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ABSTRACT
General prediction formulas involving Hermite polynomials are developed for time series
expressed as a transformation of a Gaussian process. The prediction gains over linear predictors
are examined numerically, demonstrating the improvement of nonlinear prediction.
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1. Introduction

The general prediction problem is to compute the best
predictor of a random variable Y given a data vector
X, where a joint distribution is presumed to exist for Y
and X. If we define ‘best’ according to mean squared
error (MSE) loss,1 the best predictor (when the ran-
dom variables are square integrable) is the conditional
expectation E[Y |X], which in the case of Gaussian
variables is a linear function of X. This linear function
is completely computable in terms of first and second
moments of the joint vector (Y ,X), as discussed in
Brockwell and Davis (2013, Chapter 2). The problem
can also be generalised to projection on infinite data
sets, which arise in forecasting and signal extraction
problems.

The theory for linear predictors is very well under-
stood and is commonly applied to non-Gaussian data
because it is simple to compute. Nevertheless, there can
be a substantial predictive loss when non-Gaussian fea-
tures are present in the data, such as asymmetry and
excess kurtosis (Brockett et al., 1988; Maravall, 1983).
A common technique for handling such raw time series
data is to apply a transformation that reduces asymme-
try and kurtosis, thereby generating cumulants in the
transformed space that more closely resemble Gaus-
sian cumulants. Box-Cox transforms are an example
of such functions, and are typically identified through
exploratory analysis or via metadata; see discussion in
McElroy (2016).

This paper provides exact formulas for non-linear
prediction in scenarios where the non-Gaussian data
process can be expressed as a univariate transforma-
tion of some Gaussian process. For some special cases,

such as the log-normal distribution, exact formulas are
already available for nonlinear predictors; here the gen-
eral case is developed. The main result of the paper
(Section 2) is an expansion of the conditional expec-
tation in terms of Hermite coefficients of the transfor-
mation function – an idea that was utilised in Janicki
and McElroy (2016) to model marginal quantiles. Here
this technique is used to derive analytical expressions
for predictors, along with theMSE; the solution is given
as an explicit function of the Hermite coefficients of
the transformation function, the various Hermite poly-
nomials evaluated at the linear predictor, and further
weights explicitly determined from the mean squared
error of the linear predictor.

These results are general, in the sense that they can
be applied to diverse contexts in statistics, such as lin-
ear models, spatial statistics, and multivariate analy-
sis. But our applications are focussed on time series,
and in particular on forecasting problems. In fore-
casting, the data vector X = [X1, . . . ,XT]′ is a sam-
ple of size T from a time series {Xt}, and Y = XT+1
represents the next unobserved value of the process.
Backcasting involves setting Y = X0, andmissing value
problems can similarly be addressed by letting Y =
Xt and X = [X1, . . . ,Xt−1,Xt+1, . . . ,XT]′; see McElroy
and McCracken (2017) for a recent treatment. These
facets of the general methodology are developed in
Section 2, and numerical comparisons are given in
Section 3. The proofs are in an Appendix.

2. Nonlinear prediction

Our goal is to compute the minimal mean squared
error (MSE) estimate ofY given dataX = [X1, . . . ,XT]′
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(finite-sample case) or X = {Xs : s ≤ T} (semi-infinite
sample case). This estimate is the conditional expecta-
tion E[Y |X], denoted Ŷ for short. We presume that
there exists an invertible function f such that Zt =
f (Xt) yields a Gaussian process {Zt}. Moreover, f (Y)

is a Gaussian random variable whose joint distribution
with the process {Zt} is known. In the case of forecast-
ing, backcasting, or missing value imputation, f (Y) =
Zt for some t.

In the following development, it is important to
impose that f (Y) be standard normal, although this
would rarely be the case if f is obtained by exploratory
analysis. (For example, if Y = XT+1 and f (x) = log(x)
by exploratory analysis, it would rarely be the case
that log(XT+1) would have unit variance.) Let Z�

denote the standardisation of f (Y), i.e., Z� = (f (Y) −
E[f (Y)])/

√
Var[f (Y)]. We will define g as the inverse

map from Z� to Y, so that

g(x) = f−1(x
√
Var[f (Y)] + E[f (Y)]).

