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ABSTRACT
With increasing appearances of high-dimensional data over the past twodecades, variable selec-
tions through frequentist likelihood penalisation approaches and their Bayesian counterparts
becomes a popular yet challenging research area in statistics. Under a normal linear model with
shrinkage priors, we propose a benchmark variable approach for Bayesian variable selection.
The benchmark variable serves as a standard and helps us to assess and rank the importance
of each covariate based on the posterior distribution of the corresponding regression coeffi-
cient. For a sparse Bayesian analysis, we use the benchmark in conjunction with a modified BIC.
We also develop our benchmark approach to accommodate models with covariates exhibiting
group structures. Two simulation studies are carriedout to assess and compare theperformances
among theproposedapproachandothermethods. Three real datasets are also analysedbyusing
these methods for illustration.
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1. Introduction

Over the past two decades, with advanced data collec-
tion techniques, a large amount of high-dimensional
data continues to appear in various biological, medi-
cal, social, and economical studies. A typical example
is the microarray data, where thousands or even mil-
lions of genes are involved in the data collection but
only as few as hundreds or even fewer sampled sub-
jects are available. Researchers believe that the majority
of the genes are redundant and only a small subset
is useful to predict the response of interest. Hence, it
is desired to eliminate the unrelated genes and select
important ones, for more accurate prediction as well
as better interpretation. Such high-dimensional prob-
lems in practice impose great challenge to statisti-
cal analysis and motivate various variable selection
techniques.

Lots of attempts have beenmade to solve these prob-
lems by regularisation methods, which achieve param-
eter estimation and variable selection simultaneously,
mainly via frequentist approaches. These methods typ-
ically involve adding a penalty term on regression coef-
ficients to the loss function, with the purpose of either
parameter estimator variance stabilisation or variable
selection; see, for example, the ridge regression by
Hoerl and Kennard (1970), lasso by Tibshirani (1996),
smoothly clipped absolute deviation (SCAD) by Fan
and Li (2001), elastic net by Zou and Hastie (2005),
fused lasso by Tibshirani et al. (2005), adaptive lasso by
Zou (2006), COSSO by Lin and Zhang (2006), SICA by
Lv and Fan (2009), MCP by Zhang (2010), truncated L1

by Shen et al. (2011), SELO by Dicker et al. (2011), and
references therein.

On the other hand, variable selection via Bayesian
approaches is also very active, started with the well-
known Bayesian information criterion (BIC) (Schwarz,
1978). There exist three types of commonly used
Bayesian approaches in variable selection. The first type
works on information criterion, such as the BIC and its
improvement PBIC proposed by Bayarri et al. (2019).
The second type includes the indicator model selec-
tion (see, for example, Brown et al., 1998; Della-
portas et al., 1997; George & McCulloch, 1993; Kuo
& Mallick, 1998; Yuan & Lin, 2005), the stochastic
searchmethod (e.g., O’Hara & Sillanpää, 2009), and the
model space method by Green (1995). The third type,
which is considered in the current paper, is to apply
priors on the regression coefficients that promotes the
shrinkage of coefficients towards 0. This last type of
approaches is intrinsically connected with frequentist
methods in the sense that such priors play the same
role as the assumption that the coefficients are sparse
for the frequentist approach. Typical examples of this
type include the Bayesian lasso (Park & Casella, 2008)
and Bayesian counterparts for elastic net, group lasso,
and fused lasso (Kyung et al., 2010).

The shrinkage prior approach, however, does not
provide sparse estimates of regression coefficients in
general. A Bayesian analysis based on a subset of
covariates with size considerably less than the orig-
inal dimensionality, which is referred to as sparse
Bayesian analysis, may produce better results than
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the Bayesian analysis based on all covariates. Several
attempts have beenmade to obtain sparse Bayesian esti-
mates based on shrinkage priors. For instance, Hoti
and Sillanpää (2006) proposed a method based on
thresholding; however, the method is based on certain
approximations and the choice of threshold is ad hoc.
Another example is the sparse Bayesian learning by
Tipping (2001), but it involves complicated nonconvex
optimisation and assumes that the variance of the error
term is known.

Under the framework of shrinkage priors, in this
paper, we propose a Bayesian variable selection in a
normal linear model via a benchmark variable that
serves as a standard and helps us to assess and rank
the importance of each covariate based on the posterior
distribution of the corresponding regression coefficient.
For a sparse Bayesian analysis, we propose a variable
selection using benchmark in conjunction with a mod-
ified BIC. Furthermore, we develop our benchmark
approach to accommodate normal linear models with
covariates exhibiting group structures. An additional
step is implemented to identify important individual
variables within the selected groups. Some simulation
studies are carried out to assess and compare the per-
formances among the proposed approach and other
methods. Three real datasets are also analysed by using
these methods for illustration.

2. Methodology

Let y be an n-dimensional vector of responses and,
without loss of generality, let x1, . . . , xp be p centralised
n-dimensional vectors of covariates. Conditional on
X = (x1, . . . , xp), y is assumed to be distributed as
multivariate normal N(β01 + Xβ , σ 2I), where β =
(β1, . . . ,βp)

′, a′ denotes the transpose of a, β0,β1, . . . ,
βp are p+ 1 unknown parameters, σ is an unknown
positive parameter, 1 is the n-dimensional vector with
all components 1, and I is the identitymatrix of order n.
Note that components of X can be individual covariate
vectors as well as vectors having interaction effects on y
such as product terms and, hence, components of β are
main effects and interaction effects.

There are various choices of priors that shrink the
regression coefficients, components of β , towards 0.
The most popular one is the Laplace prior consid-
ered by Park and Casella (2008) for their Bayesian
lasso:

p(β|σ 2) =
p∏

i=1

λ

2σ
exp

(
− λ|βi|

σ

)
(1)

where λ > 0 is a hyperparameter. Forβ0 and σ 2 that are
not involved with variable selection, we consider non-
informative priors, i.e., the prior of β0 is the Lebesgue
measure and the prior of σ 2 has improper density σ−2.

2.1. Benchmark

If the posterior distribution of βi is nearly the same as
that from a noise variable centred at 0, then it is natural
to eliminate xi as an unimportant covariate. However,
the question is how to quantify whether a posterior
distribution to be close to that of a noise.

To illustrate our idea, let us first consider an arti-
ficial case where a covariate z exists and is known
to have no effect on y, i.e., y conditioned on (X, z)
is distributed as N(zβz + 1β0 + Xβ , σ 2I) with βz =
0. Although we know z is redundant, we still put
a prior on βz such that βz and βi’s are indepen-
dently identically distributed conditioning on σ 2.
Under this setting, xi could be treated as an unim-
portant variable if the posterior of βi is similar to
the posterior of βz. In other words, the variable z
serves as a benchmark in measuring the importance
of xi’s.

To be more rigorous, a nonzero vector z is defined
as a valid benchmark if it satisfies the following two
conditions:

(C1) The posterior distribution of β given (y,X, z,
βz, σ 2) is the same as the posterior distribution of
β given (y,X, σ 2).

(C2) The posterior distribution of βz given (y,X, z, σ 2)

is centred at 0.

