(24.27) 8.13(30.20)

π = 0.5,μ2 = 2
EL −0.61(7.80) −1.46(15.47) −0.73(19.03) −0.54(3.86) −0.72(7.20) −2.54(8.42)
MN −0.48(6.31) −38.24(44.4) 82.58(64.56) 0.13(3.78) −51.07(40.48) 109.59(71.1)
ML 19.19(17.25) 46.87(32.11) 29.21(95.27) −0.01(8.46) 5.37(16.65) −3.63(36.38)

π = 0.8,μ2 = 1.5
EL −3.74(14.02) −3.58(15.79) 3.55(50.90) −1.00(5.70) −0.74(6.35) −2.41(19.01)
MN −12.42(16.63) −22.01(35.80) 41.44(96.03) −1.57(8.17) −18.67(29.21) 116.35(94.33)
ML −1.71(12.38) 13.9(25.24) −54.54(46.13) −4.63(7.52) 7.89(7.06) −49.65(26.15)

π = 0.8,μ2 = 2
EL −1(6.46) −1.06(9.54) −1.50(31.48) −0.49(3.40) −0.32(4.88) −4.20(14.72)
MN −4.73(10.12) −23.08(33.81) 100.56(104.09) −0.69(5.67) −23.85(28.05) 169.97(103.51)
ML −6.44(9.50) 8.54(10.14) −66.54(40.47) −6.77(5.18) −0.15(30.64) −49.79(24.33)

However, when data are generated fromnon-normal
mixtures, theML estimators lose their optimality. From
Tables 2–3, we can see that compared with theMN esti-
mators, they have smaller absolute biases in some cases,
but larger standard deviations in other cases. The pro-
posed EL estimators perform reasonably well as they

have uniformly smaller biases and standard deviations
than the other two competitors.

If the mixing proportion is of primary interest,
we see that when the multivariate normal mixture
is correctly specified, the ML estimator again per-
forms the best and the EL estimator has almost the
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Table 3. Biases (%) and standard deviations (%) (in parentheses) of different estimators based on 1,000 simulations with n= 400.
Data were generated from the multivariate mixture model with f1 and f2 being χ2

μ1
and χ2

μ2
, respectively. Hereμ1 = 5,μ2 = 10 or

20 and d= 3 or 6.

d= 3 d= 6

Method π μ1 μ2 π μ1 μ2

π = 0.2,μ2 = 10
EL 1.72(9.81) −9.58(106.79) 5.19(37.99) −0.22(4.61) −6.59(45.73) −1.33(18.89)
MN 5.15(11.12) 41.52(125.27) 57.42(40.56) 0.53(4.9) −14.54(52.22) 63.59(23.5)
ML 3.79(12.44) −3.66(134.41) 13.29(52.78) −2.27(4.25) −22.54(57.72) −10.11(21.07)

π = 0.2,μ2 = 20
EL 0.03(3.06) 1.94(92.73) −1.27(27.15) −0.17(2.10) −0.51(25.73) −1.22(17.57)
MN 0.27(3.41) −1.38(91.57) 63.70(35.50) −0.03(3.37) −10.19(70.36) 75.51(29.02)
ML −1.28(3.28) −25.91(56.89) −17.70(47.12) −0.48(2.79) −5.06(34.02) −5.14(34.02)

π = 0.5,μ2 = 10
EL −0.24(7.99) −2.89(38.92) 1.2(48.92) −0.51(4.19) −2.26(18.18) −3.29(24.06)
MN −0.54(7.31) 7.22(60.73) 71.58(71.78) 0.02(3.33) 0.78(27.14) 96.32(37.29)
ML −10.06(8.06) −56.55(59.13) −48.5(43.21) −8.14(9.39) −36.58(59.29) −45.44(46.36)

π = 0.5,μ2 = 20
EL 0.08(2.82) 1.01(51.90) −1.55(34.49) −0.04(2.58) −1.07(11.77) −2.41(22.25)
MN 0.04(3.66) 2.25(68.84) 96.59(83.74) −0.01(2.49) −4.98(28.04) 125.48(47.09)
ML −1.70(4.21) −16.59(31.39) −36.1(59.26) −1.12(7.03) −8.23(44.42) −18.47(101.29)

