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ABSTRACT
Testing complex software systems is an extraordinarily difficult task. Test engineers are faced
with the challenging prospect of ensuring that a software system satisfies its requirements while
working within a strict budget. Choosing a test suite for such an endeavour can be framed as a
design of experiments problem. Combinatorial testing is a software testing methodology that
may be viewed as a design of experiments approach to addressing the software testing chal-
lenge. We extend this methodology by introducing the concept of blocking factors for a test
suite. We provide an example, using an open source software library, to illustrate our extension.
Advantages of consideringblocks are discussed, both in thedesign aswell as after test execution,
when fault localisation may be necessary.
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1. Introduction

With the rapid adoption of machine learning algo-
rithms across an increasingly broad set of disciplines,
the following question arises with increasing frequency:
‘Is this algorithm doing what I expect?’ Ensuring that
an algorithm, or a software system, meets its require-
ments is referred to by software engineers as the ‘soft-
ware validation problem’ (Myers et al., 2004). Consider
XGBoost, a widely used open source gradient boosting
library (Chen & Guestrin, 2016), like many other com-
plex software systems, the algorithms in the XGBoost
library are developed independently by several differ-
ent development groups and then integrated into the
library. Although we may assume that the individual
algorithms have been rigorously tested by individual
development groups, it may be unreasonable to expect
that validation of the integrated library is as rigorous.
Furthermore, the XGBoost library provides a set of
hyperparameters that allows users to configure a par-
ticular algorithm in the library at run time. It may
also be unreasonable to expect that the configuration
space of the XGBoost library is as rigorously validated
as individual algorithms. At the time of writing, the
current version of XGBoost offers 34 hyperparame-
ters, some of which are continuous values and so the
configuration space is infinitely large. Consequently,
validating the possible configurations of the XGBoost
library is an extraordinarily challenging problem. This
process of validating the components, or configura-
tions, of a software system is referred to by software
engineers as the ‘configuration testing problem’ and
is an area of active research interest in the software

engineering community (Cohen et al., 2007). As it turns
out, approaching this problem as a designed experi-
ment can be an effective way of addressing the prob-
lem. We can think of the response for these problems
as a binary response indicating whether a failure was
observed for each test case. Typically, this response is
deterministic, so a test case that induces a failure will
consistently do so.

To further develop this idea, let us consider the case
where for some software system, several test engineers
are available to validate the system. A natural question
that arises is how to effectively distribute the testing
effort among the test engineers. One strategy would be
to partition the components of the system into groups,
assign each test engineer a group, and have each test
engineer test the set of components assigned to them,
placing emphasis on individual components one at a
time. Whereas this strategy may ensure that individual
components work as intended, in effect, it treats each
test engineer as an independent agent and so fails to
take into account efficiencies that could accrue if the
entire testing effort was treated as a designed experi-
ment. As a result, although such a testing strategy may
appear reasonable, it is not an efficient strategy.

To gain some insight into how to proceed, let us start
with an adage from the software engineering commu-
nity, attributed to Boris Beizer, who succinctly stated,
‘Bugs lurk in corners and congregate at boundaries.’
(Beizer, 2003) The boundaries that Beizer refers to
reflect software failures induced by edge cases, whereas
the corners are the values of two or more inputs that
induce a failure. With this practical adage in mind,
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Figure 1. Framework for testing a complex system.

a test engineer should seek to identify test cases that
involve edge cases as well as those that cover as many
corners as possible. If one approaches the concept of
failure-inducing combinations as factorial effects in a
designed experiment, the hierarchical ordering princi-
ple and effect sparsity have their counterparts. As dis-
cussed in Lekivetz and Morgan (2020), combinations
involving fewer inputs are more likely to induce a fail-
ure, and the assumption of the existence of only a few
failure-inducing combinations within the system is rea-
sonable if sufficient testing and bug-fixing has been pre-
viously done. The counterpart to the hierarchical order-
ing principle has been empirically shown for a variety of
complex software systems (Kuhn et al., 2004). It turns
out that test engineers can construct a set of test cases
to cover combinations of inputs, if they make use of a
special type of design known as a covering array (Dalal
&Mallows, 1998). For such designs, the strength t of the
covering array ensures that every combination involv-
ing t or fewer inputs will be covered. This approach,
where covering arrays are used as the underlying con-
struct for testing, is referred to as combinatorial testing
(Morgan, 2018).

