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ABSTRACT
Themain purpose of this paper is to investigateD-optimal population designs inmulti-response
linearmixedmodels for longitudinal data.Observationsof each responsevariablewithin subjects
are assumed to have a first-order autoregressive structure, possibly with observation error. The
equivalence theoremsareprovided to characterise theD-optimal populationdesigns for the esti-
mation of fixed effects in themodel. The semi-BayesianD-optimal designwhich is robust against
the serial correlation coefficient is also considered. Simulation studies show that the correlation
betweenmulti-response variables has tiny effects on the optimal design, while the experimental
costs are important factors in the optimal designs.
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1. Introduction

In many statistical studies, it is quite common that
repeated measured data are collected over time and
are often referred to as longitudinal data. Mixed effects
models are widely used for the analysis of such cor-
related data. However, the responses are usually time-
structured when they are measured at different time
points. Modeling of autocorrelations through use of
autoregressive error structure, in addition with ran-
dom effects terms, may be more appropriate (Chi
& Reinsel, 1989). For a list of correlation structures, we
also refer to the monographs by Verbeke and Molen-
berghs (2000) and Molenberghs and Verbeke (2005).

The aim of optimal experimental design is to arrange
a reasonable design schedule, so that the experimenter
can obtain the maximal information of the experiment
at minimal cost. In the case of single-response with
correlated errors under the AR(1) structure assump-
tion, Tan and Berger (1999) studied optimal designs
for linear mixed effects models with longitudinal data,
while Berger et al. (2003) and Azurduy (2009) stud-
ied the robust designs in a maximin approach. Nyberg
et al. (2012) considered the optimal designs for non-
linear mixed effects models with serial correlation. Liu
et al. (2019) discussed the D-optimal design for the
multi-response linear mixed effects models by mod-
elling the serial correlation with totally mixed effects.
For the case of longitudinal data generated from the
multi-response models with repeated measurements,
correlated errors also play an important role in model
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description and estimation. Roy (2006) discussed how
the correlation coefficient between two response vari-
ables was effected by the autocorrelation structure of
repeated measures. Wang and Fan (2010) applied the
multi-response linear mixed effects model (MLMM)
with correlated errors to model repeated continuous
data and presented ECM procedure to obtain the maxi-
mum likelihood estimates of model parameters. A gen-
eral description of the statistical analysis of the multi-
response longitudinal models can be found in Verbeke
et al. (2014).

In this paper, we are interested in deducing the
approximate designs of the fixed effects parameters in
the multi-response linear mixed effects models with
AR(1) autoregressive error structure. The generalised
estimating equation (GEE) approach (Liang & Zeger,
1986) is used to estimate the model. The effects of the
experimental cost on the optimal population design is
also discussed.

The rest of the paper is organised as follows.
Section 2 introduces the notation and provides the
Fisher information matrices of individual design and
population design. Section 3 gives the equivalence
theorem for the D-optimal population design with
respect to the estimation of the fixed effects and defines
the relative D-efficiency by considering a linear experi-
mental cost. The methodology is illustrated with a real
example concerning the AIDS Clinical Trials Group
Study in Section 4. Concluding remarks are given in
Section 5.
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2. Model description and informationmatrix

2.1. Assumptions and preliminaries

Suppose there are N independent individuals in a
longitudinal study and for each individual there are
r response variables observed over time. Although
each response variable may be observed under dif-
ferent design schedules, index matrices can be used
(Ogungbenro et al., 2007) to describe it. Hence, a
balanced design (Schmelter, 2007b), in which all r
responses are measured under the same design sched-
ule, is considered.

Let yij = (yij1, yij2, . . . , yijr)T be an r × 1 response
vector observed at the jth measurement of individ-
ual i, and let eij = (eij1, eij2, . . . , eijr)T be the within
individual observation error vector with zero mean,
j = 1, 2, . . . ,mi. Let G be an r × r covariance matrix
describing the correlation of the r different responses.
Themulti-response linear regressionmodel withmixed
effects is defined as

yij = Xijβ + Zijbi + eij, (1)

where Xij is an r × p fixed-effects design matrix,
Zij is an r × l random-effects design matrix, β is
a p-dimensional fixed-effects vector and bi is an l-
dimensional (l ≤ p) random-effects vector with mean
zero and l × l variance–covariance matrix D (Molen-
berghs & Verbeke, 2005). It is assumed that D is a
positive definite matrix.