Condition (C1) ensures that the presence of a bench-
mark variable would not affect the Bayesian analy-
sis concerning unknow β , while (C2) guarantees that
the benchmark can be used as a standard to assess
the importance of covariates in terms of the posterior
distributions of βi, i = 1, . . . , p.

How do we find a benchmark variable when we
do not have a redundant variable at hand? We now
show that a universal solution of z simultaneously sat-
isfying (C1) and (C2) does exist. Under the Bayesian
framework with column-wisely centralised X, the den-
sity of y given (X, z,β0,β ,βz, σ 2) is proportional
to

1
σ n exp

(
−
∥∥y − zβz − 1β0 − Xβ

∥∥2
2σ 2

)

= 1
σ n exp

(
−

∥∥ỹ − Xβ
∥∥2 + ‖z − z̄1‖2 β2

z − 2βz
z′(ỹ − Xβ) + n(β0 − ȳ + βz z̄)2

2σ 2

)
where ȳ is the average of the components of y, z̄ is
the average of the components of z, ỹ = y − ȳ1, and
‖a‖2 = a′a. For the prior of (βz,β0,β , σ 2), we consider
it to be ∝ σ−3 exp(−λ|βz|/σ)p(β|σ 2), where p(β|σ 2)

is given by (1).
Since the intercept β0 is not of interest, we integrate

it out from the posterior density p(β0,β ,βz|X, z, y, σ 2).
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Then,

p
(
β ,βz|X, z, y, σ 2) ∝ 1

σ n+p+1

× exp

⎛⎝−
∥∥ỹ − Xβ

∥∥2 + 2βzz′Xβ

2σ 2 − λ

σ

p∑
j=1

|βj|
⎞⎠

× exp
(

−‖z − z̄1‖2 β2
z − 2z′ỹβz

2σ 2 − λ

σ
|βz|

)
(2)

Note that marginalisation over β0 is equivalent to cen-
tralising the response y. After integrating out β0, the
posterior inferences are drawn from the centralised
response ỹ instead of the original y. The reason that
we introduce β0 in the model and then integrate it
out, instead of eliminating it at the very beginning
and directly building a linear regression model as ỹ =
zβz + Xβ + ε, is mainly for the mathematical rigor-
ousness, as ỹ is not of full rank and has a degenerate
distribution.

The conditional posterior density in (2) implies that
conditioned on (y,X, z, σ 2), β and βz are independent
if and only if z′X = 0, and βz has mean zero if and only
if z′ỹ = 0. In other words, (C1) and (C2) both hold if
and only if z is orthogonal to (X, ỹ). Clearly, z = 1 is
a direct solution and could be used as a benchmark to
assess the importance of xi’s. Note that when z = 1, the
posterior density ofβz remains the same as its prior, and
the posterior density of (β ,βz, σ 2) is simplified to

p
(
β ,βz, σ 2|X, y) ∝ 1

σ n+p+3

× exp

⎛⎝−
∥∥ỹ − Xβ

∥∥2
2σ 2 − λ

σ

p∑
j=1

|βj| − λ

σ
|βz|

⎞⎠
(3)

The fact that z = 1 can be used as a benchmark does
not rely on the form of prior given in (1). If the prior

in (1) is replaced by a multivariate normal prior, then
the result is related with ridge regression, rather than
lasso or Bayesian lasso. Computation might be an issue
when the prior is non-normal.

The idea of benchmark in Bayesian framework is
similar to the application of pseudo variables in fre-
quentist approach (Breiman 2001, Wu et al. 2007). The
only requirement for a pseudo variable is its indepen-
dence with (X, y). Such a pseudo variable is not appli-
cable here since it is likely that the pseudo variable does
not satisfy (C1) due to the fact that orthogonality is a
stronger assumption than independence in general.

2.2. Example

Even without a well-defined variable selection, we now
consider a real data example to illustrate how we utilise
a benchmark to assess importance of covariates.

The prostate cancer data originally came from a
research conducted by Stamey et al. (1989), and it
was studied by Tibshirani (1996) and Zou and Hastie
(2005). The goal of the research was to explore the
relation between the level of prostate-specific anti-
gen and several clinical measures in men before their
hospitalisation for radical prostatectomy. The dataset
contains 97 patients with the logarithm of prostate-
specific antigen (lpsa) as the response and eight covari-
ates, logarithm of cancer volume (lcavol), logarithm of
prostate weight (lweight), age, logarithm of the amount
of benign prostatic hyperplasia (lbph), seminal vesicle
invasion (svi), logarithm of capsular penetration (lcp),
Gleason score (gleason), and percentage Gleason score
4 or 5 (pgg45).

Figure 1 visualises the posteriors. The leftmost box-
plot is based on the posterior samples of the coefficient
for the benchmark z = 1. It is distributed symmetri-
cally around 0 as expected. Other box plots represent
the posterior distributions of the coefficients associated

Figure 1. Posterior plots with the prostate cancer data.
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with eight covariates. It can be seen that the three poste-
riors plotted in the far right of Figure 1 are clearly differ-
ent from the posterior of the benchmark and, hence, we
may conclude that the corresponding three covariates,
svi, lweight, and lcavol, are useful for the response. On
the other hand, the posteriors of three covariates next
to the benchmark in Figure 1 are not different from the
benchmark posterior and, hence, the covariates pgg45,
lcp, and gleason are not useful. The posteriors of lbph
and age are just marginally different from that of the
benchmark, and we may still consider them to be not
useful covariates.

Figure 1 also includes lasso and Bayesian lasso esti-
mates of each coefficients,marked as circles and squares
in the figure. The lasso estimates are zero for pgg45,
lcp, and age, nonzero for the other five covariates. Thus,
the lasso approach agrees with our approach for covari-
ates pgg45, lcp, age, svi, lweight, and lcavol, but does
not agree on gleason and lbph. Since the magnitudes of
lasso estimates for gleason and lbph are small, another
thresholding added to lasso will result in the same con-
clusion with ours. Meanwhile, the Bayesian lasso evalu-
ates all the coefficients to be nonzero as it does not select
variables to promote model sparsity.

2.3. Variable selection

The benchmark serves as ameasure to assess the impor-
tance of each covariate. To compare the effect of each xi
with that of the benchmark z, we define the importance
score di for each xi based on the following conditional
posterior probability:

di = P

⎛⎝ |βi|√
V
(
βi|y,X, σ 2

) >
|βz|√

V
(
βz|y,X, σ 2

) ∣∣∣∣y,X, σ 2

⎞⎠ (4)

whereV(ξ |A) denotes the posterior variance of ξ given
A. This probability could be evaluated either numeri-
cally or theoretically, depending on which prior is put
on β . The standardisation over the variances is neces-
sary for the purpose of fair comparison. Intuitively, a di
close to 0.5 indicates the effect of xi is notmuchdifferent
from the effect of the benchmark and therefore xi could
be treated as an unimportant variable. With the avail-
ability of the estimated importance scores, the covari-
ates (x1, . . . , xp) could be ranked from the most impor-
tant to the least important as (x(1), . . . , x(p)), where x(1)
associates with the greatest estimated importance score,
x(2) associates with the second largest importance score
and etc. It is desired to select covariates that are assessed
to be the most important.

