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ABSTRACT
In steppedwedge cluster randomised trials (SW-CRTs), clusters of subjects are randomly assigned
to sequences, where they receive a specific order of treatments. Compared to conventional clus-
ter randomised studies, one unique feature of SW-CRTs is that all clusters start from control and
gradually transition to intervention according to the randomly assigned sequences. This feature
mitigates the ethical concern of withholding an effective treatment and reduces the logistic bur-
den of implementing the intervention atmultiple clusters simultaneously. This feature, however,
presents challenges that need to be addressed in experimental design and data analysis, i.e.,
missing data due to prolonged follow-up and complicated correlation structures that involve
between-subject and longitudinal correlations. In this study, based on the generalised estimat-
ing equation (GEE) approach, we present a closed-form sample size formula for SW-CRTs with a
binary outcome, which offers great flexibility to account for unbalanced randomisation, missing
data, and arbitrary correlation structures. We also present a correction approach to address the
issue of under-estimated variance by GEE estimator when the sample size is small. Simulation
studies and application to a real clinical trial are presented.
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1. Introduction

Recently, steppedwedge cluster randomised trials (SW-
CRTs) are gaining popularity in large-scale biomedical
and healthcare studies (Bacchieri et al., 2010; Bailet
et al., 2009; Lenguerrand et al., 2020; Scalia et al., 2019;
van Holland et al., 2012). Clusters of subjects are
randomly assigned to different treatment sequences.
Within each sequence, all clusters receive the control
initially, but switch to the intervention at a particu-
lar step, as illustrated in Figure 1. There are two main
types of SW-CRTs. One is the closed-cohort SW-CRT,
which follows the same cohort of subjects through the
treatment sequences. i.e., each subject contributes a set
of longitudinal measurements. The other is the cross-
sectional SW-CRT, which enrols a new panel of subjects
at each step, i.e., each subject only contributes onemea-
surement (Beard et al., 2015; Copas et al., 2015; Martin
et al., 2016). SW-CRTs are considered advantageous
in that (1) all clusters eventually receive the interven-
tion, mitigating the ethical concern of withholding the
effective intervention; (2) clusters switch from control
to intervention in one direction only, which is more
convenient in terms of washout compared to crossover
studies with multiple periods; (3) they reduce the logis-
tic burden of implementing the intervention simultane-
ously atmany centres or facilities (Edwards, 2013; Zhou
et al., 2020).

At the design stage, it is important to determine
the number of clusters to ensure that clinical trials are
adequately powered to detect effective interventions.
Hussey and Hughes (2007) proposed a sample size
estimation approach based on mixed-effect models for
cross-sectional SW-CRTs with continuous outcomes,
which also extends to binary outcomes. This approach
assumes the correlation between any pairs of measure-
ments from the same cluster to be identical, regard-
less of whether they are observed during the same
period or not. This assumption might over-simplify
reality because the correlation between concurrent
observations is likely stronger than that between non-
concurrent ones. Furthermore, among non-concurrent
observations, the correlation might decay as obser-
vations become temporally further apart. Hooper
et al. (2016) derived a sample size formula based on
multilevelmodels for closed-cohort and cross-sectional
SW-CRTs with continuous outcomes. Within clusters,
a separate exchangeable correlation is assumed for con-
current and non-concurrent observations, with the for-
mer stronger than the latter. Kasza et al. (2019) pro-
posed a sample size method that allows the correlation
between non-concurrent observations to decay expo-
nentially. Li et al. (2018) proposed sample size proce-
dures for closed-cohort SW-CRTs with continuous and
binary responses under the framework of generalised
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Figure 1. A diagram of an SW-CRT with 4 time points and 3
sequences (shaded and blank cells represent intervention and
control, respectively.)

estimating equations (GEE), which employs a block
exchangeable within-cluster correlation structure and
this procedure can be extended to cross-sectional SW-
CRTs. Zhou et al. (2020) developed a numerical power
analysis method for SW-CRTs with binary outcomes
based on the maximum-likelihood approach. Other
developments in sample size calculation for SW-CRTs
include, but are not limited to, Hemming et al. (2015),
Woertman et al. (2013), Moulton et al. (2007), and Baio
et al. (2015).