In this paper we propose blocking factors as an
extension to the combinatorial testing approach and
show how this idea can enhance the effectiveness of
the approach. While blocking is a core principle in the
design of experiments, this is not the case in combi-
natorial testing. We begin by outlining a combinatorial
testingmethodology that is conceptually similar to how
one would approach a designed experiment. In this
methodology, blocking factors are defined in the same
step as the inputs. In Section 3, we introduce notation
for covering arrays and describe how to accommodate
blocking factors. Sections 4 and 5 illustrate how our
methodology may be used to validate the hyperparam-
eters of theXGBoost software library and the usefulness
of the blocking approach when a failure is induced. The
paper concludes with a discussion.

2. Methodology

The process of validating complex software systems
involves several activities that can usually be readily
organised into a series of distinct steps or phases. It
turns out that these phases are conceptually similar to

the phases that one would follow in designing an exper-
iment.Given this observation,we propose theworkflow
summarised in Figure 1 as a framework for validating
complex software systems.

Describe: In the describe phase, the intent is to iden-
tify the overall goal of the testing effort as well as the
inputs, and associated levels, of the software system
being tested. For test engineers, the goal of testing is
generally to provide sufficient evidence to allow them
to make assertions about the fitness for use of a soft-
ware system. For the describe phase, we propose amore
precise formulation of this general goal that is based
on the idea of failure-inducing combinations. That is,
test engineers should determine the t-way combina-
tions that they want covered by the suite of test cases.
Such a goal allows test engineers to assess whether the
software system being tested is free of faults due to t-
way combinations. Of course, a test engineer wants t
as large as possible, but testing budget ultimately deter-
mines t. In fact, in many situations t is chosen to be
two. Next, inputs should be identified and then, for
each input, the set of allowable values should be deter-
mined. It is often the case that the input space is very
large and furthermore, for those situations where there
are continuous inputs, the input space will be infinitely
large.When facedwith large input spaces, test engineers
usually resort to a technique known as equivalence par-
titioning (Myers et al., 2004). The idea is to examine
each input and, where necessary, divide the range of
the input into a number of mutually exclusive cate-
gories known as equivalence classes. The expectation is
that, from the standpoint of the software system, any
individual member of an equivalence class is repre-
sentative of the entire class. Also, as proposed in this
paper, the test engineer should consider any blocking
factors that may be appropriate and should also iden-
tify possible constraints on the input space that may be
necessary.

Design: In the design phase, the combinatorial test
suite is generated, and for each test case in the suite,
the expected outcome must be determined. In order to
generate the test suite, the test engineer first maps the
inputs, input values, constraints, and the t-way combi-
nations to be covered, that were identified during the
design phase, to a covering array specification. Once
this is done, the covering array is constructed, and the
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resulting rows of the covering array become the indi-
vidual test cases of the suite. The mechanics of how this
is done will be determined by the tool used for con-
structing the covering array. Morgan (Morgan, 2018)
provides a list of some of the current tools available
for constructing combinatorial test suites. Given a test
suite, determining the expected outcome for each test
case is perhaps the most important of all testing activ-
ities. A test engineer must have some way of knowing
the expected outcome of a test case in order to be able
to assess if the outcome is a success or a failure. This is
known as the test oracle problem (see Barr et al. (2014)
for an in-depth discussion).

Test: The test phase involves the execution of each of
the test cases and the recording of the outcomes. Based
on the outcomes determined in theDesign phase, a fail-
ure is recorded for any test case for which the actual
outcome does not match the expected outcome. If the
actual outcomematches the expected outcome then the
test case is deemed a success.