Naturally, the next question to be addressed is how to
determine the cutoff pointm∗ such that only the topm∗
variables (x(1), . . . , x(m∗)) are selected. To avoid arbi-
trary thresholding on the estimated importance scores,
we adopt a slighted modified BIC criterion (Chen
& Chen, 2008). For each integer m = 1, . . . , p, the m
most important covariates x(1), . . . , x(m) are considered
in a candidate model with Xm = (x(1), . . . , x(m)). The
desired cutoff pointm∗ is the one that minimises

BIC (m) = log(
∥∥ỹ − Xmβ̂m

∥∥2/n) + m
n
(
log n + log p

)
(5)

over m, where β̂m is the posterior mean of the regres-
sion parameter under model m. The original BIC in
Chen and Chen (2008) uses 2 log p instead of log p
in (5). This slight modification does not alter the
asymptotic properties established in Chen and Chen
(2008) but has better simulation performance in our
study.

For the prostate cancer example in Section 2.2, we
compute di’s and BIC(m) and show them in Table 1.
It can be seen that BIC(m) reaches its minimum value
−0.54 when m∗ = 3, i.e., lcavol, lweight, and svi are
selected as important covariates, or equivalently, we
select covariates whose di values are over 0.9 in this
example.

2.4. Computation

The Laplace prior in (1) is a shrinkage prior, but it
is not conjugate and, hence, Bayesian computation is
complicated. Fortunately, we can follow the approach
in Park and Casella (2008) to carry out Bayesian com-
putation using Gibbs sampler and to estimate λ using
marginal likelihood. This is based on the fact that the
Laplace distribution is a scale mixture of normal dis-
tributions where the mixing is through an exponential
distribution as follows (Andrews & Mallows, 1974),

a
2
exp (−a|z|) =

∫ ∞

0

1√
2πs

exp
(

− z2

2s

)a2
2

× exp
(

− a2

2
s
)
ds (6)

Using 1 as benchmark and applying (6), we obtain that
the posterior density in (3) is proportional to

1
σ n+p+3 exp

(
−
∥∥ỹ − Xβ

∥∥2
2σ 2

) ∏
i=z,1,...,p

∫ ∞

0

1
τi

× exp
(

− β2
i

2σ 2τ 2i
− λ2τ 2i

2

)
dτ 2i

Table 1. Values of di and BIC(m) in prostate cancer example.

lcavol lweight svi age lbph gleason lcp pgg45

di 1.00 0.98 0.93 0.80 0.71 0.61 0.56 0.54
BIC(m) −0.38 −0.47 −0.54 −0.49 −0.46 −0.41 −0.33 −0.26
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which gives the following conditional distributions for
Gibbs sampler:

βz | all others ∼ N
(
0, τ 2z σ 2)

β | all others ∼ N
(
A−1X′ỹ, σ 2A−1)

σ 2 | all others ∼ Inv-Gamma ((n + p)/2,

||ỹ − Xβ||2/2 + β ′D−1
τ β/2 + β2

z /2τ
2
z )

τ−2
i | all others ∼ Inv-Gaussian

(|λσ/βj|, λ2
)

τ−2
z | all others ∼ Inv-Gaussian

(|λσ/βz|, λ2
)

where A = X′X + D−1
τ and Dτ is a p × p diagonal

matrix with τ 21 , . . . , τ
2
p as diagonal components. In the

kth iteration of the Gibbs sampler, the λ value estimated
from the (k − 1)th iteration is used to get the kth sample
and is then updated by the kth sample as

λ̂(k) =
√

2(p + 1)
Êλ(k−1)

[
τ 2z +∑p

j=1 τ 2j |ỹ,X]
where the conditional expectation is evaluated by the
average from Gibbs samples. The derivation is omitted
since it is similar to that in Park and Casella (2008).

Once the posterior samples of βz and β are obtained,
the importance score di for each xi specified in (4)
can be approximated by the corresponding relative
frequency d̂i. The ranked x(1), x(2), . . . , x(p) can be
obtained by sorting d̂i’s descendingly. Finally, we can
find the cutoff point m∗ by minimising BIC in (5),
with β̂m being the posterior mean of the regression
coefficient vector when Xm = (x(1), x(2), . . . x(m)).

2.5. Covariates with group structures

In some studies, the covariates exhibit certain group
structure. It is then desired to capture the intrinsic rela-
tion among variables within a group. In this section, we
extend the idea of using a benchmark for variable selec-
tion under the Bayesian framework to accommodate
the group structures. We perform variable selection in
both group and individual variable levels.

Suppose that p covariates can be partitioned into
G groups with sizes p1, . . . , pG, respectively, where∑G

g=1 pg = p. The matrix X could be written as X =
(X1, . . . ,XG), where Xg = (xg1, . . . , xgpg ) is a n × pg
matrix for the gth group, g = 1, . . . ,G. The vector of
associated regression coefficients can bewritten asβ ′ =
(β ′

1, . . . ,β
′
G), where each β ′

g = (βg1, . . . ,βgpg ) is a vec-
tor of length pg , g = 1, . . . ,G.

The prior in (1) does not take the group structure
into consideration. Instead, as inspired by the penalty
term of group lasso (Yuan& Lin, 2005), we consider the
following prior density which encourages shrinkage on

group level:

p(β|σ 2) =
G∏

g=1

λ

2σ
exp

⎛⎝−
λ
√
pgβ ′

gβg

σ

⎞⎠ (7)

The idea of benchmark can be extended to accommo-
date group level variable selection. Since a benchmark
could be regarded as an individual group with a sin-
gle covariate, we can assign a Laplace prior to βz as in
Section 2.1 and consider joint prior of (βz,β0,β , σ 2) as

1
σ 2 p(β|σ 2)

λ

2σ
exp

(
−λ

√
β2
z

σ

)
where the prior of βz matches the form of prior for βg
in (7), g = 1, . . . ,G. Since the prior does not affect the
fact that 1 is a benchmark as long as the prior of βz has
mean 0, we can still use 1 as a benchmark for group
variable selection. It follows from (6) that

exp

⎛⎝−
λ
√
pgβ ′

gβg

σ

⎞⎠
=
∫ ∞

0

λ√
2πτg

exp

(
−pgβ ′

gβg

2σ 2τ 2g

)

exp
(

−λ2

2
τ 2g

)
dτ 2g

Then, after integrating out β0, we obtain that the pos-
terior density of (β ,βz, σ 2 is proportional to

1
σ n+G+3 exp

(
−
∥∥ỹ − Xβ

∥∥2
2σ 2

) ∏
g=z,1,...,G

∫ ∞

0

1
τg

× exp

(
−pgβ ′

gβg

2σ 2τ 2g
− λ2τ 2g

2

)
dτ 2g

which gives the following full conditional distributions:

βz | all others ∼ N(0, τ 2z σ 2)

β | all others ∼ N
(
(X′X + Dpτ )

−1X′ỹ,

(X′X + Dpτ )
−1σ 2

)
1/τ 2g | all others ∼ Inv-Gausian

(
λσ(pgβ ′

gβg)
−1/2,

λ2
)

1/τ 2z | all others ∼ Inv-Gaussian
(
λσ/|βz|, λ2

)
σ 2 | all others ∼ Inv-Gamma

(
n + G
2

,
||ỹ − Xβ||2

2

+ β2
z

2τ 2z
+

G∑
g=1

pgβ ′
gβg

2τ 2g

)
whereDpτ is a diagonal matrix with each pg/τ 2g repeat-
ing pg times in order as the diagonal components,
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g = 1, . . . ,G. The hyperparameter λ is estimated as in
Section 2.4 with p replaced by G.