Most of the existing sample sizemethods assume rel-
atively simpler correlation structures and no missing
data, whichmight not hold in real SW-CRTs. Especially
in closed-cohort SW-CRTs, with prolonged follow-up,
the correlation structures that simultaneously involve
between-subject and within-subject (longitudinal) cor-
relations can be complicated and the problem of miss-
ing data cannot be ignored. In this study, based on
the GEE approach (Liang & Zeger, 1986), we present
a closed-form sample size formula for SW-CRTs with a
binary outcome. It is generally applicable to both cross-
sectional and closed-cohort SW-CRTs. It also pro-
vides great flexibility to account for design issues fre-
quently encountered by practitioners including unbal-
anced randomisation, different severity and patterns of
missing data, and complicated correlation structures.

This article is organised as follows. In Section 2, we
describe the model and derive a closed-form formula
to calculate the required number of clusters in SW-
CRTs with binary outcomes. In Section 3, we conduct
extensive simulations to evaluate the performance of
the proposed method and to explore the impact of dif-
ferent design parameters on sample size requirement.
In Section 4, we apply this method to the design of a
postoperative delirium study. In Section 5, we conclude
with a discussion.

2. Method

Suppose in a closed-cohort SW-CRT with T time
points, n clusters are randomly assigned to S sequences
(S = T−1). These clusters are randomly assigned to the
sth sequence with probability ps (s = 1, . . . , S), where∑S

s=1 ps = 1. The resulting number of clusters assigned
to the sth sequence is denoted by ns, with

∑S
s=1 ns =

n. The cluster size (number of subjects per cluster) is
denoted by J. Let Ysijt denote the binary measurement
obtained from the jth subject (j = 1, . . . , J) within the
ith cluster (i = 1, . . . , ns) under the sth sequence (s =
1, . . . , S) at time t (t = 1, . . . ,T). We define E(Ysijt) =
μst and μst is modelled by

log
(

μst

1 − μst

)
= λt + vstζ .

Hereλt is the time-specific intercept, vst is the treatment
indicator with 0/1 indicating control/intervention, and
ζ represents the intervention effect, which is assumed
to be constant over time. The specification of λt (t =
1, . . . ,T) allows us to account for temporal trends of
arbitrary shapes. As for the second moment, first we
have Var(Ysijt) = μst(1 − μst). For the vector of lon-
gitudinal observations from each individual, Ysij =
(Ysij1, . . . ,YsijT)′, we define � = Corr(Ysij) to be the
within-subject (longitudinal) correlation matrix with
diagonal elements ωtt = 1 (t = 1, . . . ,T). Further-
more, we use� = Corr(Y sij,Ysij′) to denote correlation
between subjects from the same clusters. It can be con-
sidered as the matrix version of ICC (intracluster cor-
relation coefficient). DefineYsi = (Y ′

si1, . . . ,Y
′
siJ)

′ to be
the collection of measurements from the (s, i)th cluster.
The correlation matrix of Ysi is

R = IJ ⊗ (� − �) + (
1J1′

J
)⊗ �,

where⊗ is the Kronecker product operator, IJ is a J × J
identitymatrix, and 1J is a vector of length J with all ele-
ments being 1. Finally, the observations are assumed to
be independent across clusters. Hence, we complete the
model specification for the first two moments of Y si, as
is required by the GEE approach (Liang & Zeger, 1986).

Define β = (λ1, . . . , λT , ζ )′ to be the vector of
parameters. Based on the GEE approach with an inde-
pendent working correlation structure, the estimate β̂

can be solved from the score function U(β) = 0 using
the Newton–Raphson method, where

U (β) =
S∑

s=1

ns∑
i=1

J∑
j=1

X′
s
[
Ysij − μs(β)

]
with μs = (μs1, . . . ,μsT), and Xs = (IT , vs) is the
design matrix with vs = (vs1, . . . , vsT)′.
Liang and Zeger (1986) proved that as n → ∞,√
n(β̂ − β) asymptotically follows a multivariate nor-

mal distribution with zero mean and covariance matrix
� = A−1EA−1, where

A = J
S∑

s=1
ps
(
X′
sGs
)⊗2

and

E = J
S∑

s=1
psX′

sGs [� + (J − 1) �]GsXs.
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HereGs is a T × T diagonal matrix with the (t, t)th ele-
ment being

√
μst(1 − μst) for t = 1, . . . ,T and C⊗2 =

CC′ for amatrixC. In practice,A andE can be estimated
by

Â = J
n

S∑
s=1

ns
(
X′
sĜs

)⊗2

and

Ê = n−1
S∑

s=1

ns∑
i=1

⎛⎝ J∑
j=1

X′
sêsij

⎞⎠⊗2

,

where êsij = Ysij − μ̂s is the residual vector with μ̂s =
(μ̂s1, . . . , μ̂sT)′, and Ĝs isT × T diagonal with elements
being

√
μ̂st(1 − μ̂st).