π = 0.8,μ2 = 10
EL −0.73(6.76) −1.61(22.24) 2.94(85.03) −0.38(3.52) −0.95(11.57) −7.90(41.22)
MN −5.67(11.64) 9.08(34.32) 71.59(142.80) −0.30(3.78) 20.31(14.44) 164.10(73.63)
ML −20.50(8.55) −67.61(37.71) −153.48(48.88) −15.45(14.64) −43.67(59.79) −138.41(67.07)

π = 0.8,μ2 = 20
EL −0.14(2.16) 0.03(12.65) −2.88(54.59) −0.06(2.09) 0.00(8.44) −7.86(37.19)
MN −0.83(5.43) 1.64(24.09) 245.75(176.53) −0.22(3.77) 2.40(15.46) 315.56(133.24)
ML −2.40(2.19) −13.19(11.43) −106.07(66.16) −2.47(13.03) −10.13(53.34) −48.96(194.17)

same reasonable performance. Both of them perform
better than the MN estimator. When the model is
misspecified, the EL estimator has the best perfor-
mance followed by the MN estimator. These two
estimators usually win the ML estimator by a large
amount. For example, in Table 2, when π = 0.5,
μ2 = 1.5, and d=3, all three estimators for π have
similar standard deviations, however, the ML estima-
tor has a much larger absolute bias (0.3044) compared
with the EL estimator (0.0056), and the MN estimator
(0.0042).

When the data dimension d increases from3 to 6, the
standard deviations of both the EL and MN estimators
are getting smaller but they have different performances
in bias. The absolute biases of the EL estimators are
always getting smaller, while those of the ML and MN
estimators are not the case. For example, in Table 3,
when π = 0.2 and μ2 = 10, the absolute bias of the
MN estimator for μ2 increases from 0.5742 to 0.6359
and that of the ML estimator for μ1 increases from
0.0366 to 0.2254. By contrast, that of the EL estima-
tors for both (μ1,μ2) decreases from (0.0958, 0.0519)
to (0.0659, 0.0133).

Overall, the EL method exhibits more robust per-
formance than the MN and ML methods for dif-
ferent model specifications. When the normal mix-
ture is correctly specified, the proposed EL estimators
have comparable performance as the ML estimators.
When the normal mixture is misspecified, the EL esti-
mators perform uniformly better than the other two
competitors.

3.2. Data analysis

Reaction time (RT) task is one of the most common
experimental methods in psychology to study indi-
vidual differences. In this section, we apply our pro-
posed empirical likelihood method to a RT data set
which was analysed by Cruz-Medina et al. (2004). In
this experiment, 197 nine-year-old children were tested
on mental rotation task in which a target figure was
presented on the left and another one on the right.
Children thus had to determine whether the second
figure was identical to the first or simply amirror image
instead. The RT was recorded in milliseconds. There
were 6 trials, and we considered these trials as d=6
repeated measurements. The time delays between trials
were randomly chosen so that children would unable
to anticipate the length of delays. The subsequent tri-
als were then expected or assumed to be independent.
We display only the histogram of the first measure-
ment of the data in Figure 1; those for the rest are
similar. Cruz-Medina et al. (2004) suggested using a
two-component mixture to fit the heterogeneous RT
distribution.

Since recorded in milliseconds, the RT values range
from around 700 to 7000. For convenience, we re-scale
them in seconds; the resulting numbers are no greater
than 10. Although the mixing proportion π is of pri-
mary interest, we calculate the EL, MN and ML esti-
mators for all the three parameters π ,μ1 and μ2. The
results are tabulated in Table 4. Based on these point
estimates, we also provide 95%Wald interval estimates
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Table 4. Point and interval estimates of the EL, MN and ML methods for π ,μ1 and μ2. EL0: EL with K = (63) = 20; EL1, EL2, EL3:
EL with K = 8; MN1: MN with cut points c1, . . . , c10 being the deciles of the empirical distribution, which was suggested by Cruz-
Medina et al. (2004) for general use; MN2: MN with cut points (c1, . . . , c10) = (0.5, 1, 1.2, 1.4, 1.6, 2, 2.5, 3, 4, 5), which was used by
Cruz-Medina et al. (2004) when they analysed this dataset.