The mapping Y = g(Z�) allows us to obtain a Hermite
expansion of g; if the marginal distribution of Z� were
non-Gaussian, we could instead have recourse to the
Appell polynomials (Varma, 1951).

The main result of the paper is an expression for
E[Y |X] in terms of E[Z� |Z], with Z = [Z1, . . . ,ZT]′.
This is of interest because such a Gaussian conditional
expectation has a well-known linear formula; see Chap-
ter 4 of McElroy and Politis (2020). In applications, one
might transform the data by applying f, then model
the Gaussian process, and finally compute E[Z� |Z] by
plugging into the linear formulas. Then the main for-
mula of this paper can be used to obtain E[Y |X] by
inserting E[Z� |Z] and its MSE, denoted by V, which
would also be available in applications. In particular,

V = E

[(
Z� − E[Z� |Z])2] (1)

and is given by formulas in McElroy and Poli-
tis (2020); also, see (11) below. We define the space
L2(d�) (where � is the standard normal cumula-
tive distribution function) as all functions that are
square integrable with respect to the measure d�. An
inner product on this space is defined via 〈f , h〉 =∫ ∞
−∞ f (x)h(x)φ(x) dx, where φ is the standard normal
probability density function. Hence, we can also write
〈f , g〉 = E[f (W) g(W)] for W ∼ N (0, 1). It follows
that we can do a Hermite expansion on g (see Janicki
& McElroy, 2016 for background):

g(x) =
∞∑
k=0

Jk Hk(x) (2)

with Hk the normalised Hermite polynomials
(Roman, 1984), and Jk = 〈g,Hk〉 the Hermite coeffi-
cients. The Hermite polynomials are defined via

Hk(x) = 1√
k!

(−1)k ex
2/2∂kx e

−x2/2

for k ≥ 0, and form a complete orthonormal system.
(Hence, the coefficients Jk tend to zero as k → ∞.)
Plugging Z� into (2) yields Y = ∑∞

k=0 Jk Hk(Z�), and
applying the conditional expectation operator (which
is linear) yields

Ŷ = E[Y |X] =
∞∑
k=0

JkE[Hk(Z�) |X]. (3)

Evidently, the nonlinear predictor can be computed in
terms of conditional expectations of Hk(Z�), and the
formula is summarised in ourmain theorembelow. The
proof relies upon the Hermite generating function

h(x, t) = exp{xt − t2/2} =
∞∑
k=0

tk√
k!
Hk(x). (4)

(The second equality follows from the definition
of the Hermite polynomials, and is discussed in
Roman (1984).) From (4) we see that

∂kt h(x, t)|t=0 =
√
k!Hk(x). (5)

Therefore, Jk = E[g(W) Hk(W)] = 1√
k!

∂kt E[g(W)h
(W, t)]|t=0. We next discuss the optimal predictor.

Theorem 2.1: Suppose that Z� is standard normal, and
Y = g(Z�) with g given by (2), and Ẑ� = E[Z� |Z] is
the linear prediction in the transformed space, with MSE
given by V in (1). Then the MSE optimal nonlinear
predictor Ŷ of Y given the data X is

E[Y |X] =
∞∑
k=0

Jk√
k!

k∑
�=0

(
k
�

)√
�!H�(Ẑ�)κk−�, (6)

where κ� is the �th moment of a Gaussian variable of
variance V, i.e., κ� equals 1 if � = 0, and equals zero
if � is odd and equals

√
V�

(� − 1)!! if � is even. With
ε = Y − Ŷ, the optimal prediction MSE is

E[ε2] =
∞∑
k=1

J2k
(
1 − (1 − V)k

)
. (7)

The optimal predictor (6) can be explicitly com-
puted to any desired level of accuracy, truncating the
first summation over k to a desirable level. Note that
this result applies to finite-samples, semi-infinite sam-
ples, and bi-infinite samples, allowing us to apply (6)
to forecasting (from an infinite past) and missing value
problems.
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Remark 2.1: Since
∑∞

k=0 J
2
k = 〈g, g〉, we see that the

Hermite coefficients are square summable if g ∈
L2(d�), and the MSE is well-defined, being bounded
above by

∑∞
k=1 J

2
k V

k. (Note that V ≤ 1 because Z� has
variance one.) BecauseVar[Ŷ2] = Var[Y2] − E[ε2], we
see that Ŷ is square integrable, and hence the for-
mula (6) converges.