Let ζ̂ be the estimator of ζ and σ̂ 2
ζ be the (T + 1,T +

1)th element of �̂ = Â−1ÊÂ−1
. Based on the test statis-

tic
√
n ˆ|ζ |/σ̂ζ , to reject the null hypothesis H0 : ζ = 0

with a power of 1 − γ at a two-sided significance level
of α, the required number of clusters can be computed
by

n =

(
z1−α/2 + z1−γ

)2 S∑
s=1

ps (vs − ā)′

Gs [� + (J − 1)�]Gs (vs − ā)

ζ 2
0 J

[ T∑
t=1

( S∑
s=1

wst

)
āt (1 − āt)

]2 , (1)

where ζ0 is the true intervention effect,wst = psμst(1 −
μst), āt =

∑S
s=1 wstvst∑S
s=1 wst

is the weighted proportion of sub-

jects receiving intervention at time t, ā = (ā1, . . . , āT)′,
and zc is the 100cth percentile of the standard nor-
mal distributionwith 0< c<1. Details of derivation are
presented in Appendix .

In closed-cohort SW-CRTs, longitudinal measure-
ments are planned on each subject at pre-specified
time points. However, in real clinical trials with pro-
longed follow-up, the occurrence of missing data is
usually inevitable. Ignoring missing data in sample
size calculation will lead to under-powered studies. To
address this problem, we introduce the missing indica-
tor �sijt = 0/1 if Ysijt is observed/missing. We assume
that the occurrence of missing data only depends on
time and define the marginal observational probability
Prob(�sijt = 1) = δt . To accommodate different miss-
ing data patterns, we also introduce the joint observa-
tional probability Prob(�sijt�sijt′ = 1) = δtt′ , which is
the probability that a subject contributes observations
both at time t and t′ (t �= t′). For example, under the
independent missing (IM) pattern, the occurrences of
missing data are independent between t and t′, hence
δtt′ = δtδt′ . On the other hand, under the monotone
missing (MM) pattern, a subject having missing data at
t would miss all subsequent observation, hence δtt′ =

δt′ for t′ > t. Under the assumption of missing com-
pletely at random, A and E can be rewritten as

A∗ = J
S∑

s=1
psX′

sdiag (δ)GsGsXs

and

E∗ = J
S∑

s=1
psX′

sGs

× [̃
δ ◦ � + (J − 1) diag (δ) �diag (δ)

]
GsXs,

respectively. Here ◦ indicates the operation of
Hadamard product, diag(δ) is a T × T diagonal matrix
with diagonal elements being δ = (δ1, . . . , δT)′, and δ̃

is a T × T matrix with the diagonal (t, t)th element
being δt and off-diagonal (t, t′)th element being δtt′ .
Then the generalised formula for the number of clusters
accounting for missing data is

n∗ =

(
z1−α/2 + z1−γ

)2 S∑
s=1

ps (vs − ā)′ Gs[̃
δ ◦ � + (J − 1) diag (δ) �diag (δ)

]
Gs (vs − ā)

ζ 2
0 J

[ T∑
t=1

( S∑
s=1

wst

)
δtāt (1 − āt)

]2 .

(2)
Formula (2) offers great flexibility to accommodate var-
ious missing data patterns (through δ̃, δ), complicated
correlation structures (through �,�), and unbalanced
randomisation (through ps). On the other hand, given
n and the true treatment effect ζ0, the anticipated power
can be evaluated by

P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z <

√√√√√√√√√√√√√√√√√√√

n∗Jζ 2
0

T∑
t=1

( S∑
s=1

wst

)
δtāt (1 − āt)

S∑
s=1

ps (vs − ā)′ Gs[̃
δ ◦ Ω + (J − 1) diag

(δ) � diag (δ)
]

Gs (vs − ā)

− z1−α/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Z is a standard normal variable.
We have described the sample size calculation

method for closed-cohort SW-CRTs with binary out-
comes. In practice, many SW-CRTs are cross-sectional,
where new panels of subjects are measured at each
time point. Using the same notation framework, the
proposed method easily accommodates cross-sectional
SW-CRTs. Specifically, we consider the cluster size
under a cross-sectional SW-CRT to be JT. At each time
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point, J subjects are selected from each cluster for mea-
surements, and these subjects will not be selected again
in the future. It implies that between-period correlation
ωtt′ in � is equivalent to within-period correlation φtt′
in �. The required number of clusters can be similarly
calculated using Equation (2).

