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ABSTRACT
Covariate-adaptive randomisation has a more than 45 years of history of applications in clini-
cal trials, in order to balance treatment assignments across prognostic factors that may have
influence on the outcomes of interest. However, almost no theory had been developed for
covariate-adaptive randomisation until a paper on the theory of testing hypotheses published
in 2010. In this article, we review aspects of methodology and theory developed in the last
decade for statistical inference under covariate-adaptive randomisation.We focus on issues such
as whether a conventional procedure valid under the assumption that treatments are assigned
completely at random is still valid or conservative when the actual randomisation is covariate-
adaptive, how a valid inference procedure can be obtained bymodifying a conventionalmethod
or directly constructed by stratifying the covariates used in randomisation, whether inference
procedures have different properties when covariate-adaptive randomisation schemes have dif-
ferent degrees of balancing assignments, and how to further adjust covariates in the inference
procedures to gain more efficiency. Recommendations are made during the review and further
research problems are discussed.
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1. Introduction

In a clinical trial to compare k ≥ 2 treatments, patients
are typically randomised into treatment arms according
to fixed treatment assignment proportions π1, . . . ,πk,
where each πt is a known number strictly between
0 and 1 and

∑k
t=1 πt = 1. The simplest randomisa-

tion scheme assigns patients to treatments completely
at random and, thus, is called complete randomisation
or simple randomisation. However, simple randomisa-
tion may yield imbalance assignments, i.e. sample sizes
not following the assignment proportions across some
prognostic factors or covariates, e.g., institution, dis-
ease stage, prior treatment, gender and age, which are
thought to have significant influence on the outcomes
or responses of interest. For instance, a trial exhibiting
a substantial imbalance in patient age or disease stage
between two treatment arms may not pass a regulatory
review even though a statistically significant treatment
effect has been shown. The issue is more serious when
patients are not all available for simultaneous assign-
ment of treatments but rather arrive sequentially and
must be treated immediately.

This leads to the development of covariate-adaptive
randomisation (which is also referred to as dynamic
allocation), i.e., treatment assignment of the ith patient
is made dependent on the observed covariate value
of this patient and the assignments and covariate

values of all i−1 previously assigned patients. It should
be emphasised that covariate-adaptive randomisation
does not use any outcomes or responses from the i−1
previous patients when the ith patient is randomised
to a treatment arm. Adaptive randomisation methods
using outcomes or responses are not our focus and can
be found, for example, in Hu and Rosenberger (2006),
Zhang et al. (2007), Hu et al. (2009), Rosenberger
and Lachin (2015), and the references therein. The
oldest covariate-adaptive randomisation scheme is the
minimisation proposed by Taves (1974) and its exten-
sions in Pocock and Simon (1975). Other popu-
lar covariate-adaptive randomisation methods include
the stratified permuted block randomisation method
(Zelen, 1974), the stratified urn design (Wei, 1977;
Zhao & Ramakrishnan, 2016) and the stratified biased
coin method (Kuznetsova & Johnson, 2017; Shao
et al., 2010). Summaries of different allocation schemes
are given byKalish andBegg (1985), Schulz andGrimes
(2002), and Rosenberger and Sverdlov (2008).

How often are covariate-adaptive schemes applied
in clinical trials? According to Taves (2010), from 1989
to 2008, over 500 clinical trials implemented the min-
imisation method to balance important covariates. In
a recent review of nearly 300 clinical trials published
in year 2009 and year 2014 (Ciolino et al., 2019), 237
of them used covariate-adaptive randomisation. Other
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examples can be found in van der Ploeg et al. (2010),
Fakhry et al. (2015), Breugom et al. (2015), Stott
et al. (2017), and Sun et al. (2018). In the 2018New Eng-
land Journal of Medicine, there are seven articles about
covariate-adaptive randomisation (Horn et al., 2018;
Jourdain et al., 2018; McKeever et al., 2018; Mehra
et al., 2018; Myles et al., 2018; Ramirez et al., 2018;
Zannad et al., 2018). Applications of covariate-adaptive
randomisation are not limited to clinical trials, as they
are relevant for randomised experiments with many
interventions.

How should inference be carried out with data col-
lected under covariate-adaptive randomisation? Unfor-
tunately, tests and other inference procedures con-
structed based on simple randomisation, which will
be called conventional tests and inference procedures,
are often applied in practice after data are collected
under covariate-adaptive randomisation. For exam-
ple, in the seven articles cited previously in the 2018
New England Journal of Medicine, they all used con-
ventional tests for treatment effect. On one hand,
over 35 years between 1974 and 2009, there were
many empirical results showing that some conven-
tional tests could still control Type I errors in spite of
using covariate-adaptive randomisation; see, for exam-
ple Birkett (1985), Forsythe (1987), Aickin (2002),Weir
and Lees (2003), Hagino et al. (2004), and Zhong
and Kim (2008). On the other hand, the Committee
for Proprietary Medicinal Product commended that ‘it
remains controversial whether the analysis adequately
reflects the randomisation scheme’ (Committee for
proprietary medicinal products, 2004) and the Euro-
pean Medicines Agency 2015 guidelines stated that
‘possible implications of dynamic allocation methods [
minimisation] on the analysis, e.g., with regard to bias
and Type I error control should be carefully consid-
ered,. . . conventional statistical methods do not always
control the Type I error’ (EMA, 2015). Because a sta-
tistical inference procedure on treatment effects should
be valid under the particular randomisation scheme
used in data collection, the application of conventional
inference procedures after covariate-adaptive randomi-
sation has definitely raised concerns and controversies.

