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ABSTRACT
This article considers the problem of selecting two-level designs under the baseline parameter-
isation when some two-factor interactions are important. We propose a minimum aberration
criterion, which minimises the bias caused by the non-negligible effects. Using this criterion,
a class of optimal designs can be further distinguished from one another, and we present an
algorithm to find the minimum aberration designs among the D-optimal designs. Sixteen-run
and twenty-run designs are summarised for practical use.
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1. Introduction

Fractional factorial designs, due to their run size econ-
omy, are widely used in many industrial or scientific
areas. Particularly, two-level fractional factorial designs
have received the most attention among practitioners.
The experimenter often has some prior knowledge that
allows a model containing certain important factorial
effects to be postulated. While the most commonly
used definition of factorial effects is given by a set of
mutually orthogonal contrasts, which we refer to as the
orthogonal parameterisation, an alternative considered
in this article is the baseline parameterisation. Baseline
parameterisation is more appropriate when each fac-
tor has a default or null state, and its usefulness has
been increasingly recognised in recent years. For exam-
ple, Yang and Speed (2002), Kerr (2006), and Baner-
jee and Mukerjee (2008) investigated factorial designs
under the baseline parameterisation in the context of
cDNA microarray experiments.

Firstly proposed by Fries and Hunter (1980), the
minimum aberration is a popular criterion for select-
ing two-level fractional factorial designs. One justi-
fication for minimum aberration designs, given by
Tang and Deng (1999), is that they provide a protec-
tion for the estimation of main effects by minimis-
ing the bias caused by the non-negligible interactions.
The minimum aberration criterion can further distin-
guish orthogonal arrays, which are universally optimal
(Cheng, 1980) under the main effect model. When
the baseline parameterisation is under consideration,
this idea leads to the minimum K-aberration criterion
(Mukerjee & Tang, 2012).

In the present paper, we consider how to select base-
line designs when, in addition to the main effects, some
two-factor interactions are also important. Knowledge
of important two-factor interactions arise in many
applications. For example, in robust parameter designs,
the estimation of interactions between the control and
noise factors is crucial for the experimental objectives.
Clearly, the minimum K-aberration criterion is not
appropriate in this situation, so we propose a modified
criterion that sequentially minimises the contamina-
tion caused by the non-negligible effects. The modified
criterion is then used to further distinguish a class of
optimal designs, and an algorithm is given to find out
the best designs of sixteen and twenty runs.

This paper is organised as follows. Section 2 intro-
duces notation and provides the definitions of the basic
concepts, including factorial effects, minimum aber-
ration criterion, and D-optimality criterion. Section 3
presents an algorithm for searching for minimum
aberration baseline designs among D-optimal designs,
which is then applied to designs of sixteen and twenty
runs. Section 4 is the concluding section.

2. Notation and definitions

2.1. Factorial effects

Consider a two-level factorial involving m factors
F1, F2, . . . , Fm. Let τg denote the mean response at the
level combination g = (g1, g2, . . . , gm), where gi = 0
or 1 (i = 1, 2, . . . ,m). A factorial effect measures the
impact on themean response caused by the level chang-
ing of involved factor(s), and is defined by a treatment
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contrast. Let G be the collection of all possible level
combinations. Under themost commonly used orthog-
onal parmeterisation, for a subset w = {i1, i2, . . . , ih} of
S = {1, 2, . . . ,m}, the h-factor interaction Fi1Fi2 · · · Fih
(the main effect if h = 1) is

βw = 1
2m

∑

g∈G
τg(−1)

∑h
j=1 gij . (1)

We let βφ = 2−m ∑
G τg , the grand mean. In the

present paper, we focus on the alternative baseline
parameterisation. For convenience, here and after we
will also denote τ(1,1,0,...,0) by τ12, and similar notation
applies to any other τg . Under the baseline parameter-
isation, the main effect of Fi is θi = τi − τφ , and the
two-factor interaction FiFj is θij = τij − τi − τj + τφ .
More generally, for a subset w = {i1, i2, . . . , ih} of S,
the h-factor interaction Fi1Fi2 . . . Fih under the baseline
parameterisation is

θw =
∑

u⊆w
τu(−1)|w|−|u|. (2)

where | · | stands for the cardinality of a set. We let
θφ = τφ . The main distinction between the orthogo-
nal and baseline parameterisations is that the former
defines the effects in an overall sense, while the later
defines the effects in away that the non-involved factors
are kept at their baseline levels.