3. Simulation studies

We conducted simulation studies to evaluate the per-
formance of the proposed sample size method. Sup-
pose we are planning a closed-cohort SW-CRT with
T = 4 time points and cluster size J = 15. We assume
balanced randomisation to the S = 3 sequences, i.e.,
p1 = · · · = pS = 1/3. We set the time-specific inter-
cepts λt = 0.01(t − 1) for t = 1, . . . ,T. We explore
two values for the intervention effect ζ0: 0.41 and
0.59, which corresponded to odds ratios of 1.5 and
1.8, respectively. Different correlation structures are
explored: for the longitudinal correlation matrix (�),
we investigate the CS and AR(1) structures, with
off-diagonal elements being ωtt′ = ρ1 and ωtt′ =
ρ

|t−t′|/(T−1)
1 (t �= t′), respectively; for the between-

subject correlation matrix, we specify � = 11′ρ3 +
(ρ2 − ρ3)Iwith diagonal ICCbeingρ2 and off-diagonal
between-subject between-period correlation ρ3 being
0.005. We also explored different correlation values
(ρ1, ρ2) = {(0.1, 0.03), (0.2, 0.03), (0.1, 0.05),
(0.2, 0.05)}. For missing data, we considered four sets
of marginal observational probabilities as follows:

δ1 = (1.00, 1.00, 1.00, 1.00) ,

δ2 = (1.00, 0.80, 0.75, 0.70) ,

δ3 = (1.00, 0.90, 0.80, 0.70) ,

δ4 = (1.00, 1.00, 0.85, 0.70) .

δ1 represents the scenario where all subjects contribute
complete observations, while δ2 − δ4 represents sce-
narios of various trends in missing data, but with the
same attrition rate (0.3) at the end of the study. The IM
and MMmissing data patterns will be explored, which
leads to different joint observational probabilities (see
Section 2). The null hypothesis is H0 : ζ = 0. We set
the power 1 − γ = 0.8 and two-sided type I error rate
α = 0.05. For each combination of design parameters,
we calculate the required number of clusters (n) and
conducted simulations to evaluate the empirical power
and type I error. The simulation algorithm is outlined
as follows:

(1) Calculate the required number of clusters (n) using
Equation (2).

(2) Generate the numbers of clusters randomised to
the three sequences (n1, n2, n3) fromamultinomial
distribution (n, p1, p2, p3).

(3) For each cluster, generate a vector of correlated
binary measurements based on true effect ζ = ζ0
and other design parameters (� and �) based on
the method of Emrich and Piedmonte (1991).

(4) Generate missing indicators under different miss-
ing patterns and marginal observational probabil-
ities δ.

(5) Calculate ζ̂ and σ̂ζ . The estimation bias can
be corrected using the combination of Morel
et al. (2003) and Donner and Klar’s (2000) meth-
ods. If

√
n|ζ̂ |/σ̂ζ > z1−α/2, then reject the null

hypothesis.
(6) Repeat Steps 2–5 5000 times. The empirical power

is calculated as the proportion of iterations that
reject the null hypothesis. The empirical type I
error is evaluated similarly except for setting ζ = 0
in Step 3.

In Tables 1 and 2, the columns under ‘GEE’ present
the simulation results. Each cell presents the required
number of clusters as well as the empirical power and
type I error. We have several observations. First, more
clusters are required when longitudinal correlation (ρ1)
and between-subject correlation (ρ2) get larger. For
example, in the first rowof Table 1, the required number
of clusters changes from 45 to 46 when the longitu-
dinal correlation (ρ1) increases from 0.1 to 0.2. On
the other hand, in the first cell of Tables 1 and 2, the
required number of clusters increases from 45 to 53
when the between-subject correlation (ρ2) increases
from 0.03 to 0.05. Second, the longitudinal correlation
structures affect the required number of clusters, which
can be shown by comparing the CS and AR(1) pan-
els in each table. Third, different missing patterns and
observational probabilities affect the required number
of clusters. Given the same attrition rate at the end of
the study, scenarios with greater dropout initially lead
to more missing data and larger sample size require-
ments. For example, sample sizes under δ2 are always
the largest among δ1 –δ4. Furthermore, under the MM
missing pattern, missing data tend to concentrate on
a few subjects, which leads to greater information loss
and larger sample size requirement. Finally, compared
with the nominal type I error of 0.05, the empirical type
I errors are generally inflated (up to 0.0868). The reason
is that when the number of clusters is relatively small,
the conventional GEE approach tends to underestimate
the variance of the treatment effect (Morel et al., 2003).