In general, in a longitudinal study, at least three
repeated observations of the responses are required
over time. We assume ti = (ti1, ti2, . . . , timi) (mi ≥ 3) is
anmi-point design (without repetition) for individual i
with equal weight 1/mi on each point, i = 1, 2, . . . ,N.
The observations of different subjects are indepen-
dent, but those within subject i conditioned on bi are
dependent. Let Ri be a working autocorrelation matrix
among all mi possible observations yi1k, yi2k, . . . , yimik
of the kth response variable. The common working
correlation structure could be as simple as indepen-
dent, equicorrelated, first-order autoregressive AR(1),
or could be unspecified. In this paper, the autoregressive
process of order one, AR(1) is used (Diggle, 1988;Wang
&Fan, 2010), and then the autocorrelationmatrix of the
individual i is Ri = (ρ

|tij−tij′ |), where ρ (0 ≤ ρ ≤ 1) is
the autocorrelation coefficient that gives the correlation
between two time points that are one unit of time apart.
This correlation structure implies that repeated mea-
surements aremore highly correlated in closer time and
become less correlated as the difference in time points
increases.

For each individual i, denoting yi = (yTi1, y
T
i2, . . . ,

yTimi
)T and ei = (eTi1, e

T
i2, . . . , e

T
imi

)T , the multi-response
linear mixed model in (1) is expressed as

yi = Xiβ + Zibi + ei, (2)

where Xi = (XT
i1,X

T
i2, . . . ,X

T
imi

)T and Zi = (ZT
i1,

ZT
i2, . . . ,Z

T
imi)

T . It is assumed that the random-effects
vector bi is independent with ei. By letting Ai be the
diagonal marginal variance matrix of yi, the covariance
matrixHi of yi in model (2) can be expressed as (Wang
& Fan, 2010)

Hi = Cov(yi) = ZiDZT
i + A1/2

i (Ri ⊗ G)A1/2
i . (3)

According to the GEE method, the Fisher infor-
mation matrix of a single individual design ti =
(ti1, ti2, . . . , timi) for individual i is

Mind(ti) = XT
i H

−1
i Xi. (4)

The Fisher information matrix in (4) depends on the
value of ρ, which is often not explicitly known in an
experiment. Assuming that ρ has a range of possi-
ble values, we investigate a robust D-optimal design
criterion (see Section 3).

2.2. Informationmatrix of the population design

Consider now a population design comprising Q dis-
tinct individual designs with nq individuals allocated to
the design with mq time points tq = (tq1, tq2, . . . , tqmq)

for q = 1, 2, . . . ,Q (Schmelter, 2007a, 2007b). Denote
this population design as follows:

ζ =
{
t1 t2 · · · tQ
w1 w2 · · · wQ

}
, (5)

where wq = nq/N. To turn the discrete optimisation
problem into a continuous one, we allow approximate
designs, where the weights wq’s can be arbitrary num-
bers in the interval (0, 1) summing up to 1. Then, the
Fisher information matrix for the fixed-effects vector β

at the population design ζ is defined by

M(ζ ) =
Q∑

q=1
wqMind(tq), (6)

whereMind(tq) is determined as in (4). By definingX =
(XT

1 ,X
T
2 , . . . ,X

T
Q)T , H = diag(H1,H2, . . . ,HQ) and

W = diag(w1,w2, . . . ,wQ), the matrixM(ζ ) in (6) can
be expressed as

M(ζ ) = XTH−1/2WH−1/2X. (7)

3. TheD-optimal design and robust design

3.1. The general equivalence theorem

A D-optimal population design, ζ ∗, for estimating the
fixed effects in theMLMM (1)maximises the logarithm
of the determinant of the Fisher information matrix
M(ζ ) given in (7), i.e.,

ζ ∗ = argmax
ζ

log |M(ζ )|. (8)

The General Equivalence Theorem relating to the
approximate D-optimal population design is given in
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the following, which is based on very mild assumptions
that the set of all population designs ζ is compact on
the design space and theD-optimality criterion�(ζ) =
− log |M(ζ )| is convex and differentiable. The Frechet
derivative of �(ζ) in the direction of any individual
design t is φ(t, ζ ) = p − tr(M−1(ζ )Mind(t)).