The baseline parameterisation arises naturally in the
experiments in which each factor has a default or null
state. For example, in a toxicological study, each factor
is a toxin, and each treatment is a mix of several toxins.
Then, absence and presence can be represented by lev-
els 0 and 1, respectively. The baseline parameterisation
is alsomore appropriate if only a few factors are allowed
to change their settings. Consider a situation in which
the experimenter wants to improve an industrial pro-
cess by changing only a few factors’ current setting. Let
levels 0 and 1 be the current and new settings, respec-
tively. In this case, the baseline effects are more relevant
and useful to the experimenter.

2.2. Minimumaberration criteria

An N-run and m-factor design D = [gij] with gij = 0
or 1 is represented by an N × mmatrix in which a row
corresponds to an experimental run and a column to
a factor. Let Y be the vector of N observations. Under
design D, the main effect model is

E(Y) = W1θ1,

where W1 = [1 D] with 1 being the all-ones vector,
and θ1 = (θφ , θ1, . . . , θm). We assume as usual that all
observations are uncorrelated and have a common vari-
ance. If the interactions cannot be ignored, the true

model under D is

E(Y) = W1θ1 + W2θ2 + · · · + Wmθm, (3)

where for j = 2, . . . ,m, θ j is the vector of all interac-
tions involving j factors and Wj is the corresponding
matrix obtained by taking all j-column products from
D. Let θ̂1 = (WT

1 W1)
−1WT

1 Y be the least square esti-
mator of θ1 under the main effect model, which is
biased under model (3), and the bias can be found by

bias(θ̂1, θ1) = B2θ2 + · · · + Bmθm,

where Bj = (WT
1 W1)

−1WT
1 Wj, j = 2, . . . ,m. The con-

tribution of θ j to the bias is Bjθ j, where θ j is
unknown and Bj depends on the design. To min-
imise the bias in the estimation of main effects caused
by the non-negligible j-factor interactions, Mukerjee
and Tang (2012) proposed the minimum K-aberration
criterion, which selects designs by sequentially min-
imisingKj = tr(B∗

j
TB∗

j ), a size measure of B∗
j , where B

∗
j

is the matrix obtained by deleting the first row of Bj.
Following the same path, we consider the model that
contains the intercept, all main effects and some two-
factor interactions that are presumably important, as
given by

E(Y) = Wθ , (4)

where θ contains all the main effects and the important
two-factor interactions, and W is W1 plus the corre-
sponding columns of W2. If the effects outside this
model cannot be ignored, the true model is

E(Y) = Wθ + W∗
2 θ

∗
2 + W3θ3 + · · · + Wmθm, (5)

where θ∗
2 contains the non-important two-factor inter-

actions and W∗
2 is the corresponding matrix. Let θ̂ =

(WTW)−1WTY be the least square estimator of θ

under model (4), which is biased under model (5), and
the bias can be found by

bias(θ̂ , θ) = C2θ2 + · · · + Cmθm,

where C2 = (WTW)−1WTW∗
2 and Cj = (WTW)−1

WTWj, for j = 3, . . . ,m. We now define a new cri-
terion, called minimum Q-aberration criterion, which
is used to select baseline designs under model (4).
Let Qj = tr(CT

j Cj), j = 2, . . . ,m, and Q(D) = (Q2, . . .
,Qm), the Q-aberration of D. For any two competing
designs D and D′, let s be the smallest integer such that
D and D′ have different Qs values. If D has smaller Qs
value than D′, we say D has less Q-aberration than D′.
A design is said to have minimumQ-aberration if there
is no other design that has less Q-aberration than it.