To address the issue of underestimated variance,
we have explored different correction methods, includ-
ing Mancl and DeRouen (2001), Kauermann and Car-
roll (2001), Ziegler andVens (2010),Morel et al. (2003),
Fay and Graubard (2001) and Pan andWall (2002). We
find that the combination of Morel et al. (2003) (MBN)
and Donner and Klar’s (2000) methods achieves a
good balance between satisfactory performance and
easy implementation in practice. Specifically, the MBN
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Table 1. Required number of clusters (empirical power, empirical type I error) for closed-cohort studies with ρ2 = 0.03.

Missing GEE Adjusted GEE

ζ0 Pattern δ ρ1 = 0.1 ρ1 = 0.2 ρ1 = 0.1 ρ1 = 0.2

CS log(1.5) IM δ1 45 (0.8218, 0.0600) 46 (0.8150, 0.0630) 47 (0.7958, 0.0540) 48 (0.7994, 0.0504)
δ2 53 (0.8050, 0.0608) 55 (0.8132, 0.0606) 55 (0.7900, 0.0546) 57 (0.7966, 0.0460)
δ3 50 (0.8104, 0.0636) 51 (0.8044, 0.0592) 52 (0.7940, 0.0440) 53 (0.7862, 0.0496)
δ4 47 (0.8056, 0.0666) 48 (0.8098, 0.0598) 49 (0.7938, 0.0504) 50 (0.7874, 0.0448)

MM δ2 53 (0.8080, 0.0602) 55 (0.7998, 0.0546) 55 (0.7914, 0.0406) 57 (0.7884, 0.0472)
δ3 50 (0.8050, 0.0624) 52 (0.8058, 0.0650) 52 (0.7970, 0.0516) 54 (0.8044, 0.0506)
δ4 47 (0.8102, 0.0608) 48 (0.8098, 0.0656) 49 (0.7978, 0.0494) 50 (0.7952, 0.0472)

log(1.8) IM δ1 22 (0.8152, 0.0784) 23 (0.8188, 0.0868) 24 (0.7862, 0.0484) 25 (0.7920, 0.0420)
δ2 26 (0.8154, 0.0840) 27 (0.8144, 0.0700) 28 (0.7850, 0.0454) 29 (0.7940, 0.0472)
δ3 25 (0.8256, 0.0762) 25 (0.8192, 0.0766) 27 (0.7864, 0.0454) 27 (0.7920, 0.0470)
δ4 23 (0.8092, 0.0726) 24 (0.8176, 0.0692) 25 (0.7908, 0.0474) 26 (0.7908, 0.0454)

MM δ2 26 (0.8106, 0.0782) 27 (0.8228, 0.0754) 28 (0.7894, 0.0430) 29 (0.7954, 0.0438)
δ3 25 (0.8132, 0.0744) 25 (0.7982, 0.0782) 27 (0.7982, 0.0498) 27 (0.7862, 0.0494)
δ4 23 (0.8126, 0.0738) 24 (0.8146, 0.0742) 25 (0.7900, 0.0486) 26 (0.8008, 0.0432)

AR(1) log(1.5) IM δ1 50 (0.8066, 0.0598) 52 (0.8226, 0.0608) 52 (0.8100, 0.0482) 54 (0.8010, 0.0464)
δ2 58 (0.8082, 0.0600) 60 (0.8128, 0.0650) 60 (0.8020, 0.0528) 62 (0.8058, 0.0504)
δ3 55 (0.7964, 0.0626) 57 (0.7990, 0.0606) 57 (0.7934, 0.0508) 59 (0.8108, 0.0476)
δ4 52 (0.8034, 0.0650) 54 (0.7912, 0.0626) 54 (0.7858, 0.0498) 56 (0.8044, 0.0532)