Let bg =
√

β ′
gβg , which can be regarded as a mea-

sure of the effect of group g. The gth group effect
is compared with the benchmark and ranked by dg
defined as (4) with βi replaced by bg . These poste-
rior probabilities can be evaluated once the posterior
samples for βz and βg , g = 1, . . . ,G are generated
form Gibbs sampling. Based on these, the impor-
tance order of groups can be obtained. Like before,
a BIC criterion specified in Equation (5) can be
applied to eliminate groups of covariates that are
unimportant.

In the procedure described above, groups are
selected in an all-in-all-out fashion. However, not all of
the covariates have influence on y within an selected
group. Hence, it is desired to carry out variable level
selection within chosen groups. Let I be the index set
of groups selected in the group level selection and let
XI = (Xg , g ∈ I). We can apply the variable selection
procedure described in Section 2.3 to the covariate vec-
tor XI . Let Xm∗ be the vector of finally selected covari-
ates. It could happen that some groups inXI are entirely
eliminated in the variable level selection, i.e., some Xg ’s
with g ∈ I are entirely not in Xm∗ . These groups are
then further excluded.

Even if there is no group structure in covariates, this
group level selection followed by a variable level selec-
tion can be applied for variable selection when p is very
large to reduce dimensionality in a fast way because
group level selection may eliminate several groups of
unimportant covariates simultaneously.

3. Simulation studies

Monte Carlo simulations are carried out to compare the
performance of the proposed Bayesian variable selec-
tion method via a benchmark, as well as Bayesian lasso
(B-lasso) by Park and Casella (2008) and frequentist
lasso by Tibshirani (1996), where the penalty parameter
is tuned by 10-folds cross-validation.

In the first study, there is no group structure in
covariates. Three sets of n and pwith increasing ratio of
p/n are considered, n = 50, p = 10, n = 50, p = 100,
and n = 100, p = 500. The matrix X is generated from
multivariate normal distribution N(0,�), where the
(i, j)th element of � is .5|i−j|, i, j = 1, . . . , p. Given X,
the response vector y is generated from N(Xβ0, σ 2

0 I),
where β0 = (1.5, 3, 0, 0, 2, 0, . . . , 0)′ is p-dimensional
with only three non-zero components (the first, second,
and fifth), and σ0 is chosen so that ‖β0‖/σ0, the signal-
to-noise ratio, is 3, 5, 10whenn = 50 and 3, 4, 5, 6when
n = 100. Note that the intercept β0 is set to be 0. The
covariates corresponding to non-zero β0 components
are called important covariates; otherwise they are
unimportant.

We consider the following performance measures of
the proposed, lasso, and B-lasso methods:

model size = number of selected covariates (8)

sensitivity =
number of of selected important

covariates
3

(9)

specificity =
number of removed unimportant

covariates
p − 3

(10)

PMSE = ‖ytest − ȳ − Xβ̂‖2
n

(11)

where PMSE is estimated prediction mean square error
based on a test response vector on the test response
vector ytest that is independent of y generated from
N(Xβ0, σ 2

0 I) with the same X, and β̂ is the posterior
mean under the selected model.

The averages of quantities in (8)–(11) over 1000
simulations are presented in Table 2, with simulation
standard deviations given in parenthesis. In addition,
the rate in 1000 simulations of selecting exactly three
important covariates are also included in Table 2.

The results in Table 2 illustrate substantial advan-
tages of the proposed variable selection over the other
two methods, in terms of measures in (8)–(11) and
the rate of selecting exactly the three important covari-
ates. The lasso selects much more covariates than the
proposed method in all cases without improving the
prediction error. The B-lasso does not select covariates,
has sensitivity 1 and specificity and rate 0 and does not
perform well in prediction especially when p/n is large.

In the second simulation study, a group structure
is added to covariates and the proposed method in
Section 2.5 is considered with a group selection fol-
lowed by an individual variable selection. For compari-
son, we include three existing methods, the group lasso
(glasso) proposed by Yuan and Lin (2006), which car-
ries out the group level selection in an ‘all-in-all-out’
fashion, the group bridge (gbridge) proposed by Huang
et al. (2009) and Zhou and Zhu (2010), which selects
groups as well as individual variables, and the sparse-
group lasso (sglasso) proposed by Simon et al. (2012).

Similar to the first simulation study, we generate
X from N(0,�) and given X, we generate y from
N(Xβ0, σ 2

0 I)with ‖β0‖/σ0 = 3. The group structure is
from the covariance matrix�: components of X within
the same group have pairwise correlation 0.5, while
components of X from different groups are indepen-
dent. Two cases with different sample size n, dimension
p, and group structures are considered.

Case I. n = 100 and p = 90. There are six groups with
group sizes 10, 20, 10, 20, 10, and 20, respectively.
Each of groups 1, 3 and 5 contains two impor-
tant covariates whose regression coefficients are
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Table 2. Results for simulation Study 1.

n p ‖β0‖
σ0

Method Model size Sensitivity Specificity PMSE Rate

50 10 3 Proposed 2.973 (0.501) 0.955 (0.117) 0.984 (0.051) 8.022 (1.831) 0.784
Lasso 6.032 (2.114) 0.998 (0.028) 0.566 (0.301) 8.306 (1.797) 0.104
B-lasso 10.00 (0.000) 1.000 (0.000) 0.000 (0.000) 8.303 (1.771) 0.000

5 Proposed 3.096 (0.356) 0.995 (0.041) 0.984 (0.048) 4.665 (0.966) 0.884
Lasso 6.015 (2.090) 1.000 (0.011) 0.569 (0.299) 4.955 (1.044) 0.102
B-lasso 10.00 (0.000) 1.000 (0.000) 0.000 (0.000) 4.947 (1.017) 0.000

10 Proposed 3.123 (0.366) 1.000 (0.000) 0.982 (0.052) 2.341 (0.481) 0.890
Lasso 5.939 (2.095) 1.000 (0.000) 0.580 (0.299) 2.502 (0.531) 0.110
B-lasso 10.00 (0.000) 1.000 (0.000) 0.000 (0.000) 2.503 (0.515) 0.000

50 100 3 Proposed 2.891 (1.072) 0.819 (0.227) 0.996 (0.007) 9.379 (2.731) 0.327
Lasso 17.73 (10.80) 0.990 (0.058) 0.848 (0.111) 9.758 (2.405) 0.004
B-lasso 100.0 (0.000) 1.000 (0.000) 0.000 (0.000) 15.74 (2.935) 0.000

5 Proposed 3.272 (0.950) 0.936 (0.142) 0.995 (0.008) 5.231 (1.665) 0.538
Lasso 17.60 (10.50) 0.999 (0.021) 0.849 (0.108) 5.771 (1.440) 0.003
B-lasso 100.0 (0.000) 1.000 (0.000) 0.000 (0.000) 11.86 (2.083) 0.000