Though similar, our approach is slightly different
from that of Mukerjee and Tang (2012). The situations
considered in Mukerjee and Tang (2012) are screening
experiments and they therefore focussed on the esti-
mation of main effects by excluding the intercept from
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consideration.Our situations are different. If we are able
to specify some important two-factor interactions, then
we are reasonably confident that the model contain-
ing the intercept,main effects and important two-factor
interactions is approximately correct. This means that
all the parameters in the specified model are important
and should be estimated to the best extent possible.

2.3. Optimality criterion

When a model is postulated, the experimenter would
like to find designs that enjoy certain optimality prop-
erties. The optimality criterion considered in this article
is theD-efficiency. Considermodel (4), theD-efficiency
criterion is to minimise [det(WTW)]−1/p, where p is
the number of columns of W, which minimises the
volume of the confidence region of θ .

In a similar study, Ke and Tang (2003) considered
regular designs under the orthogonal parameterisa-
tion. Regular designs are guaranteed to have the full
efficiency provided they can estimate the fitted model.

Let E(Y) = Xβ be the counterpart model of model
(4) under the orthogonal parameterisation. That is, the
column of X that is associated with βi is the ith col-
umn of 2D−1, and the column associated with βij is the
Hadamard product of the ith and jth columns of 2D−1.
According to C. Y. Sun andTang (2020), the twomodels
are equivalent.We have the following lemma, which is a
special case of Theorem 3 of C. Y. Sun and Tang (2020).

Lemma2.1: Considermodel (4). If D is a baseline design
such that X is orthogonal, then it is D-optimal among
all competing designs. Moreover, such a D minimises
var(θ̂w) if there is no θu in the model such that w is a
proper subset of u.

C. Y. Sun and Tang (2020) considered a model that
is more general than model (4), and they call θw a cap
effect if there is no θu in the model such that w is a
proper subset of u. For example, under the main effect
model, all main effect are cap effects. Under model (4),
the important two-factor interactions are cap effects, so
are themain effects of those factors that are not involved
in any important two-factor interaction. As indicated
by C. Y. Sun and Tang (2020), the cap effects should be
the first in line to be tested for their significance when
one seeks a simpler model in the analysis stage.

3. Searching for best baseline designs

In this section, we present an algorithm to search for
minimum Q-aberration designs among the D-optimal
designs under model (4). The first two subsections
introduce two necessary concepts, and the algorithm
and results are given in the third subsection. The last
subsection provides an illustrative example.

3.1. Design isomorphism

Under the orthogonal parameterisation, two designs
are isomorphic if one can be obtained from the other
by (i) row permutation, (ii) column permutation, (iii)
level permutation, or any combination of these three.
Mukerjee and Tang (2012) suggest a different definition
of isomorphism for baseline designs, which is sim-
ilarly defined except for that level permutations are
not allowed, since the two levels are not symmetric
under the baseline parameterisation. To avoid ambigu-
ity, we call the former the combinatorial isomorphism.
Clearly, two designs are combinatorially isomorphic if
they are isomorphic, but the converse is not true. A two-
level orthogonal array is an N × mmatrix with entries
from a set of two symbols, such that for every two
columns, all level-combinations appear equally often. A
complete catalogue of combinatorially non-isomorphic
two-level orthogonal arrays with N ≤ 20 are available
in D. X. Sun et al. (2008). A more comprehensive cata-
logue of orthogonal arrays can be found at http://www.
pietereendebak.nl/oapackage/series.html. Based on the
catalogue given by D. X. Sun et al. (2008), we will con-
duct a complete search on the class of baseline designs
that are orthogonal arrays, called orthogonal baseline
designs for convenience.

3.2. Non-isomorphicmodels

There are a huge number ofmodels that are given by (4).
Among these models, many share the same structures.
The graph theory is a convenient tool to deal with the
model structure. For example, the models with θ =
(θ1, θ12, θ34) and θ = (θ1, θ12, θ13) can be represented
by the graphs in Figure 2(a,b), respectively. In such
a graph, a vertex stands for a factor, and a line con-
nects two vertices if their interaction is included in the
model. Note that the factors (vertices) not involved in
any important two-factor interaction do not appear in
the graph. We say two models are isomorphic if one
can be obtained from the other by relabelling the fac-
tors. Let k denote the number of two-factor interactions
in model (4). All non-isomorphic models for differ-
ent values of k ≤ 3 are given in Figures 1–3. The cases
for k ≥ 4 are not considered because of the large num-
ber of possible models, and also because k tends to be
small in practice due to the effect sparsity principle (Wu
& Hamada, 2011, pp. 173).