Why don’t we always apply an inference procedure
valid under a given covariate-adaptive randomisation
scheme? In their review of covariate-adaptive randomi
sation, Rosenberger and Sverdlov (2008) stated:

Very little theoretical work has been done in this area,
despite the proliferation of papers. The original source
papers are fairly uninformative about theoretical prop-
erties of the procedures.

That is, the lack of theoretical work in devel-
oping valid inference procedures associated with
covariate-adaptive randomisation schemes is proba-
bly the main reason why conventional procedures are
applied in applications.Why is there so little theoretical
work in this problem prior to 2008? Unlike simple

randomisation, covariate-adaptive randomisation gen-
erates some dependence among treatment assignments,
covariates and outcomes under which asymptotic dis-
tributions of treatment effect estimators (such as the
difference of sample averages) could not be easily
derived. Shao et al. (2010) initiated theoretical stud-
ies on the validity of statistical tests under covariate-
adaptive randomisation. The following three issues are
addressed in their paper:

(A) Can we develop a test procedure valid under
covariate-adaptive randomisation?

(B) If we use covariate-adaptive randomisation and
a conventional test procedure valid under simple
randomisation, will the Type I error of the test be
inflated?

(C) Is a test under covariate-adaptive randomisation
more powerful than it is under simple randomisa
tion?

If we have affirmative answers to Questions (A)–(C),
or at least Questions (A)–(B), then the concerns and
controversies about using covariate-adaptive randomi-
sation will be largely eliminated. As the first piece
of theoretical work, the results in Shao et al. (2010)
are limited to certain types of tests, randomisation
schemes, andmodels between covariates and responses.
Fortunately, significant progresses in the theory of
this area have been made in the last decade, e.g., Hu
and Hu (2012), Shao and Yu (2013), Ma et al. (2015),
Bugni et al. (2018, 2019), Ye (2018), Ma et al. (2020), Ye
and Shao (2020), and Ye et al. (2020). Another stream
of results is based on permutation or re-randomisation
methods, e.g., Simon and Simon (2011), Kaiser (2012),
and Bugni et al. (2018).

The purpose of this article is to review aspects of
methodology and theory for statistical inference after
covariate-adaptive randomisation. We concentrate on
Questions (A)–(C) previously stated and the main
results in the last decade, some of which are very
recent. It is our hope that this review will provide some
guidance for clinical trialists about which valid infer-
ence procedures to use for various situations, and will
shed light on further research and development in this
important area.

2. Covariates, outcomes and treatment effects

First, let’s describe covariates and outcomes or respon-
ses under a clinical trial. Consider a clinical trial with
a total of n patients that are assigned to k ≥ 2 treat-
ment arms denoted by a = 1, . . . , k. From patient i ∈
{1, . . . , n}, let Xi be the vector of all observed covari-
ates and let Y(a)

i be the potential outcome or response
of interest under treatment assignment a = 1, . . . , k.
Y(a)
i is called potential outcome because only one of

Y(1)
i , . . . ,Y(k)

i will be observed from patient i, as each
patient receives only one treatment. Thus what we
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observe from patient i is Yi = Y(a)
i if treatment a is

assigned to patient i.
The outcome or response Y(a)

i could be continu-
ous or discrete, or a survival time. In a survival trial,
censoring is typically involved so that, for patient i,
Y(a)
i = min(T(a)

i ,C(a)
i ) togetherwith an indicator of the

eventT(a)
i ≤ C(a)

i are observed, whereT(a)
i is the poten-

tial survival or failure time and C(a)
i is the potential

censoring time, under treatment a = 1, . . . , k.
Throughout, we assume the following minimal con-

dition on covariates and outcomes.

(C1) (Y(1)
i , . . . ,Y(k)

i ,Xi), i = 1, . . . , n, are indepen-
dent and identically distributed.

Note that there is no assumption on the relation-
ship between the covariates and potential outcomes.
We allow arbitrary treatment effect heterogeneity, i.e.,
the effect of treatment and covariate interaction on
potential outcomes.

For convenience, we use Y(1), . . . ,Y(k),X to denote
the variables from a generic patient. Under (C1),
(Y(1), . . . ,Y(k),X) ∼ (Y(1)

i , . . . ,Y(k)
i ,Xi) for every i,

where X ∼ Y means that X has the same distribu-
tion as Y .

