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ABSTRACT
With the improved knowledge on clinical relevance and more convenient access to the patient-
reported outcome data, clinical researchers prefer to adopt minimal clinically important differ-
ence (MCID) rather than statistical significance as a testing standard to examine the effectiveness
of certain intervention or treatment in clinical trials. A practical method to determining theMCID
is based on the diagnostic measurement. By using this approach, theMCID can be formulated as
the solution of a large margin classification problem. However, this method only produces the
point estimation, hence lacks ways to evaluate its performance. In this paper, we introduce an
m-out-of-n bootstrap approach which provides the interval estimations for MCID and its classifi-
cation error, an associated accuracymeasure for performance assessment. A variety of extensive
simulation studies are implemented to show the advantages of our proposed method. Analysis
of the chondral lesions andmeniscus procedures (ChAMP) trial is our motivating example and is
used to illustrate our method.
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1. Introduction

Statistical significance is widely reported in clinical
studies to infer treatment effect. For instance, in a ran-
domised controlled trial to compare debridement to
the observation of chondral lesions encountered during
partial meniscectomy (Bisson et al., 2017), the differ-
ence of the patient outcomes before surgery and one
year after is used to assess the existence of any statis-
tically significant effect.

Although this framework based on a threshold of
the p-value objectifies the research outcome, solely rely-
ing on it can have two potentially serious consequences.
First, statistical significance only signifies the existence
of treatment effect, no matter how large is the effect
size. The statistical significance could result from a
huge sample size, hence may clinically irrelevant to the
patients at all. Second, a clinically importance effect
could be classified as statistically non-significant due to
various reasons, say, the small sample size in the study,
hence be unfairly ignored. In brief statistical signifi-
cance does not necessarily imply clinical importance,
and vice versa.

Over the years clinical investigators are realising
that the determination of a treatment’s clinical impor-
tance is much more valuable and reliable than merely
seeking its statistical significance. Also, the develop-
ment of various patient-rated instruments contributes

huge amounts of patient-reported outcome (PRO) data,
which provides the researchers with chances to study
the clinical relevance. In order to study clinical impor-
tance, Jaeschke, Singer, and Guyatt (1989) proposed
the concept of minimal clinically important difference
(MCID). It is defined as the smallest change in an
outcome that an individual patient would identify as
important, therefore offers a threshold above which
outcome is experienced as relevant by the patients.
This avoids the problem of mere statistical signifi-
cance (Wright, Hannon, Hegedus, & Kavchak, 2012).
The MCID provides objective reference for clinicians
and health policy-makers regarding the effectiveness of
the treatment, hence has quickly gained its popularity
(Erdogan, Leung, Pohl, Tennant, & Conaghan, 2016;
McGlothlin & Lewis, 2014).

A variety of methods have been proposed to calcu-
late the MCID. The anchor based method compares
the changes in scores with an anchor as the reference.
A popular anchor is the anchor question in the ques-
tionnaire. For instance, the short form (SF36) health
survey (Ware & Sherbourne, 1992) serves this role in
the ChAMP trial study (Bisson et al., 2017, 2018, 2019;
Kluczynski et al., 2017). Hedayat, Wang, and Xu (2015)
adopted this anchor based method and formulated the
MCID as the threshold value in post-treatment change
such that the probability of disagreement between the
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estimated satisfaction based on theMCID and the PRO
is minimised.

Although the proposal in Hedayat et al. (2015) pos-
sesses the statistical rigour and paves the way for poten-
tial extension, it has some limitations. First, Hedayat
et al. (2015) rely on a testing data set with a very large
sample size to have their method implemented and
assessed; however, the sample size of a clinical study
is usually much smaller, therefore such a testing data
set is not available for real application. Second, Hedayat
et al. (2015) only provide a point estimation for the
MCID, which is not informative enough in most clin-
ical studies (Cook, 2008; Erdogan et al., 2016). With-
out an interval estimation, it is unknown how accu-
rate this point estimation is. Furthermore, without an
interval estimation, we have no idea how to compare
multiple MCIDs derived for different population sub-
groups, hence the population heterogeneity could not
be learned.

In this paper, we aim at solving the problems men-
tioned above and filling in this gap in the literature.
We first introduce the concept of classification error to
gauge the effectiveness of theMCID.More importantly,
this concept also allows us to compare MCIDs derived
for different population subgroups or computed using
different methods. Second, using the m-out-of-n boot-
strap technique, we obtain an interval estimation of
the MCID, and also that of the classification error. The
interval estimation makes it possible to conduct sta-
tistical inference on the MCID. It also allows us to
fully learn the population heterogeneity based on the
MCID.

Our proposal has two distinct features. First, differ-
ent from Hedayat et al. (2015), our framework does
not rely on a testing data set with a large sample size,
hence can be conveniently used in various clinical stud-
ies. Second, although the bootstrap has already been a
well-known and established statistical technique since
Efron (1979), we stress that its conventional version
cannot be directly applied in our context due to the
restrictive conditions for it to be valid. Instead, the one
we adopt is the m-out-of-n bootstrap with its theoret-
ical properties justified in Shao (1994), Shao (1996),
Bickel, Götze, and van Zwet (1997) and among
others.

In the remainder of this paper, we first introduce
our motivating example, the ChAMP trial study in
Section 2. Then in Section 3, we review the concept of
MCIDand introduce that of the classification error.Our
methodology, including both simple linear and non-
parametric kernel MCIDs and the bootstrap scheme
to compute the confidence interval, is presented in
Section 4. We show the finite sample performance of
our proposed method through simulation studies in
Section 5 and apply our method to the ChAMP trial
study in Section 6. The mathematical details are con-
tained in Appendix.

2. Motivating example: ChAMP trial

Our motivating example is the chondral lesions and
meniscus procedures (ChAMP) trial that examines
whether the presence of the chondral lesions surround-
ing the knee cartilage affects patients’ recovery from
the arthroscopic partial meniscectomy (APM) (Bisson
et al., 2017). In the field of orthopaedics, APM is one
of the most common treatment options to repair the
knee damage especially for the patients with a menis-
cus tear. During the operations, however, the surgeons
can often find the additional knee damages in the form
of chondral lesions. The effect of these chondral lesions
on patients’ post-operative outcomes are unclear, and
whether these lesions need to be treated by debridement
remains an open question. Thus, the ChAMP trial is
designed to help the clinical physicians better under-
stand this relation and provide them with reasonable
suggestions on preoperative evaluation and treatment
option.