Analyse: If any failures are recorded in the Test phase,
the test engineer is faced with the challenge of identify-
ing the failure-inducing combinations, a process known
as fault localisation (Ghandehari et al., 2013). We con-
sider this process to be akin to the analysis step that
one would do after collecting data for a designed exper-
iment and so we prefer to use the label ‘ Analyse’ to
describe this phase.

Given our proposed methodology, let us revisit the
test engineer assignment scenario from the previous
section to further develop the idea of blocking fac-
tors mentioned in the design phase. In that example,
we could treat the test engineers as a blocking factor.
From the traditional design of experiments perspective,
observationswithin a block are thought to bemore sim-
ilar than between blocks. Given the same set of inputs,
one would expect there to be little to no difference
between blocks, particularly if the system is determin-
istic. However, in the case of test engineers, it turns out
that there is considerable variability in how different
test engineers approach testing. These differences are
often because engineers are inclined to notice different
issues while testing. For example, a particular test engi-
neer may be more likely to notice numeric issues, while
another might tend to focus more on user interface or
graphical issues. In the case of the XGBoost example,
different test engineers would probably choose different
data, and this difference would likely further exacerbate
the differences between test engineers.

The issue of assigning test engineers to testing com-
ponents is related to assignment problems in Search
Based Software Testing (SBST), that formulates testing
as an optimisation problem (Harman et al., 2015). For
automated bug assignment, Baysal et al. (2009) used
developer predilections to assign bugs. While we could
use test engineer strengths or preferences for assign-
ment, for this paper we want to ensure that test cases

for each test engineer are different and, are different in
such a way that when aggregated, the overall set of test
cases increases coverage. Hence, we treat test engineers
as a blocking factor. The ability to ensure coverage for
each test engineer will require only a simple adjustment
to the combinatorial testing approach that still uses the
underlying covering array construct. Furthermore, as
will be discussed later, this approach also aids in fault
localisation.

Note that in the context of testing software, blocks
could also be different operating systems, different
computers, or different days of the week. That is,
differences in how a software system behaves may
be attributable to the underlying operating systems
or underlying hardware differences, or changes dur-
ing development to the software system throughout
the week may exhibit a day-of-the-week effect. When
thought of in the context of typical designed exper-
iments, these blocks can be fixed (test engineers) or
random (day of the week). This does not affect the
design, and the describe and design phases would also
be unaffected. If the blocks are random, it is necessary
to ensure that failures recorded during the test phase are
reproducible so that the analyse phase can be effective.

3. Notation and preliminaries

Consider an array D with n rows and l columns. Let
column i have vi levels for i = 1, . . . , l. D, denoted by
CA(N, t, (v1, . . . , vl)), is said to be a covering array of
strength t if any subset of t columns has the property
that all

∏
vi level combinations occur at least once. For

those familiar with strength t orthogonal arrays, the
definition is similar in that all combinations for a given
subset of t columns must occur equally often.

By relaxing the ‘equally often’ restriction for an
orthogonal array, the size of a covering array is always
less than or equal to the size of the corresponding
orthogonal array and, as we increase the number of
columns, the number of levels, or the strength, the cov-
ering array size grows more slowly than the orthogonal
array. To illustrate, let CAN andOAN denote the mini-
mum run size of covering arrays and orthogonal arrays,
respectively. If we consider the case where there are 35
two-level inputs, the CAN is 8 while the OAN is 36. If
we increase the number of two-level inputs to 1000, the
OAN increases to 1004 while the CAN increases to 14,
less than twice the size of the case with 35 inputs.