To assess treatment effect, we may be interested in
the average treatment effect between any fixed pair of
treatment arms, a and b, defined as E(Y(a) − Y(b)),
where E is the population expectation and E(Y(a)) is
assumed to be well defined. Another important mea-
sure in comparing treatments a and b is the quan-
tile treatment effect defined as q(a)

τ − q(b)
τ (Firpo, 2007;

Zhang et al., 2020), where q(a)
τ is the τ th quantile of

the distribution of Y(a) under treatment a and τ is a
fixed fraction. Quantile treatment effect is more appro-
priate when potential outcomes are highly skewed and
is more relevant and informative than the average treat-
ment effect when some distributional impacts have to
be assessed.

Both average treatment effect and quantile treatment
effect are some characteristics of the distributions of
potential outcomes. In some applications, wewould like
to assess the treatment effect on the entire distribution
of a potential outcome or the entire conditional dis-
tribution of a potential outcome given covariates. For
example, in a survival analysis we may be interested
in testing whether the conditional distributions of T(a)

given X are the same for different a’s.
Here we would like to make it clear that treatments

may have effect not only on the marginal distributions
of potential outcomes, but also the conditional distri-
butions of Y(a) given X, although typically treatments
may not have any effect on the marginal distribution of
the covariate X.

So far we have not yet discussed the treatment
assignment of patients. Suppose that treatment assign-
ments are made according to some probabilistic mech-
anism. For patient i, let Ai be the treatment assignment
indicator vector, i.e., Ai = ea if patient i is assigned to
treatment a, where ea is a vector whose ath compo-
nent is 1 and rest components are 0’s, a = 1, . . . , k. The
observed outcome from patient i is Yi = Y(a)

i if and
only if Ai = ea, a = 1, . . . , k, i = 1, . . . , n.

3. Covariate-adaptive randomisation schemes

We now introduce details about how Ai’s are generated
according to a randomisation scheme, using or without
using covariates Xi’s.

Under simple randomisation, Ai’s are independent
of (Y(1)

i , . . . ,Y(k)
i ,Xi)’s and, further, Ai’s are indepen-

dent and identically distributed with P(Ai = ea) = πa,
where P denotes the probability under a given ran-
domness mechanism. It should be emphasised that the
independence between Ai’s and (Y(1)

i , . . . ,Y(k)
i ,Xi)’s

means that the treatment assignments are independent
of potential outcomes and covariates, not that treat-
ments have no effect on potential outcomes or con-
ditional distribution of Y(a) given X as discussed in
Section 2.

Let Z be a vector of discrete covariates with finitely
many levels to be utilised in covariate-adaptive ran-
domisation. Typically, components of Z are some dis-
crete components of X and/or some discretised contin-
uous components of X that are thought to have signifi-
cant influence on the potential outcomes. In the follow-
ing, we describe some popular covariate-adaptive ran-
domisation schemes for enforcing assignment alloca-
tion across at levels of Z. In a typical covariate-adaptive
randomisation scheme, for the ith patient arrived with
observed Zi, the treatment assignment indicator Ai is
generated depending on not only the value of Zi but
also the Z-values and assignments of the previous i−1
patients, i = 1, . . . , n.

The stratified permuted block randomisationmethod
(Zelen, 1974) randomly assigns a block of size B
patients into k arms each having Bπa patients for
every B sequentially arrived patients with Z = z, a
particular level of Z, where B is appropriately cho-
sen so that Bπa’s are integers and the last block is
allowed to be incomplete. This method is called strat-
ified permuted block randomisation since randomi-
sation is carried out within each stratum (joint level
of Z) to achieve balancedness of assignments across
strata.

When k = 2 and π1 = π2 = 1/2, the stratified
biased coin method (Shao et al., 2010) assigns patient i
withZi = z according to the biased coin randomisation
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in Efron (1971),

P(Ai = e1) =

⎧⎪⎨⎪⎩
p, Di−1(z) < 0,
1/2, Di−1(z) = 0,
1 − p, Di−1(z) > 0,

where p is a fixed constant satisfying 1/2 < p < 1 and
Di−1(z) is one half of the within z stratum difference
between the numbers of patients in treatment 1 and
treatment 2 after i−1 assignments have been made. An
extension of the stratified biased coin for general case of
k ≥ 3 can be found in Kuznetsova and Johnson (2017).

The stratified urndesign (Wei, 1977, 1978a, 1978b) is
the stratified biased coin randomisation with p depend-
ing on i. When k = 2 and π1 = π2 = 1/2, the fixed
p in biased coin is replaced by a pi depending on
Di−1(z). According toWei (1977), the urn designwould
force balance at the beginning of treatment allocation,
and approach simple randomisation as the size of trial
increases. A stratified urn design for general situation of
k ≥ 3 can be constructed using the method described
in Zhao and Ramakrishnan (2016).

The previous three stratified covariate-adaptive ran-
domisation schemes enforce balancedness of treatment
assignment allocation across all strata, i.e., joint levels
of Z. However, the oldest covariate-adaptive randomi-
sation scheme, the minimisation, is very different from
these three methods.