Remark 2.2: In applications, we typically will know
f (Y) |Z rather thanZ� |Z, but the latter can be obtained
from the former by applying the normalising transform
described above, i.e.,

E[Z� |Z] = (E[f (Y) |Z] − E[f (Y)])/
√
Var[f (Y)]

V = E[(f (Y) − E[f (Y) |Z])2]/Var[f (Y)].

Remark 2.3: To apply Theorem 2.1 wemust obtain the
Hermite coefficients Jk. Either g is known (obtained by
exploratory analysis) or estimated (see Janicki & McEl-
roy, 2016), and then the Hermite coefficients can be
obtained via Monte Carlo simulation:

Jk = 〈g,Hk〉 = E[g(W)Hk(W)]

≈ M−1
M∑

m=1
g(Wm)Hk(Wm)

for W1, . . . ,Wm i.i.d. standard normal. Another
approach to computation involves the generating
function:

Jk = 1√
k!

∂kt E[g(W) h(W, t)]
∣∣∣∣
t=0

= 1√
2π k!

∂kt

∫
g(w) exp{wt − t2/2}

× exp{−w2/2} dw
∣∣∣∣
t=0

= 1√
2π k!

∂kt

∫
g(w) exp{−(w − t)2/2} dw

∣∣∣∣
t=0

= 1√
2π k!

∂kt

∫
g(w + t) exp{−w2/2} dw

∣∣∣∣
t=0

= 1√
k!

∂kt E[g(W + t)]
∣∣∣∣
t=0

= 1√
k!

E[g(k)(W)].

The last expression denotes the k-fold derivative of
the function. In cases where g is explicitly known,
this can be an easier approach to getting the Hermite
coefficients.

In the following examples we suppose that Ẑ� =
E[Z� |Z] andV = E[(̂Z� − Z�)

2] are known and avail-
able to the practitioner; we present various cases of
transforms f, and apply the results of Theorem 2.1.

Example 2.1 (Gaussian): A simple affine transforma-
tion g(x) = σ x + μ ensures that Y is still Gaussian,

with mean μ and variance σ 2. In this case J0 = μ and
J1 = σ , andwemore simply haveE[Y |X] = σ Ẑ� + μ.

Example 2.2 (Lognormal): Suppose g(x) = ex; apply-
ing the generating function method of Remark 2.3, we
obtain

Jk = 1√
k!

E[exp{W}] = e1/2√
k!

for all k ≥ 0. This can be utilised in (3), together
with (5), to yield

E[Y |X] = e1/2
∞∑
k=0

1
k!

∂kt

(
h(Ẑ�, t) eVt

2/2
) ∣∣∣∣

t=0

= e1/2
(
h(Ẑ�, t) eVt

2/2
)

|t=1

= e1/2 exp{Ẑ� + (V − 1)/2}
= exp{Ẑ� + V/2},

which corresponds to the result of McElroy (2010).
Applying Theorem 2.1 to compute the optimalMSE, we
see that E[(Ŷ − Y)

2] = e2(1 − e−V).

Example 2.3 (Uniform): For {Zt} with standard nor-
malmarginal, set g = �, so that {Xt}has amarginal dis-
tribution that is uniform on (0, 1). Then by Remark 2.3,
we find that g(k)(x) = φ(k−1)(x), and hence

Jk = 1√
k!
,E[φ(k−1)(W)]

= k−1/2(−1)k−1
E[Hk−1(W) φ(W)],

whereW ∼ N (0, 1).