This study enrolled eligible patients who were ≥
30 years old, diagnosed with a symptomatically con-
sistent meniscus tear by magnetic resonance imag-
ing, and underwent APM. Of the subjects who
enrolled, 190 patients with surgically significant chon-
dral lesions were randomised to receive debridement
(CL-Deb group; n=98) or observation (CL-noDeb
group; n=92). Outcome measures include the West-
ern Ontario and McMaster Universities Osteoarthritis
Index (WOMAC) and the SF-36 health survey. Each
outcome was evaluated at baseline and one-year post-
operatively. The demographic data such as age and sex
at baseline and surgical data including the location and
type of meniscal tears were also collected.

The major goal of the study is to assess whether and
how the debridement group is different from the obser-
vation group in terms of the change of the WOMAC
pain score from enrolment to one year after surgery,
and how it relates to other covariate variables and clin-
ical biomarkers. In our investigation, we focus on the
study of the interval estimation of the MCID and its
classification error. We use an anchor based method to
compute the MCID and the anchor question we use is
in the SF-36 health survey.

3. TheMCID and the classification error

In the ChAMP trial, we denote each patient’s reported
outcome in the SF-36 health survey as a binary vari-
able, where Y =1 if the patient reports a better health
condition after the surgery and Y =−1 otherwise. The
difference of each patient’s WOMAC pain score from
baseline to one year after surgery, denoted as X, is
treated as the patient’s diagnostic measurement. Let a
p-dimensional covariate Z be the patient’s clinical pro-
file with Z ∈ Rp.
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Figure 1. The illustration of the 0–1 loss L01, its surrogate non-smooth ramp loss Lδ , and the DC decomposition Lδ = L1 − L2.

It is reasonable and of interest to consider the MCID
c∗ as a function of the patient’s clinical profile, c∗(z).
The population heterogeneity could also be learned
from the knowledge of c∗(z). According to Hedayat
et al. (2015), the c∗(z) is defined as the minimiser of

P
[
Y �= sign{X − c(Z)}] = 1

2
E
[
1 − Ysign{X − c(Z)}],

(1)
where E is the expectation taken with respect to
(X,Y ,Z) and sign(·) is the standard sign function.
Given independent and identically distributed observa-
tions {(xi, yi, zi), i = 1, . . . , n}, the empirical version of
the objective function in (1) becomes

1
2n

n∑
i=1

[
1 − yisign{xi − c(zi)}

]
, (2)

which involves the 0–1 loss function L01(u) = 1
2 (1 −

sign(u)). The direct minimisation of (2) is infeasible. In
this paper, we follow Hedayat et al. (2015) to approx-
imate the L01 function with the non-smooth ramp
loss function. Note that the non-smooth ramp loss is
defined as

Lδ(u) =

⎧⎪⎪⎨⎪⎪⎩
1 u ≤ 0,

1 − u
δ

0 < u ≤ δ,

0 u > δ,

where δ > 0 is a scalar factor. As δ → 0, Lδ(·) →
L01(·). Then our objective function becomes

1
n

n∑
i=1

Lδ{yi(xi − c(zi))}. (3)

Due to the non-convexity of the non-smooth ramp
loss, the optimisation problem in (3) requires non-
convex minimisation. Note that we can write Lδ(u) =
L1(u) − L2(u), where both L1(u) = (1/δ)(δ − u)+ and
L2(u) = (1/δ)(−u)+ are convex functions. Hence,
we apply the difference of convex (DC) algorithm
(ThiHoaiAn & DinhTao, 1997) to minimise (3), which

has the form

1
n

n∑
i=1

L1{yi(xi − c(zi))} − 1
n

n∑
i=1

L2{yi(xi − c(zi))}.
(4)

Figure 1 illustrates the relation among the L01, Lδ , L1
and L2 loss functions.

Once the minimiser ĉ is obtained, we can validate
whether the debridement or the observation of the
chondral lesions for each patient is indeed prescribed
correctly. This is essential since it provides knowl-
edgeable advice in future surgical practice for new
patients. To re-evaluatewhether the treatment is offered
appropriately, we need a statistical measure to quantify
the discrepancy between the patient’s PRO Y0 and its
dichotomous diagnostic measure from learning his/her
MCID sign{X0 − c(Z0)}. Here, to avoid confusion, we
use a generic notation {(Y0,X0,Z0)} to represent any
patient that would like to be validated. This results in

E0
[
1
{
Y0 �= sign{X0 − ĉ(Z0)}

}]
, (5)

where E0 is the expectation taken with respect to
{(Y0,X0,Z0)}. While there are other alternative mea-
sures to study, this error (5), usually called the classi-
fication error, or the test error, is popularly used in the
statistical machine learning literature.

The estimation for the classification error is not a
trivial task (Laber & Murphy, 2011). In this paper, we
concentrate on creating confidence intervals for both
the MCID and the classification error.

4. Methodology

In this section, we first present detailed algorithms
to calculating MCID. We consider both simple lin-
ear MCID and its nonparametric kernel counterpart.
We then introduce our bootstrap scheme to construct
confidence intervals for MCID and the classification
error.
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4.1. Algorithms forMCID

It is of particular interest to clinicians if the MCID
has a comprehensible structure. For instance, c(Z) =
α + βTZ, where Z could include the treatment vari-
able, some of the demographic variables and clinical
biomarkers. This is the simple linearMCIDwe consider
below. On the other hand, although easily interpretable,
a linear structure suffers from the model misspecifi-
cation issue, thereby yields a solution which may not
achieve optimal performance. Therefore, we also con-
sider the nonparametric kernel MCID adopting the
reproducing kernel Hilbert space framework.