First, consider k = 2 and π1 = π2 = 1/2. For each
i ∈ {1, . . . , n}, let G(1)

i be a weighted sum of squared or
absolute differences betweennumbers of patients in two
treatment arms overmarginal levels ofZ, where the cal-
culation is based on i−1 previously assigned patients
and the assumption that the ith patient i is assigned
to treatment 1, and let G(2)

i be the same sum except
that the ith patient is assumed to be in treatment 2.
For a = 1 or 2, G(a)

i represents the ‘total amount of
imbalance’ in treatment numbers across the marginal
levels of Z which exists if treatment a is assigned to
the ith patient. Therefore, we would like to assign the
ith patient by minimising G(a)

i over a = 1, 2, i.e., we
assign the ith patient to treatment 1 if G(1)

i < G(2)
i , to

2 if G(1)
i > G(2)

i , and to 1 or 2 randomly if G(1)
i = G(2)

i .
This is why the method is called the minimisation by
Taves (1974). Pocock and Simon (1975) extended the
minimisation by allowing minimisation with a given
probability, i.e.,

P(Ai = e1) =

⎧⎪⎨⎪⎩
p, G(1)

i < G(2)
i ,

1/2, G(1)
i = G(2)

i ,
1 − p, G(1)

i > G(2)
i ,

where p > 1/2 is a fixed constant. Pocock and Simon’s
method is still referred to as the minimisation and
Taves’ minimisation is the special case with p = 1.
For a general k and/or allocation, the minimisation

can be similarly constructed (Han et al., 2009; Pocock
& Simon, 1975).

If Z is one dimensional, then the minimisation is
the same as the stratified biased coin method. For a
multivariate Z, the key distinction between the min-
imisation and the three previously described stratified
randomisationmethods is that enforcing treatment bal-
ancedness is at all joint levels of Z for the latter but only
at marginal levels of Z for the former. For this reason,
the minimisation is also called the marginal method
in Ma et al. (2015) and Ye and Shao (2020). Enforcing
treatment balance in marginal levels of Z is sufficient in
most applications.

Any of the previously introduced covariate-adaptive
randomisation schemes satisfy

(D1) {Ai, i = 1, . . . , n} and {Y(1)
i , . . . ,Y(k)

i ,Xi, i = 1,
. . . , n} are conditionally independent given {Zi,
i = 1, . . . , n}.

Actually, (D1) almost always holds for covariate-
adaptive randomisation, because treatments, not their
assignments, may affect the potential responses as we
discussed earlier for simple randomisation, and given
Zi’s, the rest of Xi’s contain covariate information not
used in randomisation.

Furthermore, all covariate-adaptive randomisation
schemes considered so far satisfy the following condi-
tion (D2) (Baldi Antognini &Zagoraiou, 2015). In what
follows, ⇒ denotes convergence in distribution as the
sample size n → ∞, and ⇒ 0 is in fact convergence to
0 in probability.

(D2) For every i = 1, . . . , n, P(Ai = ea|Z1, . . . ,Zn) =
πa and, for every a and every level z of Z,
{n(z)}−1D(a)(z) ⇒ 0, where D(a)(z) = na(z) −
πan(z), n(z) is the number of patients withZi = z,
and na(z) is the number of patients with Zi = z
under treatment a.

Note that D(a)(z) is a measure of the assignment
imbalance in stratum z. According to the asymptotic
property of D(a)(z) in (D2), covariate-adaptive ran-
domisation schemes can be classified into one of the
following three types.

Type 1. For every a and every z ofZ, {n(z)}−1/2D(a)(z)
⇒ 0.

Type 2. For every a, D(a)(z)’s with all different strata
z’s are mutually independent and, for every z,
{n(z)}−1/2D(a)(z) ⇒ N(0, va), the normal dis-
tribution with mean 0 and a known variance
va > 0.

Type 3. Methods not in Type 1 or 2.

The three types are in the order of the degree in
enforcing the balancedness within every z using the
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assignment imbalance measure D(a)(z). Type 1 is the
strongest, requiring D(a)(z) diverging slower than the
square root of within stratum z sample size. Repre-
sentatives of Type 1 covariate-adaptive randomisation
methods are stratified permuted block and biased coin
schemes. In fact, under stratified permuted block ran-
domisation,D(a)(z) is bounded; for the stratified biased
coin method, it follows from a result in Efron (1971)
that D(a)(z) is bounded in probability for every z.

Type 2 is weaker than Type 1, as {n(z)}−1/2D(a)(z)
converges in distribution to N(0, va), not 0. The strati-
fied urn design is Type 2 with va = 1/12 when k = 2,
π1 = π2 = 1/2 (Wei, 1978a, 1978b). Simple randomi-
sation treated as a special case of covariate-adaptive
randomisation is also Type 2. Finally, the minimisa-
tion is Type 3, since it is neither Type 1 nor Type
2 (Ye & Shao, 2020). Specifically, under minimisa-
tion, D(a)(z) and D(a)(z′) with z 
= z′ are not inde-
pendent, and their relationship is complicated, because
assignments are made according to marginal levels
of Z.