Example 2.4 (Logistic): Consider a logistic transform
given by g(x) = ex/(1 + ex). The first few derivatives of
g are

g(1)(x) = ex(1 + ex)−2

g(2)(x) = (ex − e2x)(1 + ex)−3

g(3)(x) = (ex − 4 e2x + e3x)(1 + ex)−4.

ByMonte Carlo, we obtain J0 = 0.500, J1 = 0.207, J2 =
0, and J3 = −.025.

Example 2.5 (Square): With g(x) = x2, we have J0 =
1, J1 = 0, J2 = √

2, and Jk = 0 for k>2. Then the opti-
mal nonlinear predictor is E[Y |X] = Ẑ�

2 + V . It is
simple to check that the error is

ε = (Z� − Ẑ�)(Z� + Ẑ�) − V ,

which hasmean zero and is independent of all functions
of the data. The prediction MSE is 4V − 2V2.
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3. Comparing linear and nonlinear prediction

It is of interest to understand how much benefit non-
linear prediction provides. Clearly, if g is affine (Exam-
ple 2.1) then theminimalMSE is equal toσ 2V , the same
as the linear prediction, but we can expect gains to the
degree that g differs from the affine case.

Remark 3.1: A related nonlinear predictor that is
sometimes used in applications is defined via Ỹ =
g (̂Z), but unfortunately this estimator can be biased.
Following the same arguments used in the proof of
Theorem 2.1,

Y − Ỹ =
∞∑
k=0

Jk√
k!

∂kt
(
h(Z, t) − h(Ẑ�, t)

) ∣∣∣∣
t=0

=
∞∑
k=0

Jk√
k!

(
exp{Ẑ�t − t2/2}

× [
exp{(Z − Ẑ�t} − 1

]) ∣∣∣∣
t=0

,

so that the expectation of the quantity in parentheses is

E[exp{Ẑ�t − t2/2}] [exp{Vt2/2} − 1
]

> 0.

Hence there is no guarantee that the bias is zero.

More properly, a comparison can bemade to the best
linear predictor. When {Zt} is a strictly stationary time
series, then {Xt} is as well, and we can in some cases
determine the best linear estimator’s MSE for compar-
ison. Note that in this special case, the mean and vari-
ance of each variable Zt is the same, and hence without
any loss of generality we may assume that {Zt} is stan-
dardised, i.e., each Zt is standard normal. Because Xt =
g(Zt), it follows from Taniguchi and Kakizawa (2000,
p. 319) that E[Xt] = J0 and

γX(h) =
∞∑
k=0

J2k γZ(h)k − J20 =
∞∑
k=1

J2k γZ(h)k, (8)

where {γX(h)} and {γZ(h)} are the autocovariance
sequences of {Xt} and {Zt}, respectively. So in principle
we can understand the second order structure of {Xt}
in terms of the Hermite coefficients and the original
autocovariances.

Suppose further that we are interested in one-step
ahead forecasting from a sample of size T. The best lin-
ear predictor is obtained by solving the Yule-Walker
equations in {γX(h)}, and the MSE of such is given by

γX(0) − [γX(1), . . . , γX(T)]
−1
X [γX(1), . . . , γX(T)]′,

(9)

where 
X is the T-dimensional Toeplitz covariance
matrix with jkth entry γX(j − k). We know that such
an MSE must be greater than the minimal MSE pro-
vided in Theorem 2.1, with equality occuring only in

Table 1. MSE for linear and non-linear predictors applied to a
squared MA(1) process of parameter θ .

θ 0 .2 .4 .6 .8

V 1.000 0.9615 0.8621 0.7353 0.6098
Linear 2.000 1.9973 1.9713 1.9211 1.8795
Non-linear 2.000 1.9970 1.9620 1.8599 1.6954

Table 2. MSE for linear and non-linear predictors applied to an
exponential MA(1) process of parameter θ .