4.1.1. A simple linearMCID
We assume c(Z) = α + βTZ. We add a penalty term
(λ/2)βTβ in (4) to avoid model overfitting. Let ω =
(α,βT)T, then the objective function in (4) is s(ω) =
s1(ω) − s2(ω), where

s1(ω) = 1
n

n∑
i=1

[
1
δ
{δ − yi(xi − α−βTzi)}+

]
+λ

2
βTβ ,

s2(ω) = 1
n

n∑
i=1

[
1
δ
{−yi(xi − α − βTzi)}+

]
.

It is an iterative algorithm to minimise (4). Let ω̂(k)

be the estimator of ω at the kth iteration. We first
approximate s2(ω) with its affine minorisation func-
tion s2(ω̂(k)) + 〈ω − ω̂(k),∇s2(ω̂(k))〉, where ∇s2(ω̂(k))

is the subgradient of s2(ω) at ω̂(k),

∇s2(ω̂(k)) =

⎛⎜⎜⎜⎜⎜⎜⎝

1
nδ

∑n
i=1 yi1

{
yi(xi − α(k)

−β(k)Tzi) < 0
}

1
nδ

∑n
i=1 yizi1

{
yi(xi − α(k)

−β(k)Tzi) < 0
}

⎞⎟⎟⎟⎟⎟⎟⎠ .

Hence

ω̂(k+1) = argminω s1(ω) − ωT∇s2(ω̂(k)),

= argminω s1(ω)

− 1
nδ

n∑
i=1

yi(α + βTzi)1

{
yi(xi − α(k) − β(k)Tzi) < 0

}
. (6)

To solve (6), we derive its dual problem by using
the slack variable technique. The details are retained in
Appendix 1. It shows that, we arrive at the dual problem

min
τ

τTQτ − {b + 2Qt1(α(k),β(k))}Tτ , (7)

subject to 0 ≤ τi ≤ 1 and
∑n

i=1(1/δ)yi{τi − t1,i(α(k),
β(k))} = 0. This optimisation problem only has simple
box constraints hence can be solved by any quadratic
programming method.

We conclude the algorithm by presenting how α̂ and
β̂ can be computed. The Karush–Kuhn–Tucker (KKT)
conditions associated with optimisation problem (7)
are, respectively,

1
nλδ

n∑
i=1

yi
{
t1,i(α(k),β(k)) − τi

}
zi = β , (8)

1 ≥ τi ≥ 0, (9)

τi

{
ξi − 1 + 1

δ
yi(xi − α − βTzi)

}
= 0, (10)

ξi ≥ 0, (11)

ξi − 1 + 1
δ
yi(xi − α − βTzi) ≥ 0, (12)

(1 − τi)ξi = 0. (13)

Therefore, we have three scenarios to discuss depend-
ing on the magnitude of τi: if τi = 0, by (12) and (13)
we get ξi = 0 and (1/δ)yi(xi − α − βTzi) − 1 ≥ 0; if
1 > τi > 0, by (10) and (13) we have ξi = 0 and
(1/δ)yi(xi − α − βTzi) − 1 = 0; if τi = 1, by (10), (12)
and (13) we have (1/δ)yi(xi − α − βTzi) − 1 = −ξi ≤
0. Therefore, we can summarise the KKT conditions
more concisely as

1
δ
yi(xi − α − βTzi) − 1 = −ξi ≥ 0 if τi < 1,

1
δ
yi(xi − α − βTzi) − 1 = −ξi ≤ 0 if τi > 0,

which implies

1
δ
yi(xi − α − βTzi) − 1 = 0 if 0 < τi < 1. (14)

Hence through (8) we can estimate β(k+1) as

β̂
(k+1) = 1

nλδ

n∑
i=1

yi
{
t1,i(α(k),β(k)) − τ̂i

}
zi,

and through (14) we can estimate α(k+1) as

α̂(k+1) = 1
|{i : 0 < τi < 1}|∑

i:0<τi<1

(
xi − δ

yi
− β̂

(k+1)Tzi
)
.

Finally, we achieve the estimators α̂ and β̂ after iterative
process (6) converges. For any new patient with data
znew, his/her predicted linear MCID is

ĉ(znew) = α̂ + β̂
Tznew.

4.1.2. A nonparametric kernel MCID
Define a feature vector φi = φ(zi) for the profiles of the
ith patient in the enlarged feature space. We can spec-
ify a continuous, symmetric and positive-semidefinite
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kernel function K corresponding to the inner product
in the mapping φ, that is, K(zi, zj) = 〈φi,φj〉. Then,
we have c(z) = w + h(z) with w ∈ R and h(z) ∈ HK ,
where HK is the reproducing kernel Hilbert space
(RKHS)with a kernel functionK(·, ·). The norm inHK ,
denoted by || · ||K , is induced by the following inner
product:

〈f , g〉K =
n∑
i=1

m∑
j=1

viujK(zi, zj),

where f (·) = ∑n
i=1 viK(·, zi) and g(·) = ∑m

j=1 uj
K(·, zj).

Following the representation theorem (Kimeldorf
& Wahba, 1971), the nonparametric kernel MCID can
be expressed as c(z) = w + ∑n

j=1 vjK(z, zj). Let η =
(w, vT)T = (w, v1, . . . , vn)T, then the objective func-
tion in (4) is h(η) = h1(η) − h2(η), where

h1(η) = 1
n

n∑
i=1

[
1
δ

{
δ − yi (xi − w

−
n∑
j=1

vjK(zi, zj)

⎞⎠⎫⎬⎭
+

⎤⎦ + λ

2

n∑
i,j=1

vivjK(zi, zj),

h2(η) = 1
n

n∑
i=1

[
1
δ

{−yi (xi − w

−
n∑
j=1

vjK(zi, zj)

⎞⎠⎫⎬⎭
+

⎤⎦ .

Similar to the linear case, it is an iterative algorithm
to minimise (4). Let η̂(k) be the estimator of
η at the kth iteration. We first approximate h2(η)

with its affine minorisation function h2(̂η(k)) + 〈η −
η̂(k),∇h2(̂η(k))〉, where ∇h2(̂η(k)) is the subgradient of
h2(η) at η̂(k),

∇h2(̂η(k)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
nδ

n∑
i=1

yi1
{
yi(xi − w(k)

−∑n
j=1 v

(k)
j K(zi, zj)) < 0

}
1
nδ

n∑
i=1

yiK(zi, z1)1
{
yi(xi − w(k)

−∑n
j=1 v

(k)
j K(zi, zj)) < 0

}
...