4. Validity and conservativeness of tests

Testing a null hypothesis of no treatment effect on
potential outcomes is the most utilised statistical
inference procedure in clinical trials. For a given
null hypothesis H0 and a significance level α > 0, a
test statistic T is a function of observed {Yi,Xi, i =
1, . . . , n}, which is constructed such that H0 is rejected
if and only if T is outside of the interval [zα/2, z1−α/2],
where zr is the rth quantile of a known distribution,
usually the standard normal distribution, in which case
H0 is rejected if and only if |T| > z1−α/2 as z1−α/2 =
−zα/2. Here, we consider two sided tests; the discussion
for a one sided test is similar and omitted. T is said to
be asymptotically valid (or valid for simplicity) if

sup
P under H0

lim
n→∞ P

(
T 
∈ [zα/2, z1−α/2]

) = α (1)

T is said to be asymptotically conservative (or conser-
vative for simplicity) if

sup
P under H0

lim
n→∞ P

(
T 
∈ [zα/2, z1−α/2]

)
< α. (2)

4.1. Validity of conventional tests

As we discussed in Section 1, prior to 2010, there was
almost no theoretical work and practitioners applied
conventional tests developed under simple randomi-
sation, which caused concerns about whether Type I
error could be inflated. That is, if a conventional test
T is applied after covariate-adaptive randomisation,
does (1) still hold?

Forsythe (1987) concluded that a conventional test
T still controls Type I error when Z used in minimisa-
tion is also included in the construction of T. However,

this conclusion was based on simulation results under
certain models.

The first piece of theoretical work in this area
obtained by Shao et al. (2010) is that, under covariate-
adaptive randomisation, a conventionalT is valid in the
sense of (1) if both of the following hold:

(i) The covariate Z used in covariate-adaptive rando
misation is a function of all covariates used to
construct the test T.

(ii) T is valid in the sense of (1) under any fixed set of
treatment allocation A1, . . . ,An.

Note that (i) coincides with Forsythe’s simulation
discovery. But (ii) requires the validity of T under
any deterministic allocation A1, . . . ,An, which can be
realistically achieved only when a correct statistical
model is used in constructing T. However, correctly
impose a model is difficult. Although mathematically,
(i)–(ii) is only sufficient not necessary for the validity
of a conventional test T under covariate-adaptive ran-
domisation, we can easily find an example in which
T is not valid under covariate-adaptive randomisation
when either (i) or (ii) fails; e.g., Shao et al. (2010) and
Shao and Yu (2013).

4.2. Conservativeness of conventional tests

Before we answer Question (A) in Section 1 regard-
ing the development of a valid test according to (1)
under covariate-adaptive randomisation, we would like
to addressQuestion (B) in Section 1, i.e., whether or not
a conventional test T is conservative in the sense of (2).
If the answer is yes, then at least the Type I error is not
inflated by using conventional tests.

The first result of this kind was obtained by Shao
et al. (2010) regarding the two sample t-test under a
homogeneous one-way analysis of covariance model.
The result is, the conventional two sample t-test for
comparing two treatments (k = 2) is conservative
according to (2) under the stratified biased coin ran-
domisation. Following this work, results about the con-
servativeness of different conventional tests under dif-
ferent models and covariate-adaptive randomisation
methods have been obtained by Hu and Hu (2012),
Shao andYu (2013),Ma et al. (2015), Bugni et al. (2018),
Ye (2018), and Ye and Shao (2020). In particular,
under Type 1 or 2 randomisation schemes described
in Section 3, Ye and Shao (2020) proved the conser-
vativeness of the conventional log-rank and score tests
for survival analysis, which is a substantial advance
in the theory of this area. Unfortunately, no result
is available for the conservativeness of conventional
tests under minimisation, except for some unrealis-
tic cases. Furthermore, the available results are for
particular conventional tests, i.e., no general result is
available.
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The reason why conventional tests become conser-
vative under some covariate-adaptive randomisation
schemes as well as why the result is not available for
minimisation can be explained as follows. Many (if
not most) conventional tests are ratios with numera-
tors being statistics accessing the plausibility of the null
hypothesisH0 and denominators being standard errors
estimating the standard deviations of the correspond-
ing numerators. For example, the two sample t-test for
testing effect between two treatments (k = 2) is

T = Y1 − Y2√
S21/n1 + S22/n2

, (3)

where na is the number of patients assigned to treat-
ment a,Ya and S2a are the samplemean and sample vari-
ance, respectively, based on Yi’s under treatment a; the
numerator Y1 − Y2 of T in (3) accesses the plausibil-
ity of the null hypothesis H0 : E(Y(1) − Y(2)) = 0, and

the denominator
√
S21/n1 + S22/n2 estimates the asymp-

totic standard deviation of Y1 − Y2. Under a Type 1 or
2 covariate-adaptive randomisation scheme, it is usu-
ally true that the numerator of T in (3) still measures
the plausibility of H0, and the denominator of T in (3)
is too large because the Type 1 or 2 covariate-adaptive
randomisation scheme typically reduces the variation
of numerator after enforcing the balancedness of treat-
ment assignments. Specifically, Y1 and Y2 are inde-
pendent under simple randomisation but are negatively
correlated under Type 1 or Type 2 covariate-adaptive
randomisation and, consequently, the variance of Y1 −
Y2 is smaller under covariate-adaptive randomisation
and S21/n1 + S22/n2 still estimates the variance of Y1 −
Y2 under simple randomisation. The reduction in vari-
ation together with the fact that the denominator of
conventional test does not account for this reduction
lead to the conservativeness of conventional test.