Parameter EL0 EL1 EL2 EL3 MN1 MN2 ML

Point estimates
π 0.70 0.72 0.68 0.70 0.52 0.59 0.60
μ1 1.68 1.70 1.66 1.67 1.58 1.64 1.64
μ2 2.90 2.95 2.87 2.91 2.79 2.67 2.64

95% Interval estimates
π [0.58, 0.82] [0.59, 0.84] [0.55, 0.82] [0.57, 0.83] [0.34, 0.70] [0.39, 0.78] [0.42, 0.77]
μ1 [1.57, 1.79] [1.59, 1.82] [1.53, 1.79] [1.56, 1.79] [1.39, 1.76] [1.47, 1.81] [1.49, 1.78]
μ2 [2.58, 3.22] [2.61, 3.28] [2.53, 3.22] [2.57, 3.25] [2.46, 3.13] [2.35, 2.98] [2.35, 2.94]

Figure 1. Histogram of the first measurement of the RT data.

for all the three parameters with variances estimated by
200 bootstrap repetitions.

As mentioned in Section 2.2, the EL estima-
tor depends on the K randomly selected sets �∗

k
(k = 1, 2, . . . ,K). Therefore, we shall obtain different
EL estimates in general when applying the EL method
more than one time ifK <

(d
3
)
.We apply the ELmethod

with K=8 three times, and denote the results by EL1,
EL2 and EL3, respectively. In this example, d=6.When
K = (63) = 20, the results are denoted by EL0. We see
that the EL estimates with K=8 are very close to those
with K=20. This confirms that the proposed random
selection strategy works very well. The EL proportion
estimates are all around 0.7, and the EL estimates for
μ1 and μ2 are around 1.6 and 2.9, respectively.

When applying the MN method, we need to deter-
mine the cut points ci’s. For general use, Cruz-Medina
et al. (2004) suggested using 10 cut points and choos-
ing c1, . . . , c10 to be the deciles of the empirical dis-
tribution of the data. The resulting MN method,
denoted by MN1, is also the MN method compared
in our simulation study. When analysing the RT
data, Cruz-Medina et al. (2004) used (c1, . . . , c10) =
(0.5, 1, 1.2, 1.4, 1.6, 2, 2.5, 3, 4, 5). We denote the result-
ing MN method by MN2. It seems that the MN results
depend to some extent on the choice of cutting points,
because the MN1 proportion estimate 0.52 is quite dif-
ferent from that of MN2 0.59. In the meantime, the
MN2 point and interval estimates are both nearly equal
to those of the ML method.

According to our simulation studies, the EL method
exhibitsmore robust performance than theMNandML
methods. This indicates that the EL analysis results are
more trustworthy than those of the other twomethods.

4. Discussions

In this paper, we proposed an empirical likelihood-
based estimation method for the parameters of a
multivariate two-component mixture model. We dis-
cussed three-variatemixtures in detail and extended the
methodology to high-dimensional mixtures by giving
a permutation-like method which reduces the high-
dimensional problem to a three-dimensional situation.
The performance and efficiency of the method are
demonstrated through a real data example as well as
simulation studies. The simulation results show that the
proposed method is quite efficient in comparison to
both completely parametric and almost nonparamet-
ric methods in the literature. Furthermore, the pro-
posed method can accommodate parameter estimation
in high-dimensional mixtures by requiring estimation
only in three dimensions.

The extension of our approach to mixtures with
more than two components is valuable and interesting.
Similar to the two-component mixture situation, one
can use a set of moment conditions implied by the mix-
ture model to identify and estimate mixing proportions
and other component parameters. When the number
of components grows, the number of unknown param-
eters increases. The improvement in the performance
of the proposed approach in terms of better identifi-
cation and higher efficiency may crucially depend on
the choice of the set of moment conditions. We will
consider it in future research.
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Appendix

Since both Lemma 2.1 and Theorem 2.2 are established con-
ditionally on theK selected sets�∗

k (k = 1, 2, . . . ,K), for con-
venience we regard the K selected sets as fixed sets through-
out the proofs. Note that uki’s are i.i.d. random vectors for
fixed k and varying i, while they are not independent for fixed
i and varying k.