1
nδ

n∑
i=1

yiK(zi, zn)1
{
yi(xi − w(k)

−∑n
j=1 v

(k)
j K(zi, zj)) < 0

}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consequently,

η̂(k+1) = argminηh1(η) − ηT∇h2(̂η(k)),

= argminηh1(η) − 1
nδ

n∑
i=1

yi(w

+
n∑
j=1

vjK(zi, zj))1
{
yi(xi − w(k)

−
n∑
j=1

v
(k)
j K(zi, zj)) < 0

⎫⎬⎭ . (15)

Similar to the linear case, we use the slack variable
technique and reach the dual problem

min
τ ′ τ ′TQ′τ ′ − {d + 2Q′t2(w(k), v(k))}Tτ ′, (16)

subject to 0 ≤ τ ′
i ≤ 1 and

∑n
i=1(1/δ)yi{τ ′

i − t2,i(w(k),
v(k))} = 0. This optimisation problem only have simple
box constraints hence can be solved by any quadratic
programming method.

We conclude the algorithm by presenting how ŵ and
v̂ can be computed. The Karush–Kuhn–Tucker (KKT)
conditions associated with optimisation problem (16)
are, respectively,

1
nλδ

yi
{
t2,i(w(k), v(k)) − τ ′

i
}
φi = vi, (17)

1 ≥ τ ′
i ≥ 0, (18)

τ ′
i

⎧⎨⎩ξ ′
i − 1 + 1

δ
yi

⎛⎝xi − w −
n∑
j=1

vjK
(
zi, zj

)⎞⎠⎫⎬⎭ = 0,

(19)

ξ ′
i ≥ 0, (20)

ξ ′
i − 1 + 1

δ
yi

⎛⎝xi − w −
n∑
j=1

vjK
(
zi, zj

)⎞⎠ ≥ 0, (21)

(1 − τ ′
i )ξ

′
i = 0. (22)

Three scenarios can be consequently discussed based
on the magnitude of τ ′

i : if τ ′
i = 0, by (21) and (22) we

have ξ ′
i = 0 and (1/δ)yi(xi − w − ∑n

j=1 vjK(zi, zj)) −
1 ≥ 0; if 1 > τ ′

i > 0, by (19) and (22) we obtain ξ ′
i =

0 and (1/δ)yi(xi − w − ∑n
j=1 vjK(zi, zj)) − 1 = 0; if

τ ′
i = 1, by (19), (21) and (22) we obtain (1/δ)yi(xi −
w − ∑n

j=1 vjK(zi, zj)) − 1 = −ξ ′
i ≤ 0. Now we can
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summarise the KKT conditions more concisely as

1
δ
yi

⎛⎝xi − w −
n∑
j=1

vjK
(
zi, zj

)⎞⎠ − 1 = −ξ ′
i ≥ 0

if τ ′
i < 1,

1
δ
yi

⎛⎝xi − w −
n∑
j=1

vjK
(
zi, zj

)⎞⎠ − 1 = −ξ ′
i ≤ 0

if τ ′
i > 0,

which implies

1
δ
yi

⎛⎝xi − w −
n∑
j=1

vjK
(
zi, zj

)⎞⎠−1=0 if 0 < τ ′
i < 1.

(23)
Thus for i = 1, . . . , n, v

(k+1)
i can be estimated via

(17) as

v̂
(k+1)
i = 1

nλδ
yi
{
t2,i(w(k), v(k)) − τ̂ ′

i
}
φi

and w(k+1) can be estimated via (23) as

ŵ(k+1) = 1
|{i : 0 < τ ′

i < 1}|
∑

i:0<τ ′
i<1

⎛⎝xi − δ

yi
−

n∑
j=1

v̂jK
(
zi, zj

)⎞⎠ .

We can get the estimators ŵ and v̂ after iterative pro-
cess (15) converges. As a result, for any new patient
with data znew, his/her predicted nonparametric ker-
nel MCID is ĉ(znew) = ŵ + ∑n

j=1 v̂jK(znew, zj). Note
that the most common use of the nonparametric ker-
nel function is the Gaussian radial basis function
K(z1, z2) = exp(−||z1 − z2||2/2σ 2), where σ is a pos-
itive scale parameter. If K(z1, z2) = zT1 z2, the nonpara-
metric kernel case will reduce to the simple linear case.

4.2. Bootstrap procedure forMCID and the
classification error

A point estimation alone does not allow one to quantify
its uncertainty hence limits the usefulness of theMCID
and its classification error in real applications. Hedayat
et al. (2015) postulates a testing data set with a very large
sample size to quantify the effectiveness of their MCID
in numerical studies, but such a testing data set is usu-
ally infeasible in clinical studies. Resampling method
with the bootstrap as a representative, on the other
hand, could serve as a tool to construct a confidence
interval for an estimand under these situations.

To appropriately use bootstrap, we have to be cau-
tious on the regularity conditions under which the the-
oretical properties can be justified (Bickel et al., 1997).
If these conditions are not satisfied, the conventional

bootstrap has to be properly modified. The objec-
tive function to be minimised in (4) and the one
in (5) are generally non-smooth functions. If there
exists a non-negligible probability concentrated at the
discontinuous points of the objective function, that
is, P(X0 − ĉ(Z0) = 0) > 0, it is called the irregular
case under which Shao (1994) showed that the con-
ventional bootstrap is inconsistent. Instead, we pro-
pose to adopt the m-out-of-n bootstrap, a general
method for remedying bootstrap inconsistency due to
non-smoothness, and theoretically justified in Bickel
et al. (1997), Shao (1994, 1996) and references therein.