MM δ2 60 (0.8118, 0.0586) 62 (0.8124, 0.0620) 62 (0.8136, 0.0508) 64 (0.8026, 0.0502)
δ3 56 (0.8106, 0.0570) 58 (0.8116, 0.0570) 58 (0.8018, 0.0464) 60 (0.8038, 0.0526)
δ4 52 (0.8070, 0.0628) 54 (0.8110, 0.0532) 54 (0.7986, 0.0472) 56 (0.8048, 0.0528)

log(1.8) IM δ1 25 (0.8212, 0.0750) 25 (0.8112, 0.0738) 27 (0.8134, 0.0464) 27 (0.7930, 0.0472)
δ2 29 (0.8158, 0.0744) 30 (0.8268, 0.0714) 31 (0.8076, 0.0554) 32 (0.8086, 0.0490)
δ3 27 (0.8178, 0.0698) 28 (0.8140, 0.0710) 29 (0.7924, 0.0554) 30 (0.8032, 0.0504)
δ4 26 (0.8216, 0.0728) 27 (0.8226, 0.0780) 28 (0.7982, 0.0482) 29 (0.7984, 0.0456)

MM δ2 30 (0.8170, 0.0746) 31 (0.8184, 0.0732) 32 (0.8102, 0.0514) 33 (0.8120, 0.0492)
δ3 27 (0.8156, 0.0780) 28 (0.8200, 0.0694) 29 (0.7944, 0.0452) 30 (0.7884, 0.0506)
δ4 26 (0.8142, 0.0750) 27 (0.8222, 0.0782) 28 (0.7866, 0.0490) 29 (0.8002, 0.0480)

Table 2. Required number of clusters (empirical power, empirical type I error) for closed-cohort studies with ρ2 = 0.05.

Missing GEE Adjusted GEE

ζ0 Pattern δ ρ1 = 0.1 ρ1 = 0.2 ρ1 = 0.1 ρ1 = 0.2

CS log(1.5) IM δ1 53 (0.8058, 0.0584) 54 (0.7968, 0.0558) 55 (0.7912, 0.0466) 56 (0.7918, 0.0466)
δ2 61 (0.7958, 0.0634) 63 (0.8104, 0.0564) 63 (0.7926, 0.0494) 65 (0.7968, 0.0524)
δ3 58 (0.8048, 0.0628) 59 (0.8046, 0.0598) 60 (0.7908, 0.0438) 61 (0.7986, 0.0504)
δ4 55 (0.8004, 0.0620) 57 (0.8114, 0.0636) 57 (0.7946, 0.0500) 59 (0.7998, 0.0488)

MM δ2 62 (0.8108, 0.0586) 63 (0.8084, 0.0552) 64 (0.7996, 0.0490) 65 (0.7996, 0.0486)
δ3 58 (0.8004, 0.0596) 60 (0.8062, 0.0546) 60 (0.7960, 0.0472) 62 (0.7980, 0.0520)
δ4 55 (0.7932, 0.0642) 57 (0.8172, 0.0618) 57 (0.7838, 0.0496) 59 (0.7946, 0.0516)

log(1.8) IM δ1 26 (0.8128, 0.0756) 27 (0.8220, 0.0692) 28 (0.7888, 0.0436) 29 (0.7994, 0.0446)
δ2 30 (0.8168, 0.0688) 31 (0.8146, 0.0750) 32 (0.7828, 0.0484) 33 (0.7916, 0.0498)
δ3 29 (0.8226, 0.0782) 29 (0.8078, 0.0752) 31 (0.7964, 0.0478) 31 (0.7818, 0.0420)
δ4 27 (0.8020, 0.0784) 28 (0.8154, 0.0728) 29 (0.7850, 0.0448) 30 (0.7918, 0.0544)

MM δ2 30 (0.8102, 0.0682) 31 (0.8092, 0.0714) 32 (0.7902, 0.0488) 33 (0.7908, 0.0506)
δ3 29 (0.8262, 0.0706) 29 (0.8086, 0.0732) 31 (0.7970, 0.0440) 31 (0.7816, 0.0466)
δ4 27 (0.8136, 0.0694) 28 (0.8144, 0.0658) 29 (0.7878, 0.0468) 30 (0.7970, 0.0464)