As we discussed in Section 3, the stratified per-
muted block and biased coin randomisation schemes
are Type 1 and the stratified urn designs are Type 2.
Hence conventional tests are conservative under these
randomisation schemes.

The minimisation, however, is neither Type 1 nor
Type 2 (Ye & Shao, 2020). The only available result
on the asymptotic distribution of Y1 − Y2 under min-
imisation is obtained (Ma et al., 2015) under a very
restrictive and nearly unrealistic condition that not
only the relationship between the observed response
Yi and Zi is linear, but also all components of Zi are
independent and there is no other covariate in the
linear model. Because the minimisation only enforces
the marginal balancedness of treatment assignments,
its asymptotic properties are very complicated and a
general result about the asymptotic distribution of a
simple statistic like Y1 − Y2 is not available. Some
progress has been made in some recent work (Hu

& Zhang, 2020), but the problem is not completely
solved.

4.3. Development of valid tests

We now return to address Question (A) in Section 1.
Although a conservative test controls the Type I error
rate, it may lose power of the test and, thus, may not be
appreciated by clinical trialists.

From the discussion in Section 4.1, a conventional
test is valid according to Equation (1) if (i)–(ii) hold,
but (ii) requires prefect modelling that may be unre-
alistic, since model misspecification often occurs espe-
cially when there are many covariates. The discussion
in Section 4.2 actually suggests that we modify the
denominator of a conventional test to develop a valid
test under covariate-adaptive randomisation. The first
result was also obtained by Shao et al. (2010) who pro-
posed a bootstrap variance estimator for the two sam-
ple t-test with a component of re-generating treatment
assignments in every bootstrap sample to account for
the correct variation under the stratified biased coin
randomisation. The resulting bootstrap test replaces
the denominator of two sample t-test in (3) by the
squared root of the bootstrap variance estimator and
is valid according to (1). This bootstrap method can
be extended to modifying many other conventional
tests, for Type 1 or 2 covariate-adaptive randomisation
scheme (Shao & Yu, 2013; Ye & Shao, 2020).

With some effort on deriving the asymptotic distri-
bution of the numerator of a conventional test under
Type 1 or 2 covariate-adaptive randomisation, a valid
test can also be constructed by correctly estimating
the asymptotic variance of the numerator (Ye, 2018;
Ye & Shao, 2020). For the conventional two sample t-
test in (3), for example, Ye (2018) showed that a valid
test under stratified biased coin randomisation can be
obtained by replacing the denominator of the t-test
by 2

√∑
z n(z)S2(z)/n, where S

2(z) is the sample vari-
ance based on Yi’s in stratum Z = z. Compared with
the bootstrap, this approach does not require a large
amount of computation and has another advantage to
be discussed later.

Perhaps a better approach is to directly derive a valid
test based on a given covariate-adaptive randomisation
scheme or a general group of randomisation schemes.
This will be discussed in Section 5 when we consider
general inference procedures.

Another stream of methods is based on re-randomi
sation or permutation, e.g., Simon and Simon (2011),
Kaiser (2012), and Bugni et al. (2018). In the rest
of this section, we discuss in details about the re-
randomisation approach in Simon and Simon (2011),
which is somewhat similar to the bootstrap method.
Consider k = 2 and H0 : Y(1) ∼ Y(2). Under H0,
Y(1) and Y(2) are exchangeable so that we cre-
ate potential outcome Ỹ(1)

i = Ỹ(2)
i = Yi for patient



178 J. SHAO

i. Let A = (A1, . . . ,An) be the observed treatment
assignments under the given covariate-adaptive ran-
domisation scheme. Any test T can be written as
T(A,O), where O = {Ỹ(1)

i , Ỹ(2)
i ,Xi, i = 1, . . . , n}. Let

C = (C1, . . . ,Cn) be randomly generated treatment
assignments under the same randomisation scheme,
i.e., C ∼ A conditioned onZ, T(C,O) be T(A,O)with
A replaced by C, and let FO be the cumulative condi-
tional distribution function of T(C,O) given O. From
the probability theory,

P
{
T(C,O) < F−1

O (α/2) or T(C,O)

> F−1
O (1 − α/2)

∣∣∣O}
≤ α.

Hence, unconditionally, under H0,

P
{
T(C,O) < F−1

O (α/2) or T(C,O) > F−1
O (1 − α/2)

}
≤ α

and if we rejectH0 if and only ifT is outside of the inter-
val [F−1

O (α/2), F−1
O (1 − α/2)], then this T has Type I

error rate ≤ α for every n.
Two issues remain to be considered. The first one

is that the quantile F−1
O (r) usually has no explicit form

and approximation such as Monte Carlo is needed. The
second issue is that this method may be conservative
for every n, because T(C,O) with random C is dis-
crete. At this stage, it is still unknownwhether result (1)
holds for this method, since the previous argument
shows that the left-hand side of (1) ≤ α, but we can-
not prove the equality in (1) holds, i.e., we cannot rule
out the possibility that (2) actually holds so that the
re-randomisation method is conservative.