For a given graph and a design matrix, there
are many possible ways to assign the columns to
the vertexes, and the resulting design efficiency and
Q-aberration may be different. To conduct a com-
plete search, all possible column-to-vertex assignments

Figure 1. Model containing one interaction (k = 1).

http://www.pietereendebak.nl/oapackage/series.html
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Figure 2. Models containing two interactions (k = 2).

Figure 3. Models containing three interactions (k = 3).

need to be considered, as we will see in the next
subsection.

3.3. Algorithm and results

Suppose N experimental runs are allowed to study m
factors under a model whose structure is given by a
graph R. Let D1, . . . ,Dn be the combinatorially non-
isomorphic N × m orthogonal arrays in the catalogue
given by D. X. Sun et al. (2008), where each Di consists
of 1 and−1. The algorithmproceeds as follows, starting
with i = 1.

(1) Set Di = (Di + 1)/2. If i = 1, set Dbest = D1 and
Qbest = Q(Dbest).

(2) Switch the two levels 0 and 1 for a subset of factors.
(3) For the resulting baseline designmatrix, assign the

columns to the vertexes of R.
(4) Obtain the resultingmodelmatrixW and compute

the D-efficiency. Compare Di with Dbest . If (i) Di
has better D-efficiency, or (ii) Di has the same D-
efficiency and less Q-aberration, then set Dbest =
Di, and Qbest = Q(Dbest).

(5) Go back to step 3with another possible column-to-
vertex assignment. When all possible assignments
are considered, go back to step 2 with another
possible subset. When all possible subsets are con-
sidered, go back to step 1 with Di+1.

This algorithm finds a minimum Q-aberration
design that isD-optimal among all orthogonal baseline
designs. Such a design may not be unique, and Dbest is
the first one found by the algorithm. In our algorithm,
some isomorphic designsmay be consideredmore than
once, but no orthogonal baseline design will be missed.
If a complete catalogue of non-isomorphic orthogonal
baseline designs is available, a more efficient algorithm
can be presented.

We apply this algorithm to all models given by Fig-
ures 1–3 and the Dbest for N = 16 and 20 are sum-
marised in Tables 1–6. For N = 20, the tables only
cover the designs with m ≤ 7, since the required com-
putation increases rapidly whenm>7. In each of these
tables, the second, third, and the fourth columns indi-
cate, which Di should be used, which two-factor inter-
actions should be included in the model, and for which
design columns the level switching should be con-
ducted, respectively. The A-efficiency of Dbest is also
calculated for the readers’ information, where the A-
efficiency is tr(WTW)−1, but it is not used in the search
algorithm.

Consider Lemma 2.1. For a givenN,m, and a model
structure, if there exists a baseline design such that X is
orthogonal, then step 4 in the algorithm can be replaced
by step 4′ below to save the computation. For example,
whenN = 16 and k ≤ 3, we use it to obtain Tables 1–3.

4’. Obtain the counterpart model matrix X under the
orthogonal parameterisation. If X is orthogonal
and Di has less Q-aberration than Dbest , then set
Dbest = Di and Qbest = Q(Di) .

Finally, we note that by Lemma 2.1, all the designs
given by Tables 1–3 are D-optimal among all compet-
ing designs because the model matrix X has orthogo-
nal columns. The designs in Tables 4–6 are D-optimal
among all 20-run orthogonal arrays as our search is
complete.