Theorem 3.1: A population design ζ ∗ is D-optimal for
the estimation of the fixed-effects vector β if and only if

(1) The design ζ ∗ maximises log |M(ζ )|.
(2) The design ζ ∗ minimisemaxt tr(M−1(ζ )Mind(t)).
(3) The maximum of tr(M−1(ζ ∗)Mind(t)) is attained

at the support individual designs of ζ ∗, and the
maximum value is p.

This theorem can be used to construct or check the
optimality of a population design (5), which provides
a basis for the following discussion of optimal designs
considering the experimental spending.

3.2. Semi-Bayesian D-optimal design

Both the individual Fisher information matrix in (4)
and the population Fisher information matrix in (7)
depend on ρ, which is always unknown before starting
an experiment. Assume that ρ obeys a distribution with
probability density function f (ρ) defined on an interval
[a, b] (0 ≤ a < b ≤ 1). A design is said to be semi-
Bayesian D-optimal, denoted by ζ ∗

B , if it maximises

�B(ζ ) =
∫ b

a
log |M(ζ )|f (ρ) dρ. (9)

It is known that the semi-Bayesian D-optimal design is
robust against a variety of ρ.

In order to calculate the integral defined by (9), a set
of 901 points is drawn from the prior distribution of
ρ. Numerical approximations are applied by sampling
parameter values from the prior distribution of f (ρ)

and replacing the integral in (9) with the sample mean.
All computations are carried out in MATLAB R2010a
(64bt) using a computer with 2.40GHz Intel processor
and 4GB RAM. The Matlab function ‘fmincon’ is used
to find the maximum of (9) and the optimal design.
The aim of Bayesian design criterion is to find a design
which maximises �B(ζ ), which is equivalent to find a
design which minimises the opposite of �B(ζ ). ‘Fmin-
con’ just attempts to find a constrained minimum of a
scalar function of several variables starting at an initial
estimate. The equidistant design is used as the starting
points in our program, and the optimal design is not
sensitive to the starting points. The computing time to
generate a Bayesian optimal design is about 3 hours, and
the running time increases with the increasing number
of time points.

For longitudinal data, the more measurements per
individual are taken, the more additional information

provides. However, the number of measurements per
individual is usually limited because of the experi-
mental sampling budget or logistical restrictions. The
linear cost function defined by Tekle et al. (2008) is
expanded to the population design ζ for themodel with
r responses

C =
Q∑

q=1
nq(c1 + c2rmq), (10)

where c1 is the cost of recruiting a new individual,
c2 represents the average cost per measurement, and∑Q

q=1 nq = N.
Thus, as proposed in Fedorov et al. (2002), the Fisher

information matrix in (7) under the population design
ζ of the form (5) should be normalised for the cost
constraint in (10), that is

M̃(ζ ) = 1
C

Q∑
q=1

wqMind(tq) �
Q∑

q=1
w̃qM̃ind(tq), (11)

where M̃ind(tq) = Mind(tq)/(c1 + c2rmq) is the stan-
dard information matrix at the individual design tq
and

w̃q = nq(c1 + c2rmq)

CN
= nq(c1 + c2rmq)

N
∑Q

q=1 nq(c1 + c2rmq)
.

The optimal population design problem is to identify
the optimal weight, and the locations of the time points
of each individual design. The value of frequency nq
of the individual design tq can be obtained by round-
ing w̃qCN/(c1 + c2rmq) to the nearest integer subject
to

∑Q
q=1 nq(c1 + c2rmq) ≤ C. For comparing the effi-

ciencies of two population designs ζ1 and ζ2 under the
cost constraint, the D-efficiency of ζ1 relative to ζ2 is
defined by

RE(ζ1; ζ2) =
( |M̃(ζ1)|

|M̃(ζ2)|
)1/p

. (12)

For the normalised Fisher information matrix M̃(ζ ),
the general equivalence theorem still holds, and the
verification is given in Section 4 by a simulation study.

Theorem 3.2: For a given linear cost function, a pop-
ulation design ζ ∗ is D-optimal for the estimation of the
fixed-effects vector β if and only if

(1) The design ζ ∗ maximises log |M̃(ζ )|.
(2) The design ζ ∗ minimisemaxt tr(M̃

−1
(ζ )M̃ind(t)).

(3) The maximum of tr(M̃−1
(ζ )M̃ind(t)) is attained

at the support individual designs of ζ ∗, and the
maximum value is p.
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4. Numerical studies

In this section, a linear and quadratic mixed effects
model is considered to show the effects of autocorre-
lation coefficient ρ on optimal designs. The optimal
designs for the bivariate AIDS model studied in Wang
and Fan (2010) is also discussed.