4.4. Tests in survival analysis

We review some available theory for survival analysis,
since covariate-adaptive randomisation has a long his-
tory of application in survival trials. In fact, all 7 articles
in the 2018 New England Journal of Medicine cited in
Section 1 are about survival trials.

For simplicity, we focus on the case of k = 2.
The data structure for survival analysis is described

in the beginning of Section 2, where the potential out-
come Y(a) = min(T(a),C(a)), T(a) is the potential sur-
vival, and C(a) is the potential censoring, under treat-
ment a. It is typically assumed that conditional on
covariateX,T(a) andC(a) are independent and the ratio
P(C(1) ≥ t|X)/P(C(2) ≥ t|X) is a function of t only.

The most common analysis in survival trials is test-
ing whether two treatments have different effect on the
conditional distributions of T(a) given X. Let λ(t, x, a)
be the underlying hazard function of T(a) given X =
x, a = 1, 2. The null hypothesis of interest is H0 :
λ(t, x, 1) = λ(t, x, 2) for all possible t and x.

Without imposing any model, a conventional non-
parametric test for H0 is the log-rank test

T =
n∑

i=1

∫ ∞

0

{
Ai − S1(t)

S(t)

}
dNi(t)

×
[ n∑
i=1

∫ ∞

0

S1(t)S2(t)
{S(t)}2 dNi(t)

]−1/2

, (4)

where Sa(t) = ∑n
i=1 I(Ai = ea)I(Y

(a)
i ≥ t), I(C) is the

indicator of event C, S(t) = S1(t) + S2(t), Ni(t) =
I(Ai = e1)N

(1)
i (t) + I(Ai = e2)N

(2)
i (t), and N(a)

i (t) =
I(T(a)

i ≤ C(a)
i )I(Y(a)

i ≤ t), a = 1, 2. Similar to the two
sample t-test in (3), the log-rank test that is valid
according to (1) under simple randomisation is conser-
vative in the sense of (2) under Type 1 or 2 covariate-
adaptive randomisation, because the denominator of T
in (4) is too large as a standard error for the numera-
tor of T. A valid modified log-rank test is derived by
replacing the denominator of T with the squared root
of a stratified variance estimator given in Formula (20)
of Ye and Shao (2020).

In survival analysis, the following Cox proportional
hazard model is very popular:

λ(t, x, a) = λ0(t) exp(θa + βTx), (5)

where θ is an unknown parameter, βT is the trans-
pose of a vector β of unknown parameters, and λ0(t)
is an unspecified baseline hazard function. If the Cox
model is correct, then the null hypothesis is the same
as H0 : θ = 0, and a score test of H0 can be derived
using the partial likelihood under the Cox model. The
idea is that the score test is more powerful than the log-
rank test if the Cox model is correct. Even if the Cox
model could bemisspecified, it can be used as aworking
model under the model-assisted approach, i.e., a model
is used to assist the derivation of an inference proce-
dure that is efficient when the model is correct and is
still asymptotically valid when the model is incorrect.

Under simple randomisation, a valid model-assisted
score test was derived (DiRienzo & Lagakos, 2002;
Kong & Slud, 1997; Lin & Wei, 1989), which is often
more powerful than the log-rank test in (4) without
using any covariates. This conventional score test, how-
ever, is shown in Ye and Shao (2020) to be conservative
under Type 1 or 2 covariate-adaptive randomisation,
because of the same reason that the denominator of the
score test is too large as a standard error. Again, we can
obtain a valid score test by replacing the denominator
with the squared root of a stratified variance estimator
(Ye & Shao, 2020).

We can also apply the bootstrap or re-randomisation
discussed in Section 4.3 to construct valid tests. How-
ever, the bootstrap or re-randomisation discussed in
Section 4.3 is not correct in survival analysis, unless
we assume P(C(1) ≥ t|X) = P(C(0) ≥ t|X) for all t.
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The reason is that, to apply the bootstrap or re-
randomisation, the observed (Yi,Xi)’s have to be
exchangeable across i under H0. Under H0, although
T(a)
i ’s are exchangeable, C(a)

i ’s are not unless P(C(1) ≥
t|X) = P(C(2) ≥ t|X) for all t. Even if the treatment has
no effect on the potential survival time, it may have
some effect on the potential censoring due to some
practical reasons.

5. Valid inference

We have already discussed to some extent how to con-
struct valid tests under covariate-adaptive randomisa
tion. There are a few shortcomings in those available
results reviewed in Section 4. First, an obvious one is
that some results/methods rely on correct specification
of a model. Second, all results/methods in Section 4
depend on covariate-adaptive randomisation schemes;
in particular, Type 1 or 2 randomisation method is
required, which excludes the minimisation. Third, only
testing hypotheses is considered, not other inference
such as confidence sets. Finally, all methods in Section 4
are modifications of conventional procedures.