3.4. An example

We consider a cake baking experiment in which the
experimenter wants to improve a cake recipe. There are
eight factors: baking time (Time), baking temperature

Table 1. Sixteen-run MA baseline designs for the model with k = 1.

m i Interaction Switched D-efficiency A-efficiency (Q2, Q3, Q4)

4 3 (1, 2) None 0.25 2.88 (2.81, 1.16, 0.11)
5 3 (1, 5) 1 0.25 3.19 (5.06, 2.80, 0.55)
6 4 (2, 4) 1 0.25 3.50 (8.44, 6.08, 1.81)
7 5 (1, 6) 1, 6 0.25 3.81 (12.38, 11.33, 4.97)
8 4 (1, 8) 1, 8 0.25 4.13 (16.88, 19.12, 11.5)
9 3 (1, 9) 1, 6 0.25 4.44 (24.50, 33.16, 24.09)
10 3 (2, 10) 2, 5, 8 0.25 4.75 (32.69, 49.70, 39.75)
11 3 (1, 11) 3, 4, 7 0.25 5.06 (41.44, 72.08, 67.34)
12 1 (4, 9) 1, 2, 3, 12 0.25 5.38 (51.88, 100.44, 102.38)
13 1 (2, 12) 1, 2, 3, 12, 13 0.25 5.69 (62.88, 135.88, 156.14)
14 1 (1, 14) 1, 2, 3, 12, 13, 14 0.25 6.00 (75.00, 179.00, 228.50)
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Table 2. Sixteen-run MA baseline designs for the models with k = 2.

m Model i Interactions Switched D-efficiency A-efficiency (Q2, Q3, Q4)

4 2(a) 3 (1, 2), (3, 4) None 0.30 4.44 (2.25, 1.31, 0.13)
2(b) 3 (1, 2), (1, 3) None 0.30 4.44 (2.25, 1.47, 0.16)

5 2(a) 4 (1, 2), (3, 4) None 0.30 4.75 (4.50, 3.69, 0.78)
2(b) 3 (1, 5), (2, 5) 1 0.30 4.75 (4.50, 3.19, 0.72)

6 2(a) 4 (2, 4), (3, 5) 1 0.29 5.06 (7.88, 7.27, 2.45)
2(b) 4 (2, 4), (3, 4) 1 0.29 5.06 (7.88, 7.05, 2.36)

7 2(a) 4 (4, 6), (5, 7) 1, 6 0.29 5.38 (12.38, 13.25, 6.19)
2(b) 5 (1, 6), (1, 7) 1, 6 0.29 5.38 (11.81, 13.50, 6.66)

8 2(a) 2 (2, 7), (6, 8) 1, 6 0.28 5.69 (18.88, 23.56, 13.31)
2(b) 2 (6, 7), (6, 8) 1, 6 0.28 5.69 (17.44, 22.23, 13.95)

9 2(a) 2 (4, 8), (5, 9) 1, 2, 3 0.28 6.00 (25.94, 38.00, 26.64)
2(b) 2 (4, 8), (4, 9) 1, 2, 3 0.28 6.00 (25.94, 37.75, 26.36)

10 2(a) 3 (2, 10), (4, 9) 2, 5, 8 0.28 6.31 (35.00, 59.61, 50.29)
2(b) 3 (2, 10), (3, 10) 2, 5, 8 0.28 6.31 (35.00, 59.23, 49.39)

11 2(a) 1 (4, 8), (5, 10) 1, 2, 3 0.28 6.62 (45.75, 86.00, 79.62)
2(b) 1 (4, 8), (4, 9) 1, 2, 3 0.28 6.62 (45.75, 86.00, 80.12)

12 2(a) 1 (4, 9), (5, 10) 1, 2, 3, 12 0.27 6.94 (57.06, 121.55, 129.09)
2(b) 1 (4, 9), (4, 10) 1, 2, 3, 12 0.27 6.94 (57.06, 121.42, 128.84)

13 2(a) 1 (2, 12), (4, 11) 1, 2, 3, 12, 13 0.27 7.25 (69.50, 164.50, 196.81)
2(b) 1 (2, 12), (2, 13) 1, 2, 3, 12, 13 0.27 7.25 (69.50, 164.50, 196.94)

Table 3. Sixteen-run MA baseline designs for the models with k = 3.

m Model i Interactions Switched D-efficiency A-efficiency (Q2, Q3, Q4)