10 Proposed 3.313 (0.681) 0.996 (0.038) 0.997 (0.007) 2.374 (0.542) 0.761
Lasso 18.58 (10.66) 1.000 (0.000) 0.839 (0.110) 2.925 (0.716) 0.002
B-lasso 100.0 (0.000) 1.000 (0.000) 0.000 (0.000) 8.850 (1.322) 0.000

100 500 3 Proposed 3.150 (0.672) 0.970 (0.096) 1.000 (0.001) 7.588 (1.171) 0.750
Lasso 39.08 (28.90) 1.000 (0.000) 0.928 (0.058) 9.343 (2.052) 0.000
B-lasso 500.0 (0.000) 1.000 (0.000) 0.000 (0.000) 15.93 (1.957) 0.000

4 Proposed 3.230 (0.601) 0.997 (0.033) 1.000 (0.001) 5.535 (0.763) 0.820
Lasso 40.73 (28.65) 1.000 (0.000) 0.924 (0.058) 7.091 (1.580) 0.000
B-lasso 500.0 (0.000) 1.000 (0.000) 0.000 (0.000) 13.68 (1.615) 0.000

5 Proposed 3.180 (0.500) 1.000 (0.000) 1.000 (0.001) 4.416 (0.611) 0.860
Lasso 42.16 (28.65) 1.000 (0.000) 0.921 (0.058) 5.693 (1.261) 0.000
B-lasso 500.0 (0.000) 1.000 (0.000) 0.000 (0.000) 12.29 (1.400) 0.000

6 Proposed 3.150 (0.479) 1.000 (0.000) 1.000 (0.001) 3.676 (0.507) 0.890
Lasso 41.87 (28.24) 1.000 (0.000) 0.922 (0.057) 4.737 (1.065) 0.000
B-lasso 500.0 (0.000) 1.000 (0.000) 0.000 (0.000) 11.34 (1.257) 0.000

Notes: Numbers in parentheses are standard deviations; the true model size is 3; model size, sensitivity, specificity, and PMSE are defined in (8)–(11); rate =
rate of selecting exactly three important covariates.

Table 3. Results for simulation Study 2.

Group selection Variable selection

Case Method Size Sens Spec Rate Size Sens Spec Rate PMSE

I Proposed 3.14 1.00 0.95 0.89 6.29 1.00 1.00 0.79 3.57
(0.46) (0.00) (0.15) (0.63) (0.00) (0.01) (0.52)

glasso 3.85 1.00 0.72 0.38 46.93 1.00 0.51 0.00 5.42
(0.89) (0.00) (0.30) (17.90) (0.00) (0.21) (0.89)

gbridge 3.59 1.00 0.80 0.64 22.46 1.00 0.80 0.00 4.15
(0.94) (0.00) (0.31) (21.53) (0.00) (0.26) (0.91)

sglasso 5.50 1.00 0.17 0.04 14.66 1.00 0.90 0.01 4.56
(0.78) (0.00) (0.26) (4.97) (0.01) (0.06) (0.76)

II Proposed 1.96 0.96 1.00 0.89 3.06 0.70 1.00 0.24 13.95
(0.32) (0.14) (0.03) (1.10) (0.24) (0.01) (4.49)

glasso 3.39 1.00 0.83 0.04 33.9 1.00 0.69 0.00 17.15
(0.64) (0.00) (0.08) (6.39) (0.00) (0.07) (3.84)

gbridge 4.80 1.00 0.65 0.12 26.1 0.98 0.77 0.00 16.25
(1.47) (0.00) (0.18) (8.57) (0.07) (0.09) (3.66)

sglasso 3.89 1.00 0.76 0.35 8.14 0.90 0.95 0.05 14.13
(2.18) (0.00) (0.27) (4.77) (0.15) (0.05) (3.16)

Notes: Numbers in parentheses are standard deviations; under variable selection, size = model size, sen = sensitivity, spec = specificity, defined in (8)–(10);
under group selection, size, sen, spec are defined by (8)–(10) with covariates replaced by groups; PMSE is defined by (11); rate = rate of selecting exactly
the true numbers of important groups and covariates.

1.5 and 2, and 8 unimportant covariates. Groups 2,
4 and 6 contain all unimportant covariates. Thus,
there are three important groups and a total of six
important covariates.

Case II. n = 50 and p = 100. There are 10 groups, each
with 10 covariates. Each of groups 1 and 3 has two
important covariates whose regression coefficients
are 1.5 and 3, and 8 unimportant covariates. All
other eight groups contain unimportant covari-
ates. Thus, there are two important groups and a
total of four important covariates.

The averages of quantities in (8)–(11) over 200
simulations are presented in Table 3 for both group
and individual variable levels when (8)–(10) are con-
sidered, with simulation standard deviations given in
parenthesis. The rate in 200 simulations of selecting
exactly number of important groups and number of
important individual covariates are also included in
Table 3.

The results in Table 3 demonstrate the advantage of
our method in both prediction and variable selection,
compared to other three methods.
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4. Real data examples

For illustration, in this section, we apply the proposed
method to three real datasets and compare it with other
methods.

4.1. Prostate cancer

This example is introduced in Section 2.2, with vari-
able selection illustrated in Section 2.3. To check the
performance of proposed variable selection and make
comparisons, we randomly split the dataset with 97
patients into 2 subsets of sizes 78 and 19, use the subset
of size 78 as the training set to carry out variable selec-
tion and build regression model, and use the subset of
size 19 as the test set to validate the prediction perfor-
mance in terms of PMSE defined by (11). We indepen-
dently repeat random splitting 100 times and obtain the
empirical results of 100 replications in Table 4.

The results in Table 4 elucidates that the proposed
method outperforms lasso and B-lasso. First, the pro-
posed selection method highly concentrates on select-
ing three important covariates as indicated in Figure 1
and Table 1. The average model size is 2.86. Although
lasso agrees with the proposed method in selecting
the three most important variables, it tends to select
some redundant variables without improving PMSE,
the prediction accuracy. Although Bayes lasso has a
small PMSE, it does not perform variable selection.

4.2. CCT8 in a genome-wide association study

Research on linking genetic variations and phenotypic
variations such as susceptibility to certain disorders
is important in genomics as it helps to accelerate the
understanding of genetic basis and may shed light
on new medical treatments. We consider a high-
dimensional dataset with p>n from a genome-wide
association study, the expression quantitative trait locus
(eQTL) mapping. The performance of high-resolution
eQTLmapping on nucleotide level is based on themea-
surements of genome-wide single nucleotide polymor-
phism (SNP). Here we consider the eQTL mapping for
the gene CCT8measured bymicroarray as the response
from 90 individuals, 45 Han Chinese from Beijing,

Table 5. Results basedon100 randomsplits for theCCT8exam-
ple.