θ 0 .2 .4 .6 .8

V 1.000 0.9615 0.8621 0.7353 0.6098
Linear 4.6708 4.5985 4.3851 4.1192 3.9269
Non-linear 4.6708 4.5642 4.2688 3.8470 3.3732

the case that a linear estimator is globally optimal (e.g.,
the time series is linear, or is Gaussian). If instead we
are forecasting from an infinite past, then the MSE of
the linear predictor is the innovation variance σ 2 given
by Kolmogorov’s formula:

σ 2 = exp
{
(2π)−1

∫ π

−π

log fX(λ) dλ
}
. (10)

Here, fX(λ) = ∑∞
h=−∞ γX(h) e−iλh is the spectral den-

sity of {Xt}. Therefore, for either a finite sample or for
an infinite past, we can determine the linear predictor
MSE for a stationary process {Xt} by first computing
γX(h) from γZ(h) via (8), followed by application of (9)
or (10) as each case requires. As for the best (nonlinear)
predictor, its MSE is given by (7) of Theorem 2.1, where

V = γZ(0) − [γZ(1), . . . , γZ(T)]
−1
Z

× [γZ(1), . . . , γZ(T)]′ (11)

is the analogue of (9) for the {Zt} process.
We provide an illustration in the case of an MA(1)

process with various values of θ , and sample size
T = 100. The innovation variance is set equal to
(1 + θ2)

−1 so that γZ(0) = 1, as required by the above
discussion. For the MA(1) process with T = 100, the
value of V given by (11) is the same (up to the fourth
decimal place) as the innovation variance (1 + θ2)

−1.
For transformations, we study g(x) = x2, g(x) = ex,
and the logistic. Observe that from (8) the process {Xt}
will be m-dependent if {Zt} is (although the converse
need not be true). Hence, if we obtained a sample from
{Xt} it would likely be identified with an MA(q) model,
and the parameter estimates (e.g., obtained using a
Whittle likelihood, which is valid for non-Gaussian
processes so long as the cumulants are summable)
would likely converge to those corresponding to the
spectral factorisation of fX . Thus, our illustration pro-
vides an accurate rendition of the prediction MSE one
would obtain in the case of linear or nonlinear predic-
tors, only with the impact of parameter estimation error
completely removed (Tables 1–3).
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Table 3. MSE for linear and non-linear predictors applied to a
logistic MA(1) process of parameter θ .

θ 0 .2 .4 .6 .8

V 1.000 0.9615 0.8621 0.7353 0.6098
Linear 0.0433 0.0417 0.0375 0.0323 0.0274
Non-linear 0.0433 0.0417 0.0374 0.0320 0.0266

In each case, the degree of benefit to nonlinear
prediction increases with θ , as to be expected; how-
ever, there are large discrepancies between the three
functions. When θ = .8, the logistic transformation
offers only a 3% improvement with nonlinear predic-
tion, indicating that linear prediction is almost just as
good as the conditional expectation. With g(x) = x2
the analogous improvement is 11%, and is 16% for
g(x) = ex, indicating some real benefit to nonlinear
prediction.

We end with a remark on how a confidence inter-
val can be constructed using simulations. Let the for-
mula given by (6) be denoted h(̂Z�). Then the optimal
prediction error can be written

ε = g (̂Z� + δ) − h(̂Z�),

where δ = Z� − Ẑ� is the (linear) prediction error for
the Gaussian variable, and is uncorrelated with (and
hence independent of) Ẑ�. Also δ ∼ N (0,V). There-
fore, in cases where it is easy to simulate Ẑ� (e.g.,
suppose we are forecasting from a Gaussian ARMA
process) we can independently draw δ and compute ε

for repeated Monte Carlo draws, thereby obtaining a
confidence interval for Y.
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Appendix

Proof of Theorem 2.1: From (3) and (5) we obtain

E[Hk(Z�) |X] = 1√
k!

∂kt E[h(Z�, t) |X]
∣∣∣∣
t=0

.

We can write Z� |X ∼ N (Ẑ�,V), and using the property
that Z� − Ẑ� is independent of all functions of the data, we
obtain

E[h(Z�, t) |X] = E
[
exp{Z�t − Ẑ�t} exp{Ẑ�t − t2/2} |X]

= E[exp{Z�t − Ẑ�t} |X] exp{Ẑ�t − t2/2}
= exp{V t2/2}h(Ẑ�, t).