4.1. Simulation example

Consider a linear and quadratic mixed effects model{
y1 = β10 + β11t + b10 + e1,
y2 = β20 + β21t + β22t2 + b20 + b21t + e2.

(13)

Assuming that each individual is observed under time
schedule t1 = (t1, t2, . . . , tm). The unknown parame-
ters are given previously to find the optimal population
design. Let β = (1.5,−3,−1, 2, 3)T , and the covariance
matrix of the two responses y1 and y2 is

G =
(

5 γ12
√
10

γ12
√
10 2

)
.

The covariance matrix of the three mixed effects vari-
ables b10, b20, b21 is

D =
⎛⎝ 2 0.1 0.5
0.1 4 0.9
0.5 0.9 3

⎞⎠ .

The design region is [−1, 1].
We first show that the correlation between the two

characteristics has slightly effect on the optimal designs.
Fixing ρ = 0.2, the individualD-optimal design for dif-
ferent values ofm = 3, 4, 5, 6 and γ12 = 0,±0.02,±0.1,
±0.3, ±0.6, ±0.9 are shown in Figure 1. All the opti-
mal designs have design points located in the left and
right endpoints of the design area, for value of γ12 in
the neighbourhood of 0 that the optimal designs are
almost the same, with the increase of absolute value
of γ12, there are some subtle differences between the
allocation of the optimal designs. In addition, the rel-
ative D-efficiency of the individual optimal designs at
γ12 �= 0 compared to γ12 = 0 are all almost 1, whatever
the number of design points is. Hence, the correla-
tion between characteristics has slight effects on the
D-optimal designs, which is consistent with the results
in Atkinson et al. (2007). Hence, we take γ12 = 0.02
in the model (13) and consider the effects of ρ on
D-optimal designs in what follows.

The individual D-optimal allocations of time points
for different autocorrelation coefficient ρ (ρ = 0,
0.001, 0.01, 0.1, 0.2, . . . , 0.9) are presented in Figure 2,
the number of design points are m = 3, 4, 5, and
6, respectively. By assuming that ρ obeys an uni-
form distribution on [0.05, 0.95], the Bayesian optimal
designs (9) are also calculated, and the results are also
shown in Figure 2. The asterisks show the D-optimal

allocations of time points when ρ = 0, the filled dots
are the design position for ρ �= 0 and the plus signs are
the design position of Bayesian optimal designs. It can
be observed that when the number of design points is
three, the allocation of the optimal designs are almost
the same. While for m ≥ 4, when ρ equals zero, the
optimal design points clustered at the left, middle and
right endpoints of the design area, which maybe infea-
sible and less informative in practice. With the increase
of ρ, the locations of the D-optimal design points are
moderately affected by the autocorrelation coefficient
ρ, especially for large values of ρ. And there isn’t much
difference between the Bayesian optimal design and
locally D-optimal design when ρ > 0.1.

4.2. Optimal designs for the AIDSmodel

The bivariate longitudinal AIDSmodel is based on a set
of data in theAIDSClinical TrialsGroup Study 175, and
only the post-week-12 data were considered, in which
the CD4 and CD8 cell counts (per cubic millimetre) of
a total of 20 patients were recorded per protocol about
every 12 weeks thereafter on each patience visit. Let
yij = (log10(CD4)ij, log10(CD8)ij)

T denote the log10-
transformed CD4 and CD8 cell counts for patient i
at the scaled time tij = (weekij − 8)/12 ∈ [1, 12], i =
1, 2, . . . , 20, j = 1, 2, . . . , ni. Themodel considered here
is assumed to be the following two-response linear
mixed model with AR(1) errors{

yij1 = β10 + β11tij + bi10 + bi11tij + ei1j,
yij2 = β20 + β21tij + bi20 + bi21tij + ei2j.

(14)

According to Table 1 in Wang and Fan (2010), the
maximum likelihood estimates of the fixed-effects vec-
tor β via the ECM algorithm based on the data is
β̂ = (2.5708,−0.0236, 2.8627,−0.0110)T , the estimate
of the autocorrelation coefficient ρ is 0.3821, and the
estimate of the covariance matrix of two response vari-
ables is G = ( cc0.0083 0.0061

0.0061 0.0111
)
.