The economical run size of covering arrays makes
them an ideal construct to derive test cases for com-
binatorial testing. Since a strength t covering array
ensures that all combinations of values for any t inputs
are covered, a covering array-based combinatorial test-
ing approach allows test engineers to be confident that
software faults that can be precipitated by t or fewer
inputs will be identified by the test suite. As pointed
out earlier, these lower-order combinations are themost



STATISTICAL THEORY AND RELATED FIELDS 117

likely to induce failures by the combination hierarchy
principle. If instead, the test engineer generated a test
suite of the same size by randomly selecting from the
input space then there is a nonzero probability that
combinations for t or fewer inputs would be missed.
What is more, with random testing, a test engineer is
not considering the coverage properties of the test suite,
missing some combinations of a few inputs.

3.1. Addition of blocking factors

To add blocking factors for consideration in a test suite,
we simply need to consider the blocking factors as addi-
tional factors/inputs in a covering array. For test engi-
neers using covering arrays for testing, these additional
factors are trivial to add in creating a test plan, but often
not included since they may be outside of the tradi-
tional types of inputs typically considered. We assume
in this paper that the blocking factors can vary inde-
pendently. Our goal is to add blocking factors to a set of
inputs, such that the set of test cases for each level of a
blocking factor forms a strength t covering array. With
the addition of blocking factors as additional inputs
to the inputs of the covering array required for test-
ing, a covering array of strength t+ 1 can be created,
thereby increasing the overall coverage of the full test
suite. If the blocking factor has v1 levels, we know that
the t+ 1 strength covering array will be at least v1 times
as large as the strength t covering array for the remain-
ing inputs, not including the blocking factor (Sarkar
& Colbourn, 2019). That is,

CAN(t + 1, k, (v1, v2, . . . , vk))

≥ v1CAN(t, k − 1, (v2, . . . , vk)).

Furthermore, we know that we can construct a strength
t+ 1 covering array which includes the blocking fac-
tor so that, for each level of the blocking factor, the
remaining inputs constitute a strength t covering array.
To see this, consider a strength t+ 1 covering array in
k inputs. If we select any t+ 1 columns such that one of
the columns is the blocking column, and consider the
remaining t columns for any level of the blocking col-
umn, then those t columns must cover the values for
those columns, by the definition of a covering array.

The set of test cases defined by the covering array
then has the following properties:

(1) For each level of a blocking factor, the subset of test
cases for that level will form a strength t covering
array on the remaining inputs.

(2) The full test suite including the blocking factors is
a strength t+ 1 covering array.

In this article, we only consider test suites for which
the full design is strength t+ 1. While this requirement
could be relaxed, being able to ascertain that there are

no faults present due to combinations of t+ 1 inputs
is a substantial improvement over combinations of t
inputs. As long as the number of levels of any blocking
factor is smaller than the t inputs with the largest num-
ber of levels, then the lower bound on the run size of
the strength t+ 1 covering array is not typically influ-
enced by the blocking factor. That is, there may not be a
large change in the size of the test suite by considering a
blocking factor unless the number of levels for blocks is
large.

Example 3.1: Consider a test group of three test engi-
neers tasked with testing a software system with nine
binary inputs, A to I, each with two levels (i.e., 1 and
2). To divide the work, the engineers could decide to
each focus on three of the nine inputs. However, for
such a partitioning scheme any test engineer’s test suite
would likely miss any failure-inducing combinations
that involve inputs not in their partition. To improve
upon this setup, each test engineer could decide to test
all nine inputs using a combinatorial testing approach.
TheCAN for a strength 2 covering array given 9 binary
inputs is 6, so each test engineer’s test suite would con-
tain 6 test cases. However, this scheme treats the test
engineers as independent entities and does not take
into account the benefits that could accrue if the test-
ing effort was treated as a combined effort where test
engineers are treated as a blocking factor (i.e., an addi-
tional 3-level input where each level represents one
of the test engineers). The strength 3 covering array
in Table 1, is an array with 10 inputs where the first
input represents the blocking factor and the remain-
ing inputs are the nine binary inputs, A to I. By using
the blocking approach, each test engineer’s test suite
would still contain 6 test cases and is still a strength
2 covering array but, by treating the testing task as a
combined effort and pooling the results, the overall test
suite on the inputs A to I form a strength 3 covering
array.