AR(1) log(1.5) IM δ1 58 (0.8036, 0.0616) 60 (0.8056, 0.0628) 60 (0.7948, 0.0532) 62 (0.8052, 0.0492)
δ2 67 (0.8034, 0.0552) 68 (0.8092, 0.0514) 69 (0.7992, 0.0482) 70 (0.8014, 0.0464)
δ3 63 (0.8054, 0.0626) 65 (0.8148, 0.0578) 65 (0.8016, 0.0516) 67 (0.8000, 0.0508)
δ4 61 (0.8050, 0.0626) 62 (0.8030, 0.0672) 63 (0.8054, 0.0470) 64 (0.7902, 0.0490)

MM δ2 68 (0.7986, 0.0584) 71 (0.8166, 0.0634) 70 (0.7964, 0.0484) 73 (0.8100, 0.0464)
δ3 64 (0.8026, 0.0526) 66 (0.8124, 0.0628) 66 (0.7984, 0.0438) 68 (0.8040, 0.0476)
δ4 61 (0.8168, 0.0570) 62 (0.7916, 0.0632) 63 (0.7988, 0.0446) 64 (0.7970, 0.0526)

log(1.8) IM δ1 29 (0.8128, 0.0710) 29 (0.8008, 0.0700) 31 (0.8066, 0.0424) 31 (0.7882, 0.0442)
δ2 33 (0.8094, 0.0736) 34 (0.8132, 0.0660) 35 (0.8006, 0.0506) 36 (0.8004, 0.0474)
δ3 31 (0.8058, 0.0658) 32 (0.8096, 0.0754) 33 (0.7878, 0.0460) 34 (0.8004, 0.0534)
δ4 30 (0.8128, 0.0722) 31 (0.8306, 0.0672) 32 (0.8044, 0.0460) 33 (0.8080, 0.0470)

MM δ2 34 (0.8142, 0.0772) 35 (0.8156, 0.0624) 36 (0.8080, 0.0488) 37 (0.8128, 0.0520)
δ3 31 (0.8038, 0.0726) 32 (0.8184, 0.0682) 33 (0.7814, 0.0464) 34 (0.7930, 0.0526)
δ4 30 (0.8180, 0.0720) 31 (0.8286, 0.0736) 32 (0.7952, 0.0484) 33 (0.8056, 0.0506)

methodmodifies the GEE covariance estimator with an
additional term

�MBN = A−1EA−1 + min
{
0.5,

T + 1
n − T − 1

}
× max

{
1,

1
T + 1

trace(A−1E)

}
A−1.

Donner and Klar’s (2000) method suggests adding one
cluster to each treatment arm. The results under this
combination approach are presented in Tables 1 and 2
under the columns of ‘Adjusted GEE’. The empirical
powers and type I errors are very close to their nomi-
nal values of 0.8 and 0.05, respectively. For example, in
Table 1 when the number of clusters is less than 30, the
type I errors without adjustment are all severely inflated
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Table 3. Required number of clusters (empirical power, empirical type I error) for cross-sectional studies.

GEE Adjusted GEE

ζ0 ρ = 0.03 ρ = 0.05 ρ = 0.03 ρ = 0.05

log(1.5) 49 (0.8077, 0.0600) 61 (0.8116, 0.0616) 51 (0.7935, 0.0495) 63 (0.7919, 0.0543)
log(1.8) 24 (0.8091, 0.0850) 30 (0.8136, 0.0781) 26 (0.7948, 0.0492) 32 (0.8001, 0.0511)

Figure 2. Relationship between the number of clusters and power (P and L denote the proposed method and Li’s method,
respectively).

(larger than 0.07). After adjustment, all the type I errors
are close to the nominal level 0.05.

We also conduct simulations to investigate the per-
formance of the proposed method in cross-sectional
SW-CRTs. Because each subject only contributes one
measurement, the issue of missing data does not apply.
We set � = 11′ρ + (1 − ρ)I and � = 11′ρ. Two val-
ues are explored for ρ: 0.03 and 0.05. Table 3 presents
the required number of clusters with empirical power
and type I error for cross-sectional SW-CRTs. Similar
to the observations from the closed-cohort SW-CRTs,
a smaller correlation (ρ) is associated with a smaller
sample size requirement. Furthermore, the proposed
correction approach performs well in maintaining the
empirical powers and type I errors at their nominal
levels.