We now consider theD-optimal single-group design
for model (14), where all individuals are observed
under the same settings, that is,

ζ ∗
m =

{
t∗m
1

}
,

where t∗m is a single sequence of m time points in the
design region [1, 12]. Suppose the experimental cost to
be considered in an experiment. The relative efficiency
defined in (12) is calculated for the cost of recruiting a
new individual, c1 = 100, and the average cost permea-
surement, c2, ranging from 0.01 to 20. The D-optimal
designs ζ ∗

m are determined by Theorem 3.2. Figure 3
shows the relative efficiencies of ζ ∗

m (3 ≤ m ≤ 12) com-
pared to ζ ∗

12 for c1 = 100 and c2 ∈ {0.01, 0.1, 1, 2, 5, 20}.
In each curve corresponding to a value of c2, the opti-
mal number of time points is the numberm atwhich the
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Figure 1. The individualD-optimal designallocationsof timepoints for the linear andquadraticmixedeffectsmodel (13) for different
values ofm and γ12.
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Figure 2. The individual optimal design allocations of time points for the linear and quadratic mixed effects model (13) for different
values ofm and ρ.

relative efficiency is the highest. It is observed that the
number of optimal design points is m = 3 for c2 = 1,
2, 5, 20. And the performances of the designs, ζ ∗

m (3 ≤
m ≤ 12), are almost the same for c2 = 0.01 and 0.1.

We now consider more-group designs. The set of
possible sampling times considered is a predefined set
T (Castañeda & López-Rios, 2016). For example, we
let T be the 12-point single group balanced D-optimal

design for model (14), that is

t∗12 = {1, 1.563, 2.162, 2.809, 3.519, 4.319, 5.268, 6.531,
9.007, 10.249, 11.196, 12}.

In practice, experimenter can choose a set of possible
sampling times by their experience or some prior infor-
mation (Nyberg et al., 2012). We assume that three or
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Figure 3. Relative efficiencies of ζ ∗
m relative to ζ ∗

12 for the two-
response linear mixed model (14) with costs c1 = 100 and c2 ∈
{0.01, 0.1, 1, 2, 5, 20}.

four measurements are available for each individual,
and there is no replication at a certain time point. It
is noted from Figure 3 that a large value of c2 results
in a small sample size, and we then consider the cost
function (10) where c1 = 100, c2 = 1.7, for example.
We find the D-optimal population design as follows:

ζ ∗ =
{
(1, 2.809, 12) (1, 2.162, 4.319, 12)

0.2352 0.7648

}
,

which can be verified by Theorem 3.2. Therefore,
according to Gagnon and Leonov (2005) and (11), the
ratio of the frequencies is

N1

N2
= w1

w2
· c1 + 2c2m2

c1 + 2c2m1
= 0.3170,

which means that about 24.07% of the population are
observed at {1, 2.8090, 12}, and about 75.93% should
be measured at {1, 2.1623, 4.3190, 12}. Obviously, this
population optimal design is more efficient than the
single design ξ∗

12 when considering the cost.
On the other hand, the result is a little different from

Schmelter (2007a, 2007b), and each individual design
involved in ζ ∗ is no longer D-optimal. When the value
of c2 varies, the individual designs remain the same,
while the weight of each individual design changes,
and the population design tends to single three or four
points single-group design.

5. Conclusion

The problemof choosing the optimal population design
is investigated for the multi-response linear mixed
effects models with correlated errors. AR(1) structure
is used to model the time series autocorrelation of the
errors. A higher order ARmay be worth consideration,
however, it brings more unknown parameters into the
model. Simulation study is used to show the effect of
autocorrelation on designs and parameter estimations.

The equivalence theorems are provided to characterise
the optimal population designs for the estimation of the
fixed effects.

It should be noticed that the autocorrelation coeffi-
cient and the variance parameters in the random effect
distribution are pre-specified in finding the D-optimal
designs. In practice, the experimenter may get some
prior information of the parameters, such as the range
of parameter values. Then, a semi-Bayesian criterion is
used in combination with the D-optimal criterion to
find the optimal design robust to the autocorrelation
coefficient. A topic for further research may be to con-
struct optimal designs with respect to other optimality
criteria, such as T-optimality criterion, or compound
criterion. The result may be extended to polynomial
mixed models with measurement error, and also to
generalised linear mixed effects models.
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