The m-out-of-n bootstrap is the conventional non-
parametric bootstrap except that the resample size,
historically denoted as m, is of a smaller order com-
pared to the original sample size n. That is,m = mn →
∞ and m/n → 0 (or m log log n/n → 0) as n → ∞
(Shao, 1994). The intuition of the m-out-of-n boot-
strap is to let the empirical distribution tend to the true
generative distribution at a faster rate, and essentially
this allows the empirical distribution to reach its limit
faster hence the bootstrap samples are drawn as if they
were from the true generative distribution. Intuitively
the requirement ofm/n → 0 (orm log log n/n → 0) is
consistent with Hedayat et al. (2015) who required a
very large sample size for their testing data. To some
extent, in the m-out-of-n bootstrap, those n−m sub-
jects serve the role of the testing sample (Shao, 1996).
Practically m is usually chosen as m = nκ for some
κ < 1. In our numerical studies, we choose κ = 0.9.
Our algorithm is detailed below.

For b = 1, . . . ,B, we generate bootstrap samples
with size m as {(x(b)

j , y(b)
j , z(b)

j ), j = 1, . . . ,m}. The
MCID can be derived as ĉ(b) based on the method in
Section 4. To be more specific, the simple linear MCID
is ĉ(b)l = α̂(b) + β̂

(b)Tz0 and the nonparametric kernel
MCID is ĉ(b)n = ŵ(b) + ∑n

i=1 v̂
(b)
i K(z0, z

(b)
i ), where z0

denotes the profile for a new patient. Accordingly, the
classification error based on MCID ĉ(b) is computed as

êrr(b) = 1
m

m∑
j=1

1{y(b)
j �= sign(x(b)

j − ĉ(z(b)
j ))}.

Similarly, êrr(b) can also be distinguished as êrr(b)l and
êrr(b)n for simple linear and nonparametric kernel cases.

We repeat the above procedure in total B times.
If we approach the simple linear MCID, we obtain
{(̂α(b), β̂(b), ĉ(b)l , êrr(b)l )}, b = 1, . . . ,B. Let l̂α and ûα

be the α/2th and (1 − α/2)th quantiles of {̂α(b), b =
1, . . . ,B}, l̂β and ûβ be the α/2th and (1 − α/2)th
quantiles of {β̂(b), b = 1, . . . ,B},̂ lcl and ûcl be the α/2th
and (1 − α/2)-th quantiles of {̂c(b)l , b = 1, . . . ,B}, and
l̂errl and ûerrl be the α/2th and (1 − α/2)th quantiles of
{êrr(b), b = 1, . . . ,B}. Thus, the (1 − α)th confidence
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interval of α is given by [̂lα , ûα], the (1 − α)th con-
fidence interval of β is given by [̂lβ , ûβ], (1 − α)th
confidence interval of cl is given by [̂lcl , ûcl], and (1 −
α)th confidence interval of err is given by [̂lerrl , ûerrl].
If we approach the nonparametric kernel MCID, we
have {(̂c(b)n , êrr(b)n )}, b = 1, . . . ,B. Similarly the (1 −
α)th confidence interval of cn is given by [̂lcn , ûcn],
and (1 − α)th confidence interval of err is given by
[̂lerrn , ûerrn].

5. Simulation studies

In this section, we apply the proposed method to pro-
vide confidence intervals for the MCID and the classi-
fication error via extensive numerical studies based on
simulated data.

We consider two scenarios. In the first scenario, we
generate a random sample consisting of independent
and identically distributed observations {(Xi,Yi,Zi), i =
1, . . . , n}, where we first generate patient’s clinical pro-
file Zi from a bivariate normal distribution N2(μ, I2),
where μ = (0, 0)T and I2 = diag(1, 1). Then, we gen-
erate Xi from N(α + βTzi, 1), where α = 0 and β =
(1, 2)T. Finally, we generate the binary patient reported
outcome Yi ∈ {−1, 1} from Bern(F(xi)), where F(xi) =
P(Xi ≤ xi). Note that under this scenario, the linear
MCID is the underlying truth. We also generate a new
observation (Ynew,Xnew,Znew)withYnew = 1,Xnew =
−0.3376 and Znew = (−1.3577,−1.3643) from the
same distribution as all {(Yi,Xi,Zi)

′s}. The true value
of the MCID for this patient is −4.0862.

The data under the second scenario are gener-
ated similarly to the first, except that the Xi is gen-
erated from N(α + βTzi − βTz2i , 1). Hence the linear
structure for the MCID is misspecified in this set-
ting. Similar to the first scenario, we also generate
a new observation (Ynew,Xnew,Znew) with Ynew = 1,
Xnew = −2.1809 and Znew = (−1.3577,−1.3643). The
true value of the MCID for this new patient is−9.6519.

In each of the two scenarios, we apply both sim-
ple linear and nonparametric kernel MCID methods.
The nonparametric kernel we apply is theGaussian ker-
nel defined asK(z1, z2) = exp(−‖z1 − z2‖2/2σ 2). The
scale parameter can be found by setting it as themedian
of pairwise Euclidean distances within the observations
(z1, z2) used to estimate the prediction rule (Hedayat
et al., 2015). Them-out-of-n bootstrap samples are gen-
erated 1000 times for each case. For simplicity we set
δ = 0.01 in our numerical studies and we use the mul-
tifold cross validation method to determine the tun-
ing parameter λ. We report two different sample sizes:
n=500 and n=1000 for each situation.

Based on 500 simulation replications, our results are
summarised in Tables 1 and 2. It can be seen that, in
scenario 1, the length of the confidence interval ismuch
shorter and the coverage is much more accurate when

Table 1. Confidence interval for MCID in simulation studies.

MCID

Sample size Kernel Lower Upper Length CP

Scenario 1

n= 500 Linear (Correct) −4.3040 −3.3198 0.9842 0.934
Kernel −4.6326 −2.3341 2.2985 0.928

n= 1000 Linear (Correct) −4.2669 −3.6130 0.6539 0.952
Kernel −4.5890 −1.5640 3.0250 0.982

Scenario 2

n= 500 Linear (Incorrect) −7.5186 −4.1525 3.3661 0.004
Kernel −10.7414 −7.4439 3.2974 0.990

n= 1000 Linear (Incorrect) −7.5371 −4.8906 2.6465 0.000
Kernel −10.5402 −4.7963 5.7439 0.998

Note: CP: coverage probability.

Table 2. Confidence interval for the classification error in simu-
lation studies.