Table 1. Blocked test suite for Example 3.1.

Test Engineer A B C D E F G H I

1 1 1 2 1 1 2 2 1 2
1 2 2 1 1 2 2 2 1 1
1 2 1 2 2 2 1 1 1 2
1 2 1 1 2 1 1 2 2 1
1 1 2 1 1 2 1 1 2 2
1 1 2 2 2 1 2 1 2 1
2 1 2 1 2 1 1 2 1 2
2 1 1 1 2 2 2 1 1 1
2 1 1 2 1 2 1 2 2 1
2 2 2 2 1 1 1 1 1 1
2 2 1 1 1 1 2 1 2 2
2 2 2 2 2 2 2 2 2 2
3 1 1 1 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1
3 1 2 2 1 2 2 1 1 2
3 2 1 2 2 1 2 1 2 1
3 2 2 2 1 1 1 2 2 2
3 2 2 1 2 2 1 2 1 1
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Figure 2. Inputs and the levels used for validating XGBoost.

4. Example using XGBoost

We now look at an example of our proposed method
using XGBoost Release 0.90 (Chen & Guestrin, 2016).
The objective is to derive a set of test cases to vali-
date the hyperparameters of the library. In the describe
phase, the test engineers identified 34 inputs. The con-
tinuous inputs in this example were discretised into
categorical inputs of only two levels, in what is deemed
as a low and a high value. The resulting list of inputs
have one 6-level input, one 4-level input, one 3-level
input, and thirty-one 2-level inputs. Figure 2 shows the
inputs and associated levels. In actuality, there are some
inputs that are only relevant when used in conjunc-
tion with a particular level of a different input. These
can be taken into account in the design construction
by specifying these disallowed sets of levels, also called
forbidden edges (Danziger et al., 2009) or disallowed
combinations (Morgan et al., 2017). For this example,
we will assume that there are no constraints on the
input space. Not only does this simplify the presenta-
tion here, but it is also useful in this case since it allows
the test engineer to validate that specifying disallowed
combinations to the software do not have unexpected
side effects.

There is a pool of eight test engineers available, and it
is desirable to weigh how many test engineers to assign
to this testing effort while balancing their workload.
To achieve a strength 2 covering array, the theoretical
lower bound on the number of test cases is 24 (due
to one 6-level and one 4-level input). Similarly, for a
strength 3 covering array, the lower bound is 72. The
test engineers want to be able to cover all combina-
tions of levels for up to 3 inputs, but 72 test cases is
determined to be too burdensome for each individ-
ual test engineer. Likewise, giving each test engineer
a smaller subset of inputs will not ensure that 3-input
combinations of the entire set of inputs will appear.

In this example, the test engineers are specified as
a blocking factor in the describe phase. The goal is to
provide each test engineer a set of test cases that is a
covering array of strength 2, while the aggregated cov-
ering array for all test engineers is strength 3. For the
design phase, we could consider varying the number
of test engineers from two to eight. This is useful in
practice to see if the resources (in this case test engi-
neers) can be used elsewhere. Table 2 shows the average
number of test cases per block for two to eight test engi-
neers (blocks). Each of the designs were created using
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Table 2. Average test cases per block and test suite size for
XGBoost example in Section 4.

Blocks Average test cases per block Full test suite

2 36 72
3 26 78
4 24 96
5 24 120
6 24 144
7 24 168
8 24 192

the covering array implementation in JMP Software,
with 10,000 iterations of a post-optimisation technique
that tries to minimise the size of the covering array. We
were able to create a design with no blocking factor
that achieves the minimum run size for both strength
2 and 3. Based on these results, we can see that only for
two and three blocks would individual test engineers
require additional test cases beyond the minimum for
a covering array of strength 2.