Selection rate for five SNPs with the highest rates

Method rs965951 rs2245431 rs2832321 rs16983706 rs468619

Proposed 0.73 0.48 0.44 0.28 0.34
Lasso 0.97 0.94 0.82 0.75 0.84
B-lasso 1.00 1.00 1.00 1.00 1.00

average model size PMSE

Proposed 3.394 (2.571) 0.035 (0.021)
Lasso 58.98 (22.93) 0.034 (0.016)
B-lasso 200.0 (0.000) 0.064 (0.037)

Note: Numbers in parentheses are standard deviations.

China, and 45 Japanese fromTokyo, Japan. The analysis
is to detect which SNPs are associated with the CCT8
expression level, from a total of 200 SNPs after an initial
screening of many SNPs.

Results based on 100 random splits of the dataset
similar to those in the previous example (Table 4) are
given in Table 5, with 80 people in the training set and
10 in the test set. In terms of the average model size
and PMSE, the results in Table 5 exhibit quite similar
yet more dramatic pattern compared with the results
in Table 4 for the prostate cancer data. Our variable
selection method significantly promotes model spar-
sity by selecting only around 3.4 variables on average,
whereas the lasso method selects nearly 59 variables
on the average. The PMSE under our approach is not
jeopardised by the simplicity of model, as it is nearly
the same as the PMSE for lasso. The Bayesian lasso
results in the greatest PMSE, indicating that includ-
ing all 200 predictors (compared with only 8 variables
in the prostate cancer example) without variable selec-
tion leads to serious prediction errors when the num-
ber of unimportant variables is overwhelming in the
model.

Over 100 random data splits, the top five most
frequently selected SNPs by our approach are shown
in Table 5. The highest selection frequency of SNP
rs965951 suggests its relevance with the response
CCT8, which is in accord with the results from
some previous studies (Bradic et al., 2009; Deutsch
et al., 2005; Fan et al., 2012). The second most fre-
quently selected SNP rs2245431 was also selected by
Bradic et al. (2009). All findings obtained by statistical

Table 4. Results based on 100 random splits for the prostate cancer example.

Selection rate for each covariate

Method lcavol lweight svi age lbph gleason lcp pgg45

Proposed 1.00 0.87 0.91 0.00 0.08 0.00 0.00 0.00
Lasso 1.00 0.99 1.00 0.51 0.88 0.46 0.23 0.75
B-lasso 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average model size PMSE

Proposed 2.860 (0.377) 0.594 (0.189)
Lasso 5.820 (1.553) 0.600 (0.216)
B-lasso 8.000 (0.000) 0.580 (0.188)

Note: Numbers in parentheses are standard deviations.
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methodologies are yet to be further validated by rele-
vant genomical analysis.

4.3. ACS breast cancer patient OWB data

Breast cancer is a worldwide common cancer and
remains the leading cause ofmortality for women.With
the continuously improved survival rate and prolonged
life expectancy granted by advanced modern therapies,
increasing efforts have been devoted to investigating the
quality of life for breast cancer patients, as the quality
of life plays an important role throughout the treat-
ment and survivorship and, hence, the relevant studies
may shed light on innovative intervention designs for
disease control and quality of life improvement.

We consider a dataset from a large-scale breast
cancer study conducted by American Cancer Soci-
ety (ACS) at the School of Nursing in Indiana Uni-
versity. We focus on a subset of this study with 623
seniors who were 55–70 years old at diagnosis and were
surveyed 3–8 years after completion of chemotherapy
and surgery, with or without radiation therapy. The
response of interest is overall well being (OWB), a mea-
sure captured by Campbell’s index of quality of life,
which is based on seven questionnaire items (Campbell
et al., 2008). The objective of this study is to identify
the psychological, social, and behaviour factors having
important impacts on the well being of the survivors,
and to establish the association between these factors
and OWB.

The total 57 covariates under consideration include
3 demographic variables and 54 social or behaviour
scores quantified by questionnaires which are well stud-
ied in literature (Frank-Stromborg & Olsen, 2003).
The 54 social or behaviour variables are divided to 8
non-overlapping groups, which are personality, physi-
cal health, psychological health, spiritual health, active
coping, passive coping, social support, and self efficacy.
Each contains 4 to 12 individual covariates describ-
ing the same aspect of the social or behaviour sta-
tus from different perspectives. The three demographic
variables are treated as three individual groups, which
are age at diagnosis, years of education, and number of
months the patients were in their initial breast cancer
treatment.

As in the first two examples, we randomly split the
data set to a training set of size 499 and a test set of
size 124, and then show the average or frequency based
on 100 splits in Table 6. Similar to the second simu-
lation study, we compare our proposed method to the
glasso, gbridge, and sglasso designed for group variable
selection.

The first part of Table 6 shows the rate (over 100
random splits) of selecting groups, where the three
individual demographic variables are treated as three
groups with size 1. The psychological health group is

always selected by every method, which strongly sug-
gests its association with the response OWB. It makes
intuitive sense as a diagnosis of breast cancer is the
most devastating thing awoman can hear, and it is often
accompanied with fear of death, loss of control, isola-
tion, and depression (Knobf, 2007; Yoo et al., 2010),
all of which make considerably negative impacts on
OWB. The other group that is always selected by our
method, glasso and sglasso is social support, which
is characterised as combination of emotional, tangi-
ble, and informational support (Cohen et al., 2000),
from any formal, informal, social, professional, struc-
tured or unstructured resources (House &Khan, 1985).
Reviews on the relevant literature reveal that it has
been long recognised that social support may affect the
OWB of patients in chronic and life-threatening health
conditions like breast cancer (Cohen & Syme, 1985).
Besides the above two groups, our method also selects
the spiritual health group at a relatively low frequency,
while barely including any other remaining groups.
Purnell and Andersen (2009) pointed out that spiri-
tual well-being was significantly associated with quality
of life and traumatic stress after controlling for disease
and demographic variables. Furthermore, spirituality
is regarded as a resource regularly used by patients
with cancer coping with diagnosis and treatment Gall
et al. (2005).

Our proposed method selects variables within each
selected groups. Over 100 random data splits, the mid-
dle part of Table 6 shows the rates of top seven most
frequently selected variables within the three selected
groups. The selected psychological health group con-
tains six variables, five of which are selected with high
rates. In Table 6, tstatAnx and ttraiAnx are short for
S-anxiety and T-anxiety scales, respectively, which are
used to capture the anxiety level of patients based on
20 questions like ‘I feel nervous and restless’; tbodimg
stands for body image total score and is summarised
from eight questions such as ‘I am satisfied with the
appearance of my body’ and ‘others find me attractive’;
tcesd represents the total score for situations during the
past week, and the questions associated with this con-
struct are something like ‘I was bothered by things that
usually don’t bother me’ or ‘my appetite was poor’. In
the social support group, only one variable is selected
with high frequency, tcommnow, which quantifies the
communication quality between the patients and physi-
cians, based on questions like ‘I have a health care
provider I trust’ and ‘I have a health care provider who
knows me personally’. The high selection frequency
of this variable is in accord with the existing research
results, which suggests that although the older women
obtain information regarding breast cancer from a vari-
ety of sources, they often reply heavily on their primary
care physicians for support and information (Silliman
et al., 1998).
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While the previous analysis focuses on group and
individual variable selection, the last part of Table 6
shows the advantage of our proposed method in terms
of the averages of selected groups and variables, and
the PMSE over 100 random splits. On the average,
our method promotes model sparsity by picking only
around 2.4 groups and further reduces model com-
plexity by including less than six variables in selected

groups. In contrary, both glasso and sglasso select
nearly twice many groups while produce comparable
PMSE. The gbridge also chooses significantly more
groups than our method, while leads to a slight
smaller.