Classification Error

Sample Size Kernel Lower Upper Length CP

Scenario 1

n= 500 Linear (Correct) 0.1951 0.3068 0.1117 1.000
Kernel 0.1985 0.3198 0.1213 0.996

n= 1000 Linear (Correct) 0.2080 0.2871 0.0791 0.992
Kernel 0.2063 0.3428 0.1365 1.000

Scenario 2

n= 500 Linear (Incorrect) 0.3595 0.4861 0.1266 0.000
Kernel 0.2041 0.3335 0.1294 0.996

n= 1000 Linear (Incorrect) 0.3762 0.4687 0.0924 0.000
Kernel 0.2086 0.3883 0.1797 1.000

Note: CP: coverage probability.

the correct linear structure and a larger sample size are
used. The length is much larger and the coverage is
much broader when the nonparametric kernel function
is used. In scenario 2, the coverage using the nonpara-
metric kernel is much broader. More importantly we
find that the estimation of the MCID using the incor-
rect simple linear structure is biased so that it gives
very poor coverage. This issue cannot be uncovered
if a confidence interval is not available as in Hedayat
et al. (2015). It also reinforces the necessity and impor-
tance of developing interval estimation for the MCID.

We notice that the coverage for the classification
error is very broad and Xu et al. (2015) also noted the
similar phenomenon. Due to the computational bur-
den, we only explore our method up to the sample size
of 1000. Under the situation with a much larger sample
size, the coverage would become more accurate.

6. ChAMP trial analysis

In the ChAMP trial study, 190 patients with chon-
dral lesions undergoing APM are randomised to either
treatment (debridement) group (n = 98) or control
(no debridement, observation) group (n = 92). It is of
interest to investigate whether the debridement treat-
ment on the chondral lesions would encourage the
recovery from the surgery of repairing knee damage.
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Table 3. Interval estimation for the ChAMP trial analysis.

MCID Classification error

Interval estimation Interval estimation

Point Estimation Lower Upper Length Lower Upper Length

No model: c(z) = c

MCID_all 1.4199 −0.9868 2.3224 3.3092 0.3050 0.4421 0.1371
MCID_trt= 1 2.0216 −0.9944 3.8266 4.8210
MCID_trt= 0 −0.0843 −0.9868 1.7207 2.7076
MCID_diff 2.1059 −1.5042 3.9109 5.4151

Model 1: c(z) = α + β1 treatment

α −0.0009 −2.3885 1.6182 4.0067 0.2842 0.5263 0.2421
β1 1.9008 −1.4109 3.4050 4.8159
MCID_all 0.9676 −1.0497 1.8041 2.8538
MCID_trt= 1 1.8999 −0.8843 2.5207 3.4050
MCID_trt= 0 −0.0009 −2.3885 1.6182 4.0067
MCID_diff 1.9008 −1.4109 3.4050 4.8159

Model 2: c(z) = α + β1 treatment + β2 age + β3 sex + β4 damage

α −6.7261 −21.4810 11.3416 32.8226 0.2737 0.5158 0.2421
β1 2.4068 −1.9171 3.9081 5.8252
β2 0.1680 −0.1918 0.3768 0.5686
β3 −0.9713 −3.4509 2.2291 5.6800
β4 −1.1430 −1.8663 1.3246 3.1909
MCID_all 0.2467 −1.6964 2.0215 3.7178
MCID_trt= 1 1.6050 −1.6592 3.3212 4.9804
MCID_trt= 0 −1.1645 −3.1225 1.7468 4.8693
MCID_diff 2.7694 −1.6298 4.0097 5.6395

Model 3: c(z) is nonparametric

MCID_all −0.3465 −1.5073 1.5785 3.0858 0.0526 0.4424 0.3897
MCID_trt= 1 −0.2987 −1.4469 1.8478 3.2947
MCID_trt= 0 −0.3962 −1.7511 1.5378 3.2890
MCID_diff 0.0975 −0.5132 1.2298 1.7430

As we mentioned in the previous section, the binary
variable Y is derived from the anchor question in
the SF-36 health survey. The patient’s diagnostic mea-
surement X is the difference in WOMAC pain score
between baseline and one year after surgery. The score
is scaled from 0 (extreme problem) to 100 (no prob-
lem). Patient’s clinical profile Z includes their age (con-
tinuous), treatment assignment (binary), sex (binary)
and knee damage (four level categorical). The knee
damage variable is the total number of types of menis-
cus tears that the patient suffers from. It reflects the
severity of patient’s knee damage.

After excluding the missing data, our analysis con-
tains 157 patients. Among them, 80 patients are
assigned in the debridement group and 77 others
observation group. In our analysis, we first compute
the MCID for the whole population, for the subpop-
ulation within the debridement group (treatment =
1), for the subpopulation within the observation
group (treatment = 0), and their difference, respec-
tively, where the MCID c(z) only includes an intercept
term.We call this ‘Nomodel’ in Table 3. Then based on
the structure

c(z) = α + β1 treatment,

which we call ‘Model 1’, the structure

c(z) = α + β1 treatment + β2 age + β3 sex

+ β4 damage,

which we call ‘Model 2’, and the nonparametric c(z)
which we call ‘Model 3’ in Table 3, separately, we imple-
ment our proposed estimation procedure. The results
are summarised in Table 3. Note that although we con-
centrate on interval estimations, we also list the ‘point
estimation’ column mainly for the purpose of compar-
ing with the results in Hedayat et al. (2015). Here we
generated the m-out-of-n bootstrap samples B=1000
times with m = n0.9 ≈ 95. Also, a sensitivity analysis
on the value of B in Table 4 demonstrates that the
results are not sensitive when it varies from around 500
to 1500.

From Table 3, the point estimation of MCID
for the treatment = 1 subgroup 2.0216 looks quite
different from that for the treatment = 0 subgroup
−0.0843. Without the interval estimation, one would
believe that they are different however with no fur-
ther evidence on the degree of how they are differ-
ent. Now with interval estimation, we see the con-
fidence interval for each of them covers zero, and
the confidence interval for the difference also cov-
ers zero. The similar phenomenon could also be
observed under either ‘Model 1’ or ‘Model 2’ or
‘Model 3’.