Proof of Lemma 2.1: We consider θ ∈ {θ | ‖θ − θ0‖
= n−1/3}, which can be rewritten as θ = θ0 + n−1/3v with
‖v‖ = 1. From Qin and Lawless (1994), we can show that
‖λk‖ = O(n−1/3) and

λk(θ) =
{
1
n

n∑
i=1

g(uki, θ)gT(uki, θ)

}−1 {
1
n

n∑
i=1

g(uki, θ)

}
+ o(n−1/3) (a.s.)

uniformly about θ ∈ {θ | ‖θ − θ0‖ ≤ n−1/3}, for each
k = 1, . . . ,K. By Taylor’s expansion, we have

−�(θ) =
K∑

k=1

n∑
i=1

log{1 + λTg(uki, θ)}

= n
2

K∑
k=1

[
1
n

n∑
i=1

g(uki, θ)

]T [
1
n

n∑
i=1

g(uki, θ)gT(uki, θ)

]−1

×
[
1
n

n∑
i=1

g(uki, θ)

]
+ o(n1/3) (a.s.)

= n
2

K∑
k=1

[
1
n

n∑
i=1

g(uki, θ0) + 1
n

n∑
i=1

∂g(uki, θ0)
∂θ

vn−1/3

]T

×
[
1
n

n∑
i=1

g(uki, θ)gT(uki, θ)

]−1

×
[
1
n

n∑
i=1

g(uki, θ0) + 1
n

n∑
i=1

∂g(uki, θ0)
∂θ

vn−1/3

]

+ o(n1/3) (a.s.)

= nK
2

[
O(n−1/2(log log n)1/2) + E

(
∂g(u, θ0)

∂θ

)
vn−1/3

]T
× [E(g(u, θ0)gT(u, θ0))

]−1

×
[
O(n−1/2(log log n)1/2) + E

(
∂g(u, θ0)

∂θ

)
vn−1/3

]
+ o(n1/3) (a.s.)

≥ (c/2)n1/3, (a.s.),

where c is the smallest eigenvalue of

E

(
∂g(u, θ0)

∂θ

)T [
E(g(u, θ0)gT(u, θ0))

]−1
E

(
∂g(u, θ0)

∂θ

)
.
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Similarly,

−�(θ0) = n
2

K∑
k=1

[
1
n

n∑
i=1

g(uki, θ0)

]T

×
[
1
n

n∑
i=1

g(uki, θ0)gT(uki, θ0)

]−1

×
[
1
n

n∑
i=1

g(uki, θ0)

]
+ o(1) (a.s.)

= O(log log n). (a.s.)

Since �(θ) is a continuous function of θ when θ belongs
to the ball ‖θ − θ0‖ ≤ n−1/3, as n is large, �(θ) must
have a maximum point θ̂ in the interior of this ball
such that

∂�(θ)

∂θ

∣∣∣∣
θ=θ̂

= −
K∑

k=1

n∑
i=1

(∂λT
k (θ)/∂θ)g(uki, θ) + (∂g(uki, θ)/∂θ)Tλk(θ)

1 + λT
k (θ)g(uki, θ)

∣∣∣∣∣
θ=θ̂

= −
K∑

k=1

n∑
i=1

1
1 + λT

k (θ)g(uki, θ)

(
∂g(uki, θ)

∂θ

)T
λk(θ)

∣∣∣∣∣
θ=θ̂

= 0.