4 3(a) – – – – – –
3(b) – – – – – –
3(c) 3 (1, 2), (1, 3), (1, 4) None 0.35 6.00 (1.69, 1.94, 0.25)
3(d) 3 (1, 2), (1, 3), (2, 4) None 0.35 6.00 (1.69, 1.78, 0.22)
3(e) 3 (1, 2), (1, 3), (2, 3) None 0.35 6.00 (1.69, 1.94, 0.25)

5 3(a) – – – – – –
3(b) 4 (1, 2), (1, 3), (4, 5) None 0.34 6.31 (3.94, 4.47, 1.04)
3(c) 3 (1, 5), (2, 5), (3, 5) 1 0.34 6.31 (3.94, 3.73, 0.89)
3(d) 4 (1, 2), (1, 3), (2, 4) None 0.34 6.31 (3.94, 4.56, 1.19)
3(e) 4 (1, 2), (1, 3), (2, 3) None 0.34 6.31 (3.94, 4.66, 1.35)

6 3(a) 3 (1, 4), (2, 5), (3, 6) 1, 4 0.33 6.63 (7.88, 8.62, 2.95)
3(b) 4 (2, 4), (2, 5), (3, 6) 1 0.33 6.63 (7.31, 8.61, 3.20)
3(c) 4 (2, 4), (2, 5), (2, 6) 1 0.33 6.63 (7.31, 8.80, 3.33)
3(d) 4 (2, 4), (2, 5), (3, 4) 1 0.33 6.63 (7.31, 8.39, 3.11)
3(e) 4 (2, 4), (2, 5), (4, 5) 2 0.33 6.63 (8.75, 9.91, 3.83)

7 3(a) 5 (1, 6), (2, 5), (3, 7) 1 0.32 6.94 (14.12, 18.00, 8.91)
3(b) 5 (1, 6), (1, 7), (2, 5) 1, 6 0.32 6.94 (12.69, 16.70, 8.48)
3(c) 2 (1, 7), (2, 7), (3, 7) 1, 6 0.32 6.94 (12.38, 13.80, 5.27)
3(d) 4 (4, 6), (4, 7), (5, 6) 1, 6 0.32 6.94 (11.81, 14.75, 7.44)
3(e) 5 (1, 6), (1, 7), (6, 7) 1 0.32 6.94 (14.12, 18.64, 9.92)

8 3(a) 16 (1, 5), (2, 3), (7, 8) 1, 5, 8 0.31 7.25 (20.62, 29.28, 17.53)
3(b) 7 (1, 7), (2, 7), (3, 8) 3, 4, 7 0.31 7.25 (19.69, 27.23, 15.88)
3(c) 1 (1, 8), (2, 8), (3, 8) 1, 2, 3 0.31 7.25 (18.00, 23.12, 11.31)
3(d) 2 (2, 7), (6, 7), (6, 8) 1, 6 0.31 7.25 (18.31, 25.92, 16.09)
3(e) 5 (1, 7), (1, 8), (7, 8) 1, 6 0.31 7.25 (22.06, 32.06, 19.44)

9 3(a) 2 (4, 8), (5, 9), (6, 7) 1, 2, 3 0.31 7.56 (26.81, 43.77, 32.45)
3(b) 1 (2, 8), (4, 8), (6, 9) 1, 2, 3 0.31 7.56 (27.38, 42.75, 28.75)
3(c) 1 (2, 8), (4, 8), (6, 8) 1, 2, 3 0.31 7.56 (27.38, 42.25, 28.00)
3(d) 2 (4, 8), (4, 9), (5, 9) 1, 2, 3 0.31 7.56 (26.81, 43.27, 31.89)
3(e) 5 (1, 6), (1, 9), (6, 9) 1, 6, 9 0.31 7.56 (30.56, 51.09, 38.10)

10 3(a) 1 (4, 8), (5, 10), (7, 9) 1, 2, 3 0.30 7.88 (37.88, 68.33, 56.28)
3(b) 1 (4, 8), (4, 9), (5, 10) 1, 2, 3 0.30 7.88 (37.88, 68.20, 56.28)
3(c) 1 (4, 8), (4, 9), (4, 10) 1, 2, 3 0.30 7.88 (37.88, 67.95, 56.28)
3(d) 1 (4, 8), (4, 9), (6, 8) 1, 2, 3 0.30 7.88 (37.88, 68.08, 56.28)
3(e) 3 (6, 9), (6, 10), (9, 10) 2, 5, 8 0.30 7.88 (41.62, 76.97, 63.80)