While the lower bound for a strength 4 covering
array in this case is 144, the smallest strength 4 design
we were able to construct had 266 runs. Interestingly,
for the case with 8 blocks, while it does not achieve 100
percent 4-coverage (i.e, the percentage of 4-input com-
binations that appear in the test suite), it has 99.77%
4-coverage and 96.86% 5-coverage. Even for 4 blocks,
the 4-coverage is 98.24% and the 5-coverage 87.77%. As
a result, even if there exists a failure-inducing combina-
tion involving four inputs, it is likely covered by the test
suite.

4.1. Expanded example

We now expand the XGBoost example, and consider
the case where it is desirable to examine a subset of
the inputs at additional levels. This may be useful for
those inputs known to be more important to practi-
tioners or for newly added inputs that have not been
thoroughly tested. For example, let us say that in the
describe phase, the test engineers want to examine 8 of
the continuous inputs in greater detail. After partition-
ing these inputs as discussed in Section 2, four are at 5
levels and four at 4 levels. Those inputs and their new
levels are given in Figure 3. In this setup, there is one 6-
level input, four 5-level inputs, five 4-level inputs, one

3-level input, and twenty-three 2-level inputs. While
the theoretical lower bound for a strength 2 covering
array is 30 runs, the smallest unblocked design we con-
structed had 37 runs. For strength 3, the lower bound is
150 runs, while the smallest unblocked design we con-
structed had 244 runs. With the inputs and levels in
this case, a substantially larger number of test cases are
needed as can be seen in Table 3.

In the simpler example, in nearly every case, each
block contained the minimum number of test cases
for a strength 2 covering array. Increasing the num-
ber of blocks in this case increased the size of the test
suite, thereby increasing the 4-coverage. In the more
complex case, the increase in the size of the full test
suite is smaller relative to the reduction in the num-
ber of test cases per block. The ease of adding a block
to a set of inputs allows test engineers to explore dif-
ferent block sizes to decide the best allocation of their
resources. By using the blocking approach to cover-
ing arrays, it is guaranteed that each test engineer is
examining all possible two-way combinations of these
important inputs.

5. Advantages of blocking in fault localisation

Our discussion to this point has focused on the design
aspect of a test suite only. As mentioned earlier, one of
the advantages of combinatorial testing with a cover-
ing array of strength t is that it provides confidence that
a disciplined approach to testing is being applied and
ensures that any failures due to t or fewer inputs will
be induced. We now address the issue of fault locali-
sation (Ghandehari et al., 2013), which takes place in
the analyse step. That is, once a failure is observed, a

Table 3. Average test cases per block and test suite size for
expanded XGBoost example in Section 4.1.

Blocks Average test cases per block Full test suite

2 143 246
3 82 246
4 64 256
5 58.2 291
6 48.5 291
7 44.14 309
8 39 312

Figure 3. Levels for expanded inputs for validating XGBoost.
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test engineer wants to isolate the failure-inducing com-
bination. Due to the run size economy of combinato-
rial testing, when faced with a failure, a test engineer
may have a large list of potential causes (i.e., possi-
ble failure-inducing combinations) to investigate. As
in the hierarchy principle for factorial effects, a test
engineer wants to focus on the simplest explanations,
the potential causes involving the fewest number of
inputs. As an example, in one such realisation of a
strength 2 covering array in the XGBoost example from
Section 4, if a failure occurs in test case i and the
combination of tree method set to auto and feature
selector set to thrifty is the true cause, the test engi-
neer would have to investigate eight potential two-
way combinations. A test engineer then must go about
determining which of those potential causes induces a
failure.

In the case where test engineers is the blocking fac-
tor, if a failure is induced in the strength t subset of a
particular test engineer, then the engineer knows that
all other test engineers have those t-input combinations
contained within their test suite. If the definition of fail-
ure is consistent among test engineers, then all test engi-
neers should find the failure. For the types of failures
that are known to be consistently checked, this implies
that the results from all test engineers can be considered
as a whole. Any failure-inducing combinations involv-
ing fewer than t+ 1 inputs will be easily induced and
isolated and those due to at least t+ 1 inputs can be
studied using fault localisation techniques.