We performed additional simulations to evaluate
the relationship between the required number of clus-
ters and power. We used the same parameter settings
as described above for closed-cohort studies with the
CS correlation structures. Under different combina-
tions of design parameters, as shown in Figure 2 (solid
lines), testing power increases as the number of clus-
ters increases. Furthermore, we compared the proposed
method with an existing method (Li et al., 2018). Since
Li’s method does not account for missing data, we
only consider the scenario of complete observations.
To maximise the usability of the proposed sample size
method in pragmatic settings, we assume that when
analysing trial data researchers do not know the true
correlation structure and make inference using GEE
with independent working correlation. This practical

solution is slightly less efficient than Li’s method which
uses the true correlation (see Figure 2). We believe the
proposed method nonetheless provides a useful sam-
ple size solution for the design of pragmatic SW-CRTs
because it compensates for a slight loss in efficiency by
advantages in (1) a closed-form sample size formula; (2)
accommodation of missing data; and (3) not requiring
the true correlation to be known during inference.

4. Example

Weapply the proposedmethod to a cross-sectional SW-
CRT study (Mouchoux et al., 2011), whichwas designed
to evaluate whether amultifaceted programme (includ-
ing consulting and training, etc.) could decrease post-
operative delirium in patients aged 75 and older. The
outcome of interest is the occurrence of delirium
within seven days after surgery. Suppose this study is
conducted over a six-month period with T = 4 pre-
specified time points and surgical wards are assigned to
S = 3 sequences with balanced randomisation. At each
time point, 15 patients per surgical ward will receive
assigned intervention and the delirium outcome will be
recorded. It is hypothesised that the multifaceted pro-
gramme can reduce the occurrence of delirium from
60% to 40%, which corresponds to an odds ratio of 0.44
and a constant time effect of 0.41. By assumingρ = 0.05
in� = 11′ρ + (1 − ρ)I and� = 11′ρ, wewill need 16
wards to achieve 80% power at a two-sided significance
level of 0.05. If 30 patients are selected per surgical ward
for measurements, 12 wards will be needed.
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5. Discussion

In this study, we propose a sample size and power
calculation method that is generally applicable to
both closed-cohort and cross-sectional SW-CRTs with
binary outcomes. We directly incorporate several
design issues encountered in pragmatic trials into
power analysis and were able to provide a closed-form
sample size solution. Through different specifications
of correlation matrices � and �, the proposed method
offers great flexibility to account for different types
of SW-CRTs and correlation structures. The inclusion
of parameters ps allows researchers to employ unbal-
anced randomisation. Furthermore, our method main-
tains the desired power in the presence of missing
data through the specification of marginal observa-
tional probabilities at population level (δ), and themiss-
ing pattern at subject level (̃δ). In simulation studies,
we have investigated the independent (IM) and mono-
tone (MM) missing patterns. In practice, a clinical trial
might encounter different types of missing patterns.
For example, it is possible that some subjects miss a
few appointments due to accidents (IM), while some
subjects drop out in the middle of study (MM). The
proposed sample size method can accommodate such
scenarios by specifying amixture of IM andMM,where

δ
(MIX)
t = wδ

(IM)
t + (1 − w) δ

(MM)
t

and

δ
(MIX)

tt′ = wδ
(IM)

tt′ + (1 − w) δ
(MM)

tt′ ,

where w and 1−w are weights for IM and MM, respec-
tively. Finally, we have present a correction approach
to address the issue of underestimated variance by the
GEE method when the number of clusters is limited in
SW-CRTs.
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Appendix. Derivation of Equation (1)

First we have

Â = J
n

S∑
s=1
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(
X′
sĜs

)⊗2
.

As n → ∞, Â approaches
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On the other hand, we have
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As n → ∞, Ê approaches

E = J
S∑

s=1
psX′

sGs [� + (J − 1)�]GsXs.

We are only interested in σ 2
ζ , which is the (T + 1,T + 1)-

component of � = A−1EA−1. The last row of A−1 can be
simplified as[

J
T∑
t=1

S∑
s=1

wstāt(1 − āt)

]−1 [−ā 1
]
,

where wst = psμst(1 − μst), āt =
∑S

s=1 wstvst∑S
s=1 wst

is the weighted
proportion of subjects receiving intervention at time t, and
ā = (ā1, . . . , āT)′. Then, we have

σ 2
ζ =
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The required number of clusters is

n =
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z1−α/2 + z1−γ

)2
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