Across the first three models, each of the MCID
quantities has slightly different estimates, but each of
their confidence intervals covers zero. ‘Model 3’ has
difference MCID estimates than its linear counter-
part, indicating the potential model interpretability
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Table 4. Sensitivity analysis for the ChAMP trial.

Bootstrap resampling size (B)

600 900 1200 1500

No model: c(z) = c

MCID_all Lower −0.9868 −0.9868 −0.9868 −0.9868
Upper 2.3600 2.3224 2.3224 2.3224

MCID_trt= 1 Lower −0.9868 −0.9868 −1.2877 −1.2877
Upper 3.8266 3.8266 3.8266 3.8266

MCID_trt= 0 Lower −0.9868 −0.9868 −0.9868 −0.9868
Upper 1.7207 1.7207 1.7207 1.7207

MCID_diff Lower −1.5042 −1.5042 −1.5042 −1.5042
Upper 3.9109 3.9109 3.9109 3.9109

Classification
Error

Lower 0.3053 0.2997 0.3053 0.2947
Upper 0.4526 0.4476 0.4526 0.4526

Model 1: c(z) = α + β1 treatment

α Lower −2.2125 −2.3885 −2.3885 −2.3885
Upper 1.6182 1.6182 1.6182 1.6182

β1 Lower −1.2034 −1.3565 −1.4084 −1.2992
Upper 3.4050 3.4050 3.4050 3.3092

MCID_all Lower −0.8760 −1.0214 −1.0473 −1.0458
Upper 1.7648 1.7624 1.8041 1.9027

MCID_trt= 1 Lower −0.7909 −0.8843 −0.8843 −0.8843
Upper 2.5223 2.5207 2.5208 2.5208

MCID_trt= 0 Lower −2.2125 −2.3885 −2.3885 −2.3885
Upper 1.6182 1.6182 1.6182 1.6182

MCID_diff Lower −1.2034 −1.3565 −1.4084 −1.2992
Upper 3.4050 3.4050 3.4050 3.3092

Classification
Error

Lower 0.2842 0.2842 0.2842 0.2842
Upper 0.5161 0.5263 0.5263 0.5263

Model 2: c(z) = α + β1 treatment + β2 age + β3 sex + β4 damage

α Lower −22.5595 −21.4412 −21.3968 −21.1874
Upper 9.7443 10.3888 10.7200 11.2746

β1 Lower −1.9235 −1.8822 −1.9171 −1.9289
Upper 4.0760 3.8862 3.9378 3.9518

β2 Lower −0.1830 −0.1842 −0.1830 −0.2019
Upper 0.4176 0.3760 0.3751 0.3715

β3 Lower −3.5843 −3.4407 −3.5837 −3.4926
Upper 2.3425 2.2252 2.2467 2.3068

β4 Lower −1.7888 −1.8370 −1.8925 −1.8103
Upper 1.3664 1.3070 1.3238 1.3833

MCID_all Lower −1.7405 −1.7091 −1.6945 −1.7689
Upper 2.0215 2.0263 1.9981 2.0001

MCID_trt= 1 Lower −1.7345 −1.6240 −1.5910 −1.5944
Upper 3.3077 3.3142 3.3077 3.2833

MCID_trt= 0 Lower −3.2409 −3.1269 −3.0683 −3.1346
Upper 1.8563 1.7076 1.6739 1.6121

MCID_diff Lower −1.6303 −1.5644 −1.6227 −1.6262
Upper 4.2119 3.9789 4.0669 4.0933

Classification
Error

Lower 0.2734 0.2737 0.2737 0.2737
Upper 0.5055 0.5158 0.5053 0.5158

Model 3: c(z) is nonparametric

MCID_all Lower −1.4763 −1.4921 −1.5270 −1.5201
Upper 1.5442 1.5951 1.5785 1.6139

MCID_trt= 1 Lower −1.4830 −1.4605 −1.5064 −1.4834
Upper 1.7903 1.8483 1.8195 1.8338

MCID_trt= 0 Lower −1.7379 −1.7465 −1.7623 −1.7518
Upper 1.5213 1.5583 1.5378 1.6119

MCID_diff Lower −0.4841 −0.5003 −0.5468 −0.5488
Upper 1.2007 1.2294 1.2000 1.1966

Classification
Error

Lower 0.0526 0.0526 0.0526 0.0526
Upper 0.4526 0.4476 0.4421 0.4421

insufficiency contributed by the linear component of
the MCID.

Also for the treatment effect β1 in ‘Model 1’ and
‘Model 2’, although their estimates are different, each
of their confidence intervals also covers zero. As we
can see, although ‘Model 3’ looks more flexible than its
linear counterpart, it lacks clear interpretability of the
treatment effect. The different results from ‘No model’

and ‘Model 3’ also indicates that there may also exist
some other unobserved covariate variables that may
play a role to quantifying the population heterogeneity
in terms of MCID.

The classification errors for the first three mod-
els are roughly similar with that of ‘Model 1’ slightly
greater than ‘Model 2’. This is reasonable since ‘Model
2’ controls more covariates hence should have a greater
ability for model interpretability. ‘Model 3’ has smaller
lower bound and upper bound of its confidence inter-
val than ‘Model 2’ because it is generally acknowledged
that a nonparametric kernel model entails fewer model
assumptions than its linear counterpart model hence is
regarded as more flexible.