Finally, as we discussed in Section 2.2, our proposed
benchmark approach can also be applied by visualising
the posteriors. Figure 2 illustrates how to visualise the

Table 6. Results based on 100 random splits for the OWB example.

Method Individual demographic variable selection

Age Treatment Months Years of edu

Proposed 0.00 0.02 0.00
glasso 0.00 0.79 0.01
gbridge 0.00 0.04 0.00
sglasso 0.00 0.15 0.00

group selection

Personality Physical health Psych health Spiritual health
size= 5 size= 4 size= 6 size= 12

Proposed 0.00 0.00 1.00 0.21
glasso 0.01 0.90 1.00 0.20
gbridge 0.00 0.00 1.00 0.92
sglasso 0.03 0.46 1.00 0.69

Active coping Passive coping Social support Self-efficacy
size= 7 size= 5 size= 4 size= 11

Proposed 0.04 0.05 1.00 0.05
glasso 0.33 0.02 1.00 0.43
gbridge 0.02 0.06 0.81 0.26
sglasso 0.60 0.13 1.00 0.68

Selection within psychological health group

ttraiAnx tstatAnx tbodimg tcesd tthinkbc

Proposed 1.00 0.98 0.79 0.64 0.70
glasso 1.00 1.00 1.00 1.00 1.00
gbridge 1.00 1.00 1.00 1.00 1.00
sglasso 1.00 1.00 0.99 1.00 0.32

Selection within social support Selection within spiritual health
tcommnow sprview6

Proposed 1.00 0.20
glasso 1.00 0.20
gbridge 0.81 0.91
sglasso 1.00 0.68

Average of Average of selected
selected groups individual variables PMSE

Proposed 2.370 (0.646) 5.500 (1.439) 2.789 (0.448)
glasso 4.690 (0.837) 23.99 (6.889) 2.787 (0.425)
gbridge 3.110 (0.601) 10.48 (2.172) 2.713 (0.452)
sglasso 24.740 (2.008) 10.70 (4.150) 2.837 (0.424)

Figure 2. The posteriors of regression coefficients in three groups.
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importance of variables within each three groups, based
on the whole data set with 623 patients.

Acknowledgements

Our research was supported by the National Natural Sci-
ence Foundation of China (11831008) and the U.S. National
Science Foundation (DMS-1612873 and DMS-1914411). We
would like to thank a referee for a careful review.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Funding

Our research was supported by the National Natural Science
Foundation of China [grant number 11831008] and the U.S.
National Science Foundation [grant numbers DMS-1612873
and DMS-1914411].

Notes on contributors

Dr. Jun Shao holds a PhD in statistics from the University of
Wisconsin-Madison. He is a Professor of Statistics at the Uni-
versity of Wisconsin-Madison. His research interests include
variable selection and inference with high dimensional data,
sample surveys, and missing data problems.

Dr. Kam-Wah Tsui is an Emeritus Professor of Statistics at
the University of Wisconsin–Madison. His research inter-
ests include Bayesian analysis, sample surveys, and general
statistical methodology.

Dr. Sheng Zhang holds a Ph.D. in statistics from University
of Wisconsin-Madison. She is now a data scientist at Google,
Mountain View, California.

References

Andrews, D. F., & Mallows, C. L. (1974). Scale mixtures
of normal distributions. Journal of the Royal Statistical
Society, Series B, 36, 99–102.

Bayarri, M. J., Berger, J. O., Jang, W., Ray, S., Pericchi,
L. R., & Visser, L. (2019). Prior-based Bayesian infor-
mation criterion (PBIC). Statistical Theory and Related
Fields, 3(1), 2–13. https://doi.org/10.1080/24754269.2019.
1582126

Bradic, J., Fan, J., & Wang, W. (2009). Penalized compos-
ite quasi-Likelihood for ultrahigh-Dimensional variable
selection. Journal of the Royal Statistical Society, Series
B, 73(3), 325–349. https://doi.org/10.1111/rssb.2011.73.
issue-3

Brown, P. J., Vannucci, M., & Fearn, T. (1998). Multivari-
ate Bayesian variable selection and prediction. Journal
of the Royal Statistical Society, Series B, 60(3), 627–641.
https://doi.org/10.1111/rssb.1998.60.issue-3

Campbell, A., Converse, P., & Rodgers,W. (2008). The quality
of American life: Perceptions, evaluations, and satisfactions.
Russell Sage Foundation.

Chen, J., & Chen, Z. (2008). Extended Bayesian infor-
mation criterion for model selection with large model
spaces. Biometrika, 95, 759–771. https://doi.org/10.1093/
biomet/asn034

Cohen, S., Gottlieb, B., & Underwood, L. (2000). Social rela-
tionships and health. In S. Cohen, L. Underwood, & B.

Gottlieb (Eds.), Social support measurement and interven-
tion. Oxford University Press.

Cohen, S., & Syme, L. (1985). Social support and health (Tech.
Rep.). Academic.

Dellaportas, P., Forster, J. J., & Ntzoufras, I. (1997). On
Bayesian model and variable selection using MCMC (Tech.
Rep.). Department of Statistics, Athens University of Eco-
nomics and Business.

Deutsch, S., Lyle, R., Dermitzakis, E., Attar, H., Subrah-
manyan, L., Gehri, C., Parand, L., Gagnebin, M., Rouge-
mont, J., Jongeneel, C., & Antonarakis, S. (2005). Gene
expression variation and expression quantitative traitmap-
ping of human chromosome 21 genes. Human Molecu-
lar Genetics, 14(23), 3741–3749. https://doi.org/10.1093/
hmg/ddi404

Dicker, L., Huang, B., & Lin, X. (2011). Variable selection and
estimation with the seamless-l0 penalty. Statistica Sinica,

Fan, J., Han, X., & Gu, W. (2012). Estimating false discov-
ery proportion under arbitrary covariance dependence.
Journal of the American Statistical Association, 107(499),
1019–1035. https://doi.org/10.1080/01621459.2012.720
478

Fan, J., & Li, R. (2001). Variable selection via nonconcave
penalized likelihood and its oracle properties. Journal of
the American Statistical Association, 96(456), 1348–1360.
https://doi.org/10.1198/016214501753382273

Frank-Stromborg, M., & Olsen, S. (2003). Instruments For
Clinical Health-Care Research (Jones and Bartlett Series
in Oncology, 3rd edition) (Tech. Rep.). Jones & Bartlett
Learning.

Gall, T., Charbonneau, C., Clarke, N., Grant, K., Joseph, A.,
& Shouldice, L. (2005). Understanding the nature and role
of spirituality in relation to coping and health: A con-
ceptual framework. Canadian Psychology, 46(2), 88–104.
https://doi.org/10.1037/h0087008

George, E. I., & McCulloch, R. E. (1993). Variable selec-
tion via Gibbs sampling. Journal of the American Statistical
Association, 85, 398–409.