11 3(a) 1 (4, 8), (5, 10), (6, 11) 1, 2, 3 0.30 8.19 (49.50, 100.25, 95.38)
3(b) 1 (4, 8), (4, 9), (5, 10) 1, 2, 3 0.30 8.19 (49.50, 100.25, 95.88)
3(c) 1 (4, 8), (4, 9), (4, 10) 1, 2, 3 0.30 8.19 (49.50, 100.25, 96.88)
3(d) 1 (4, 8), (4, 9), (6, 8) 1, 2, 3 0.30 8.19 (49.50, 100.25, 96.38)
3(e) 3 (1, 6), (1, 9), (6, 9) 3, 4, 7 0.30 8.19 (53.25, 112.45, 111.03)

12 3(a) 1 (4, 9), (5, 10), (6, 8) 1, 2, 3, 12 0.30 8.50 (62.25, 142.62, 155.75)
3(b) 1 (4, 9), (4, 10), (7, 8) 1, 2, 3, 12 0.30 8.50 (62.25, 142.50, 155.50)
3(c) 1 (4, 9), (4, 10), (4, 11) 1, 2, 3, 12 0.30 8.50 (62.25, 142.25, 155.00)
3(d) 1 (4, 9), (4, 10), (5, 10) 1, 2, 3, 12 0.30 8.50 (62.25, 142.38, 155.25)
3(e) 2 (1, 6), (1, 10), (6, 9) 1, 6, 9, 10 0.30 8.50 (66.00, 156.00, 177.00)

Note: “–” means that there is no such a model for the givenm.

(Temp), the number of eggs, and the amounts of bak-
ing powder, flour, sugar, milk (M) and butter. For
each factor, there are two settings: the currently used

setting and the new setting. The experimenter can only
afford a sixteen-run design. Two two-factor interac-
tions are important based on prior knowledge: the
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Table 4. Twenty-run MA baseline designs for the model with k = 1.

m i Interaction Switched D-efficiency A-efficiency (Q2, Q3, Q4)

4 1 (1, 2) 1, 2, 4 0.20 2.39 (2.78, 1.07, 0.00)
5 8 (3, 5) None 0.20 2.70 (5.24, 2.62, 0.26)
6 70 (2, 5) 1, 2, 5 0.20 3.02 (8.56, 5.78, 1.27)
7 471 (4, 6) 1, 3, 4, 6, 7 0.21 3.35 (12.55, 11.26, 4.22)

Table 5. Twenty-run MA baseline designs for the models with k = 2.

m Model i Interactions Switched D-efficiency A-efficiency (Q2, Q3, Q4)

4 2(a) 1 (1, 2), (3, 4) 1, 2, 4 0.25 3.80 (2.37, 1.22, 0.00)
2(b) 1 (1, 2), (1, 3) 1, 2, 4 0.25 3.75 (2.30, 1.50, 0.00)

5 2(a) 10 (1, 2), (3, 5) 2, 3, 5 0.25 4.16 (5.21, 3.57, 0.29)
2(b) 8 (1, 5), (3, 5) None 0.25 4.13 (4.96, 3.10, 0.34)

6 2(a) 67 (1, 5), (4, 6) 2, 3, 4, 5 0.24 4.53 (8.83, 7.74, 2.34)
2(b) 47 (2, 6), (3, 6) 1,2, 3, 5, 6 0.24 4.52 (8.62, 7.02, 1.93)

7 2(a) 403 (1, 4), (3, 7) 2, 3, 4, 6, 7 0.24 4.94 (13.42, 14.13, 6.20)
2(b) 451 (1, 5), (2, 5) 3, 4, 5, 7 0.24 4.92 (13.23, 15.33, 7.83)

Table 6. Twenty-run MA baseline designs for the models with k = 3.

m Model i Interactions Switched D-efficiency A-efficiency (Q2, Q3, Q4)