In all, besides the point estimation of the MCID in
each population of interest, our proposed method also
provides its interval estimation which gives us a better
understanding of the scale of MCID hence could facili-
tate us to comparewith some certain historical values or
values from other populations or other diseases so that
a better, more convincing health policy decision could
be made. The ChAMP study shows that the MCID
between the debridement group and the observation
group has some difference, but that difference is not
significant. One of the major findings of the ChAMP
trial study is that to debride the chondral lesions does
not have a statistically significant effect hence recom-
mends that not to debride the chondral lesions in future
surgical practice (Bisson et al., 2017). Using the pro-
posed method for the MCID in this paper, we reach
the same conclusion. This could have a big impact
on the orthopaedics surgical practice since the addi-
tional debridement of chondral lesions would bring a
significant medical cost to the patients.
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Appendices

Appendix 1

To solve (6), we need to derive its dual problem by replacing
the loss function in s1 with slack variables ξi, i = 1, . . . , n, and
adding two sets of constraints. This leads to

min
ω,ξ

1
n

n∑
i=1

{
ξi − 1

δ
t1,i(α(k),β(k))yi(α + βTzi)

}
+ λ

2
βTβ ,

(A1)
subject to ξi ≥ 0 and ξi ≥ 1 − (1/δ)yi(xi − α − βTzi), i =
1, . . . , n, where t1,i(α(k),β(k)) = 1{yi(xi − α(k) − β(k)Tzi) <

0}. Then its primary Lagrangian is

Lp = 1
n

n∑
i=1

{
ξi − 1

δ
t1,i(α(k),β(k))yi(α + βTzi)

} + λ

2
βTβ

− 1
n

n∑
i=1

τi
{
ξi − 1 + 1

δ
yi(xi − α − βTzi)

} − 1
n

n∑
i=1

γiξi,

where τ = (τ1, . . . , τn)T and γ = (γ1, . . . , γn)T are vectors
of non-negative Lagrange multipliers, corresponding to the
two sets of constraints in (A1). Setting derivatives of the
Lagrangian with respect to the primary space variablesω and
ξ to 0, we get

0 = 1
δ

n∑
i=1

yi
{
τi − t1,i(α(k),β(k))

}
,

β = 1
nλδ

n∑
i=1

yi
{
t1,i(α(k),β(k)) − τi

}
zi,

1 = τi + γi, i = 1, . . . , n.
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Plugging them back to Lp, we have

Lp = − 1
nδ

n∑
i=1

τiyixi + 1
n

n∑
i=1

τi − λ

2
βTβ ,

∝ −2
n∑
i=1

δyiτixi + 2
n∑
i=1

δ2τi

− 1
nλ

{ n∑
i=1

yiτizTi
n∑
i=1

yiτizi

−2
n∑

i=1
yit1,i(α(k),β(k))zTi

n∑
i=1

yiτizi

}
,

= − 1
nλ

n∑
i=1

yiτizTi
n∑
i=1

yiτizi + 2
n∑
i=1

(δ2 − δyixi)τi

+ 2
nλ

n∑
i=1

yit1,i(α(k),β(k))zTi
n∑

i=1
yiτizi,

= −τTQτ + bTτ + 2t1(α(k),β(k))TQτ ,

where Q is a square matrix with [i, j]th element as 〈yizi,
yjzj〉/(nλ), t1(α(k),β(k)) = {t1,i(α(k),β(k))}ni=1, b = 2{δ2 −
δyixi}ni=1.

Appendix 2

To solve (15), we need to derive its dual problem by replac-
ing the loss function in h1 with slack variables ξ ′

i , i = 1, . . . , n,
and adding two sets of constraints. This results in

min
η,ξ ′

1
n

n∑
i=1

{
ξ ′
i − 1

δ
t2,i

(w(k), v(k))yi

⎛⎝w +
n∑
j=1

vjK
(
zi, zj

)⎞⎠⎫⎬⎭
+ λ

2

n∑
i,j=1

vivjK(zi, zj), (A2)

subject to ξ ′
i ≥ 0 and ξ ′

i ≥ 1 − (1/δ)yi(xi − w − ∑n
j=1 vjK

(zi, zj)), where t2,i(w(k), v(k)) = 1{yi(xi − w(k) − ∑n
j=1 v

(k)
j

K(zi, zj)) < 0}. Then its primary Lagrangian is

L′
p = 1

n

n∑
i=1

{
ξ ′
i − 1

δ
t2,i(w(k), v(k))yi⎛⎝w +

n∑
j=1

vjK
(
zi, zj

)⎞⎠⎫⎬⎭ + λ

2

n∑
i,j=1

vivjK(zi, zj)

− 1
n

n∑
i=1

τ ′
i

{
ξ ′
i − 1 + 1

δ
yi⎛⎝xi − w −

n∑
j=1

vjK
(
zi, zj

)⎞⎠⎫⎬⎭ − 1
n

n∑
i=1

γ ′
i ξ

′
i ,

where τ ′ = (τ ′
1, . . . , τ

′
n)

T and γ ′ = (γ ′
1, . . . , γ

′
n)

T are vectors
of non-negative Lagrange multipliers, corresponding to the
two sets of constraints in (A2). Setting derivatives of the
Lagrangian with respect to the primary space variables η and
ξ ′ to 0, we get

0 = 1
δ

n∑
i=1

yi
{
τ ′
i − t2,i(w(k), v(k))

}
,

v = 1
nλδ

n∑
i=1

yi
{
t2,i(w(k), v(k)) − τ ′

i
}
φi,

1 = τ ′
i + γ ′

i , i = 1, . . . , n.

Plugging them back to L′
p, we have

L′
p = − 1

nδ

n∑
i=1

τ ′
i yixi +

1
n

n∑
i=1

τ ′
i − λ

2

n∑
i=1

n∑
j=1

vivjK(zi, zj),

∝ −2
n∑

i=1
δyiτ ′

i xi + 2
n∑

i=1
δ2τ ′

i

− 1
nλ

{ n∑
i=1

yiτ ′
iφ

T
i

n∑
i=1

yiτ ′
iφi

−2
n∑

i=1
yit2,i(w(k), v(k))φT

i

n∑
i=1

yiτ ′
iφi

}
,

= − 1
nλ

n∑
i=1

yiτ ′
iφ

T
i

n∑
i=1

yiτ ′
iφi + 2

n∑
i=1

(δ2 − δyixi)τ ′
i

+ 2
nλ

n∑
i=1

yit2,i(w(k), v(k))φT
i

n∑
i=1

yiτ ′
iφi,

= −τ ′TQ′τ ′ + dTτ ′ + 2t2(w(k), v(k))TQ′τ ′,

where Q′ is a square matrix with [i, j]th element as
〈yiφi, yjφj〉/(nλ), t2(w(k), v(k)) = {t2,i(w(k), v(k))}ni=1, d =
2{δ2 − δyixi}ni=1.
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