Green, P. J. (1995). Reversible jump Markov chain Monte
Carlo computation and Bayesian model determination.
Biometrika, 82, 711–732. https://doi.org/10.1093/biomet/
82.4.711

Hoerl, A., & Kennard, R. (1970). Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
12(1), 55–67. https://doi.org/10.1080/00401706.1970.1048
8634

Hoti, F., & Sillanpää, M. J. (2006). Bayesian mapping of
genotype x expression interactions in quantitative and
qualitative traits. Heredity, 97(1), 4–18. https://doi.org/
10.1038/sj.hdy.6800817

House, J., & Khan, R. (1985). Measures and concepts of social
support. In S. Cohen&S. L. Syme (Eds.), Social support and
health (Tech. Rep.).

Huang, J., Ma, S., Xie, H., & Zhang, C. (2009). A group bridge
approach for variable selection. Biometrika, 96, 339–355.
https://doi.org/10.1093/biomet/asp020

Knobf, M. (2007). Psychological responses in brest cancer
survivors. Seminars in Oncology Nursing, 23(1), 71–83.
https://doi.org/10.1016/j.soncn.2006.11.009

Kuo, L., &Mallick, B. (1998). Variable selection for regression
models. Sankhya Series B, 60, 65–81.

Kyung, M., Gilly, J., Ghosh, M., & Casella, G. (2010).
Penalized regression, standard errors, and Bayesian las-
sos. Bayesian Analysis, 5(2), 369–411. https://doi.org/
10.1214/10-BA607

Lin, Y., & Zhang, H. (2006). Component selection and
smoothing in smoothing spline analysis of variance

https://doi.org/10.1080/24754269.2019.1582126
https://doi.org/10.1111/rssb.2011.73.issue-3
https://doi.org/10.1111/rssb.1998.60.issue-3
https://doi.org/10.1093/biomet/asn034
https://doi.org/10.1093/hmg/ddi404
https://doi.org/10.1080/01621459.2012.720478
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1037/h0087008
https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1038/sj.hdy.6800817
https://doi.org/10.1093/biomet/asp020
https://doi.org/10.1016/j.soncn.2006.11.009
https://doi.org/10.1214/10-BA607


STATISTICAL THEORY AND RELATED FIELDS 81

models. The Annals of Statistics, 34(5), 2272–2297. https://
doi.org/10.1214/009053606000000722

Lv, J., & Fan, Y. (2009). A unified approach to model selec-
tion and sparse recovery using regularized least squares.
The Annals of Statistics, 37(6A), 3498–3528. https://doi.
org/10.1214/09-AOS683

O’Hara, R. B., & Sillanpää, M. J. (2009). Review of Bayesian
variable selection methods: What, how and which.
Bayesian Analysis, 4(1), 85–117. https://doi.org/10.1214/
09-BA403

Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal
of the American Statistical Association, 103(482), 681–686.
https://doi.org/10.1198/016214508000000337

Purnell, J., & Andersen, B. (2009). Religious practice and
spirituality in the psychological adjustment of survivors
of breast cancer. Counseling and Values, 53(3), 165–182.
https://doi.org/10.1002/(ISSN)2161-007X

Schwarz, G. (1978). Estimating the dimension of a model.
The Annals of Statistics, 6(2), 461–464. https://doi.org/
10.1214/aos/1176344136

Shen, X., Pan, W., & Zhu, Y. (2011). Likelihood-based selec-
tion and sharp parameter estimation. Journal of the Amer-
ican Statistical Association.

Silliman, R., Dukes, K., Sullivan, L., & Kaplan, S. (1998).
Breast cancer care in olderwomen: Sources of information,
social support, and emotional health outcomes. Cancer,
83, 706–711. https://doi.org/10.1002/(ISSN)1097-0142

Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2012). A
sparse-group lasso. Journal of Computational and Graphi-
cal Statistics.

Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F.,
Redwine, E., & Yang, N. (1989). Prostate specific anti-
gen in the diagnosis and treatment of adenocarcinoma of
the prostate.II. radical prostatectomy treated patients. Jour-
nal of Urology, 141(5), 1076–1083. https://doi.org/10.1016/
S0022-5347(17)41175-X

Tibshirani, R. (1996). Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society, Series B,
58, 267–288.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight,
K. (2005). Sparsity and smoothness via the fused lasso.
Journal of the Royal Statistical Society: Series B (Statisti-
cal Methodology), 67(1), 91–108. https://doi.org/10.1111/
rssb.2005.67.issue-1

Tipping, M. (2001). Sparse Bayesian learning and the rel-
evance vector machine. Journal OfMachine Learning, 1,
211–244.

Yoo, G., Levine, E., Aviv, C., Ewing, C., &Au, A. (2010). Older
women, breast cancer, and social support. Supportive
Care in Cancer, 18, 121521–1530. https://doi.org/10.1007/
s00520-009-0774-4

Yuan, M., & Lin, Y. (2005). Efficient empirical bayes vari-
able selection and esimation in linear models. Journal of
the American Statistical Association, 100(472), 1215–1225.
https://doi.org/10.1198/016214505000000367

Yuan, M., & Lin, Y. (2006). Model selection and estimation
in regression with grouped variables. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68(1),
49–67. https://doi.org/10.1111/rssb.2006.68.issue-1

Zhang, C. (2010). Nearly unbiased variable selection under
minimax concave penalty. The Annals of Statistics, 38(2),
894–942. https://doi.org/10.1214/09-AOS729

Zhou, N., & Zhu, J. (2010). Group variable selection via a
hierarchical lasso and its oracle property. Statistics and Its
Inference, 3, 557–574.

Zou, H. (2006). The adaptive lasso and its oracle properties.
Journal of the American Statistical Association, 101(476),
1418–1429. https://doi.org/10.1198/016214506000000735

Zou, H., & Hastie, T. (2005). Regularization and variable
selection via the elastic net. Journal of the Royal Sta-
tistical Society, Series B, 67(2), 301–320. https://doi.org/
10.1111/rssb.2005.67.issue-2

https://doi.org/10.1214/009053606000000722
https://doi.org/10.1214/09-AOS683
https://doi.org/10.1214/09-BA403
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1002/(ISSN)2161-007X
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1002/(ISSN)1097-0142
https://doi.org/10.1016/S0022-5347(17)41175-X
https://doi.org/10.1111/rssb.2005.67.issue-1
https://doi.org/10.1007/s00520-009-0774-4
https://doi.org/10.1198/016214505000000367
https://doi.org/10.1111/rssb.2006.68.issue-1
https://doi.org/10.1214/09-AOS729
https://doi.org/10.1198/016214506000000735
https://doi.org/10.1111/rssb.2005.67.issue-2

	1. Introduction
	2. Methodology
	2.1. Benchmark
	2.2. Example
	2.3. Variable selection
	2.4. Computation
	2.5. Covariates with group structures

	3. Simulation studies
	4. Real data examples
	4.1. Prostate cancer
	4.2. CCT8 in a genome-wide association study
	4.3. ACS breast cancer patient OWB data

	Acknowledgements
	Disclosure statement
	Funding
	Notes on contributors
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