�

Proof of Theorem 2.2: Taking derivatives about θ and λT, we
have

∂Qkn(θ , 0)
∂θ

= 1
n

n∑
i=1

∂g(uki, θ)

∂θ
,

∂Qkn(θ , 0)
∂λT

j

= − 1
n

n∑
i=1

g(uki, θ)gT(uji, θ)δkj,

∂Q0n(θ , 0)
∂θ

= 0,
∂Q0n(θ , 0)

∂λT
k

= 1
n

n∑
i=1

(
∂g(uki, θ)

∂θ

)T
,

for k, j = 1, . . . ,K, and δkj is the Kronecker delta. Expanding
Qkn(θ̂ , λ̂) and Q0n(θ̂ , λ̂) at (θ0, 0), we have

0 = Qkn(θ̂ , λ̂k) = Qkn(θ0, 0) + ∂Qkn(θ0, 0)
∂λT

k
(λ̂k − 0)

+ ∂Qkn(θ0, 0)
∂θ

(θ̂ − θ0) + op(δn),

0 = Q0n(θ̂ , λ̂) = Q0n(θ0, 0) +
K∑

k=1

∂Q0n(θ0, 0)
∂λT

k
(λ̂k − 0)

+ ∂Q0n(θ0, 0)
∂θ

(θ̂ − θ0) + op(δn),

where δn = ‖θ̂ − θ0‖ +∑K
k=1 ‖λ̂k‖.

It follows from the above equations that(
λ̂

θ̂ − θ0

)
= S−1

n

(
Dn
0

)
+ op(δn). (A1)

Here

Dn =

⎛⎜⎝ Q1n(θ0, 0)
...

QKn(θ0, 0)

⎞⎟⎠ , Sn =
(

S11n S12n
S21n S22n

)
,

where

S11n =
(

−∂Qkn(θ0, 0)
∂λT

j

)
1≤j, k≤K

= diag

(
1
n

n∑
i=1

g(u1i, θ0)gT(u1i, θ0), . . . ,

1
n

n∑
i=1

g(uKi, θ0)gT(uKi, θ0)

)
,

S12n = −
(

∂Q1n(θ0, 0)
∂θ

, . . . ,
∂QKn(θ0, 0)

∂θ

)T

= −
(
1
n

n∑
i=1

∂g(u1i, θ0)
∂θ

, . . . ,
1
n

n∑
i=1

∂g(uKi, θ0)
∂θ

)
,

S21n = ST12n and S22n = −∂Q0n(θ0, 0)/∂θ = 0.
Define S11 = IK ⊗ S11 and S12 = 1K ⊗ S12, where ⊗ is

the Kronecker product operator. Under the conditions of
Theorem 2.2, as n → ∞, it can be verified that

S11n = S11 + op(1), S12n = S12 + op(1),

and therefore Sn = S + op(1), where

S =
(
S11 S12
S21 S22

)
=
(
IK ⊗ S11 1K ⊗ S12
1TK ⊗ ST12 0

)
.

In addition,
√
nDn converges in distribution to N(0,�),

where
� =

(
E{g(uk1)gT(uj1)|�∗}

)
1≤k,j≤K

.

Therefore, δn = Op(n−1/2). Since the inverse of S is

S−1 =
(
S−1
11 + S−1

11 S12S
−1
22.1S21S

−1
11 −S−1

11 S12S
−1
22.1

−S−1
22.1S21S

−1
11 S−1

22.1

)
,

where S22.1 = −S21S−1
11 S12, we further have

√
n(θ̂ − θ0) = −S−1

22.1S21S
−1
11 · √

nDn,

which converges in distribution to N(0,V2) with

V2 = S−1
22.1S21S

−1
11 �S−1

11 S12S
−1
22.1. (A2)

With some algebra, it can be seen that S22.1 = −KS21S−1
11 S12

and S21S−1
11 = 1TK ⊗ (S21S−1

11 ), which implies

V2 = K−2(S21S−1
11 S12)

−11TK ⊗ (S21S−1
11 )

�1K ⊗ (S−1
11 S12)(S21S

−1
11 S12)

−1

= K−2(S21S−1
11 S12)

−1(S21S−1
11 )

K∑
k,j=1

E{g(uk1)gT(uj1)|�∗}(S−1
11 S12)(S21S

−1
11 S12)

−1

= K−1(S21S−1
11 S12)

−1 + K − 1
K

(S21S−1
11 S12)

−1(S21S−1
11 )

�off (S−1
11 S12)(S21S

−1
11 S12)

−1.

This finishes the proof of Theorem 2.2. �
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