4 3(a) – – – – – –
3(b) – – – – – –
3(c) 1 (1, 2), (1, 3), (1, 4) 1, 2, 4 0.29 5.13 (1.80, 1.98, 0.00)
3(d) 1 (1, 2), (1, 3), (2, 4) 1, 2, 4 0.29 5.19 (1.85, 1.69, 0.00)
3(e) 1 (1, 2), (1, 3), (2, 3) None 0.29 5.11 (2.14, 2.18, 0.31)

5 3(a) – – – – – –
3(b) 10 (1, 2), (3, 5), (4, 5) 1, 4, 5 0.29 5.71 (4.84, 4.71, 0.54)
3(c) 8 (1, 5), (2, 5), (3, 5) 1,2 ,5 0.28 5.58 (4.75, 4.67, 0.88)
3(d) 10 (1, 2), (1, 4), (4, 5) 1,4 ,5 0.29 5.62 (4.84, 4.21, 0.36)
3(e) 10 (1, 2), (1, 5), (2, 5) None 0.28 5.55 (5.12, 4.33, 0.89)

6 3(a) 57 (1, 4), (2, 5), (3, 6) 1, 4, 6 0.28 6.20 (8.71, 9.56, 3.35)
3(b) 46 (1, 6), (3, 4), (3, 5) 1, 3, 5 0.28 6.09 (8.92, 9.85, 3.31)
3(c) 69 (1, 5), (4, 5), (5, 6) None 0.28 6.03 (8.67, 9.60, 2.92)
3(d) 67 (1, 5), (4, 6), (5, 6) 2, 3, 4, 5 0.28 6.05 (8.71, 9.29, 3.04)
3(e) 58 (4, 5), (4, 6), (5, 6) 4, 5 0.28 5.99 (9.08, 10.35, 6.66)

7 3(a) 429 (2, 7), (3, 6), (4, 5) 2 0.27 6.55 (14.07, 16.70, 7.32)
3(b) 334 (1, 5), (2, 6), (5, 7) 1, 2, 4, 5, 7 0.27 6.53 (13.91, 17.15, 8.00)
3(c) 430 (1, 5), (1, 6), (1, 7) 1, 7 0.27 6.48 (13.89, 15.91, 6.82)
3(d) 429 (3, 5), (3, 6), (4, 5) 1, 2, 4 0.27 6.55 (13.68, 17.57, 7.90)
3(e) 425 (4, 6), (4, 7), (6, 7) 5, 6, 7 0.27 6.48 (14.27, 16.33, 6.52)

Note: “–” means that there is no such a model for the givenm.

temperature-by-time andmilk-by-time interactions. In
this case, k = 2, N = 16, and m = 8, and the model
has the structure 2(b). By Table 2, the experimenter
should start withD2 and setD2 = (D2 + 1)/2, and then
switch the two levels 0 and 1 for columns 1 and 6. Next,
the factors Time, Temp, and M have to be assigned to
columns 6, 7, and 8 (or 6, 8, and 7), respectively. All
the remaining factors can be randomly assigned to the
other columns. By Lemma 2.1, this design guarantees
D-optimality among all competing designs; and except
for the main effects of Time, Temp, and M, each of the
other effects can be estimated with a minimal variance.
Among all optimal designs, this design also minimises
the contamination to the estimation of θ caused by
non-negligible effects.

4. Concluding remarks

In our algorithm, we first use D-optimality, and then
use the minimum aberration. One can also do it in a
reversed order. In fact, the designs that have minimum

Q-aberration among all competing designs are gener-
ally not orthogonal arrays. Examples are Rechtschaffner
designs; see C. Y. Sun and Tang (2020) for details. In our
search algorithm, theD-optimality can also be replaced
by the A-optimality if one wishes, which is to minimise
the A-efficiency and thus minimises

∑
w var(θ̂w). One

possible future work is to develop an efficient algorithm
that allows us to obtain more designs without complete
search. Li et al. (2014) considered this problem formain
effectsmodels. Someof the ideas in that paper should be
useful for the situations where some two-factor interac-
tions are important.
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