There are failures that may not be obvious to
some test engineers. In the XGBoost example, there
may be a statistic that not every test engineer has
checked. In this situation, the advantage of blocking
is that each test engineer has tested all combinations
of t inputs, so failures that rely on a test engineer’s
individual specialties will be covered. If a test engineer
uncovers a failure that is not being tested among all test
engineers, they can generate a set of potential causes
based on their test suite. They can then coordinate with
other test engineers to check for the failure condition in
one or more test cases that contain the potential cause.
In the authors’ experience, for cohesive teams this is a
painless experience - a test engineer will ask their col-
leagues to add an additional check in their test case(s)
that contain one or more of the potential causes and
check the results. This can speed up the fault localisa-
tion effort since, if it is due to a t-input combination,
one of the other test engineers will induce the same
failure. To reduce the burden of investigating all the
different potential causes, it is advantageous to use any
information about the failures and inputs to start with
potential causesmore likely to induce a failure (Lekivetz
& Morgan, 2020). If no other test engineer observes
the same failure, then it can be concluded that the fail-
ure is due to a combination involving t+ 1 or more
inputs.

To further illustrate how blocking can aid fault local-
isation, consider the case where the block is workday,
such as day of the week. For software development
organisations, there may be a number of changes that
are made to the code base daily. A test engineer may
want to identify any failures introduced by newly sub-
mitted code as soon as possible.With time and resource
constraints, there may be limits to the amount of test
cases that can be performed on a given day, and a limit
to the number of test cases to be created. Using the
blocking approach in this paper with a strength t+ 1
covering array for the full test suite, if a test engineer
observes a failure on a particular day, they know that for
the previous day all t-input combinations were tested. If
there were no failures the previous day (or any failures
were deemed fixed), then the observed failure is most
likely either due to a new failure-inducing combination
involving less than t+ 1 factors, or a recently intro-
duced fault that resulted in a failure that was induced
by more than t inputs that has not been tested in the
previous few days. To determine which situation it is, it
is simply a matter of running the failure-inducing test
on the previous day’s version of the software. If the test
still fails, then it is due to a failure-inducing combina-
tion from t+ 1 or more inputs and can be tracked back
to the day it started to fail. If it does not fail the previous
day, then the failure is due to a new change, and can be
investigated using the hierarchy principle. In this case,
a test engineer can combine test cases from versions of
the software for days that exhibit the failure with the
particular test to aid in fault localisation by utilising
additional test cases that can be viewed as a success.

6. Discussion

In this paper, we have discussed how the concept of
blocking in experimental designs can be applied to
designing a test suite in a combinatorial testing frame-
work. This involved presenting a combinatorial test-
ing approach methodology that follows steps similar to
those one applies in a designed experiment. The appli-
cation of blocks is simple for test engineers already
familiar with combinatorial testing techniques, as it is
simply a matter of adding the blocking factor as an
additional input to the covering array specification. The
blocking approach also aids in fault localisation, where
test engineers need to isolate failure-inducing combi-
nations when failures are uncovered during testing. We
assumed throughout that all blocks would involve test-
ing all inputs. This approach still applies when some
blocks only use certain subsets of inputs, by restrict-
ing combinations involving those blocks via disallowed
combinations. One might use this approach to account
for test engineer preferences or specialisations.We have
also considered the case where the full test suite has
strength t+ 1 and strength t for each level of a block-
ing factor. If there are enough blocks, one could make
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the full test suite strength t+m, m>1, with variable
strength covering arrays, by which the software inputs
would be specified to have a higher strength than sub-
sets involving the blocking factors (Cohen et al., 2003).
The requirement that each level of the blocking factor
forms a strength t covering array is similar to that of
sliced orthogonal arrays (Qian &Wu, 2009). Extending
this idea to covering arrays would mean that the num-
ber of levels of an input in the full array could be more
than the number of levels for each block. Each sub-
array would be a covering array based on fewer levels
for some inputs.
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