Hence

E[Hk(Z�) |X] = 1√
k!

∂kt

(
h(Ẑ�, t) eV t2/2

) ∣∣∣∣
t=0

= 1√
k!

k∑
�=0

(
k
�

)
∂�
t h(Ẑ�, t)∂k−�

t eV t2/2|t=0

= 1√
k!

k∑
�=0

(
k
�

)√
�!H�(Ẑ�)κk−�.

The prediction error is

ε = Y − E[Y |X] =
∞∑
k=0

Jk
(
Hk(Z�) − E[Hk(Z�) |X])

=
∞∑
k=1

Jk√
k!

∂kt
(
h(Z�, t) − E[h(Z�, t) |X]) ∣∣∣∣

t=0

=
∞∑
k=0

Jk√
k!

∂kt
(
h(Ẑ�, t)

· [
exp{(Z� − Ẑ�)t} − exp{V t2/2}]) ∣∣∣∣

t=0
.
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Note that Z� − Ẑ� is orthogonal to all linear functions of the
data; because this error is Gaussian, it is moreover indepen-
dent of all functions of the data X. It follows that E[ε] =
0, because E[exp{(Z� − Ẑ�)t}] = exp{V t2/2}. Moreover, for
any function �(X) of the data,

E[ε �(X)] =
∞∑
k=0

Jk√
k!

∂kt

(
h(Ẑ�, t)�(X)

· E

[
exp{(Z� − Ẑ�)t}

− exp{V t2/2}
])∣∣∣

t=0
= 0.

This verifies optimality. To compute the MSE, first observe
that

ε2 =
∞∑

j,k=1

Jj Jk√
j!
√
k!

∂
j
s∂

k
t

(
exp{Ẑ�(s + t) − (s2 + t2)/2}

·
[
exp{(Z� − Ẑ�)(s + t)}

− exp{V t2/2 + (Z� − Ẑ�)s}
− exp{V s2/2 + (Z� − Ẑ�)t}
+ exp{V(s2 + t2)/2}

])
|s,t=0.

Note that E[Ẑ�] = E[Z�] = 0, because Z� is standard nor-
mal. Moreover, due to orthogonality, Z� = (Z� − Ẑ�) + Ẑ�

with the two summands orthogonal, and hence 1 = E[Z2
�] =

V + E[Ẑ�
2]. Using these facts and again using the inde-

pendence property, we take the expectation of ε2 and
obtain

E[ε2] =
∞∑

j,k=1

Jj Jk√
j!
√
k!

∂
j
s∂

k
t

(
exp{E[Ẑ�](s + t)

+ E[Ẑ�
2](s + t)2/2 − (s2 + t2)/2}

·
(
exp{V(s + t)2/2} − exp{V(s2 + t2)/2}

))
|s,t=0

=
∞∑

j,k=1

Jj Jk√
j!
√
k!

∂
j
s∂

k
t

×
(
exp{(1 − V)(s + t)2/2 − (s2 + t2)/2}

·
(
exp{V(s + t)2/2} − exp{V(s2 + t2)/2}

))
|s,t=0

=
∞∑

j,k=1

Jj Jk√
j!
√
k!

∂
j
s∂

k
t

(
exp{st}·

(
1− exp{−V st}

))∣∣∣∣
s,t=0

.

Now, it is straight-forward to show that for any constant A,

∂
j
s∂

k
t exp{A st}|s,t=0 =

{
Ak k! if j = k
0 else.

Applying this with A = 1 and A = −V yields

E[ε2] =
∞∑
k=1

J2k
k!

(
1 − (1 − V)k

)
k!

=
∞∑
k=1

J2k
(
1 − (1 − V)k

)
.

�


	1. Introduction
	2. Nonlinear prediction
	3. Comparing linear and nonlinear prediction
	Disclaimer
	Disclosure statement
	Notes on contributors
	References
	Appendix


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