In this section, we would like to address the follow-
ing re-phrased Question (A) in Section 1:

(A) Can we develop an inference procedure valid
under covariate-adaptive randomisation with very
little model assumption?

5.1. Testing in survival analysis

We begin with the log-rank test for survival data in
the case of k = 2. The stratified log-rank test (Peto
et al., 1976) is simply the log-rank test in (4) strati-
fied with all levels of the discrete covariate Z utilised in
covariate-adaptive randomisation:

T =
∑
z

∑
i∈L(z)

∫ ∞

0

{
Ai − S1(t, z)

S(t, z)

}
dNi(t)

×
⎡⎣∑

z

∑
i∈L(z)

∫ ∞

0

S1(t, z)S2(t, z)
{S(t, z)}2 dNi(t)

⎤⎦−1/2

,

(6)

where L(z) is the stratum of patients with Zi = z,
Sa(t, z) = ∑

i∈L(z) I(Ai = ea)I(Y
(a)
i ≥ t), and S(t, z) =

S1(t, z) + S2(t, z). Although the stratified log-rank
test in (6) exhibits nice empirical properties under
covariate-adaptive randomisation (Lachin et al., 1988;
Xu et al., 2016) and has been used for a long time, the
first proof of its validity according to (1) comes from
Ye and Shao (2020) with some efforts. The proof actu-
ally shows that the stratified log-rank test is valid for
any covariate-adaptive randomisation method, includ-
ing theminimisation, as long as theminimal conditions
(D1) –(D2) are satisfied.

Why does stratification make so much difference?
Recall that in Section 4.1 we comment that a test will be
valid if two conditions are satisfied: (i) Z used in ran-
domisation is also used in constructing the test and (ii)
a correct model is used to derive the test. Note that the
stratification with strata being levels of Z can be viewed
as a kind ofmodelling based on the discrete covariateZ,
and suchmodelling is always correct. Thus (ii) has been
met if we stratify using Z. To meet (i), we must fully
stratify, i.e., use all strata defined by joint levels of Z,
not partially stratify. It can be shown that if we combine
some strata in the construction of the stratified log-rank
test, then the resulting test is not valid.

The only issue with the stratified log-rank test in (6)
is that it is not efficient if Z 
= X, i.e., X contains more
information than Z. In fact, we cannot definitely tell
whether the stratified log-rank test is more powerful
than the unstratified log-rank test in (4) under simple
randomisation, which is similar to the issue of a strati-
fied samplemeanmay not be alwaysmore efficient than
the unstratified sample mean in survey sampling. Ye
and Shao (2020) showed by simulation that a modified
log-rank test that replaces the denominator of T in (4)
with a stratified standard error may be more powerful
than the stratified log-rank test in (6). The efficiency
issue will be further considered in Section 6.

5.2. Inference on average or quantile treatment
effect

Next, we consider inference on the population mean
difference θ = E(Y(a) − Y(b)) with any two fixed treat-
ments a and b in a trial with k ≥ 2 treatment arms. As
the development of inference procedures often starts
with finding estimators of the parameter of interest, we
first review some available estimators of θ .

The simplest estimator of θ is the sample mean dif-
ference Ya − Yb, where Ya is the sample mean of Yi’s
under treatment a = 1, . . . , k. Bugni et al. (2018) pro-
posed another estimator called the strata fixed effect
estimator in their Section 4.2. The asymptotic distri-
butions of Ya − Yb and the strata fixed effect estimator
have been derived under Type 1 or 2 covariate-adaptive
randomisation, but they are not available for Type 3
covariate-adaptive randomisation such as minimisa-
tion due to the lack of theory on Type 3 methods.

The following post-stratified estimator of θ , simi-
lar to the stratified log-rank test in (6), is proposed by
Bugni et al. (2019) and Ye et al. (2020),

θ̂S =
∑
z

n(z)
n

{Ya(z) − Yb(z)}, (7)

where Ya(z) is the sample mean of Yi’s from patients
in post-stratum L(z) under treatment a = 1, . . . , k. If
the weight n(z)/n in (7) is replaced by the population
weight P(Z = z), then θ̂S in (7) is the stratified estima-
tor in survey sampling. Since P(Z = z) is substituted
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by n(z)/n and L(z) is formed after Z is observed, the
estimator θ̂S is referred to as post-stratified estimator in
survey sampling.

Applying different techniques, Bugni et al. (2019)
and Ye et al. (2020) independently established that,
if (C1) and (D1)–(D2) hold and the second order
moments of Y(a) and Y(b) are finite, then

√
n(θ̂S − θ) ⇒ N(0, σ 2

S ), (8)

where

σ 2
S = E

{
var(Y(a)|Z)/πa + var(Y(b)|Z)/πb

}
+ var{E(Y(a) − Y(b)|Z)}.

Result (8) is model free, i.e., only (C1) and the second-
order moments of the potential outcomes are required.
It is applicable to any covariate-adaptive randomisation
method satisfying (D1)–(D2),most noticeably themin-
imisation for which very little is known about its theo-
retical property, as the minimisation is neither Type 1
nor Type 2. Another interesting fact is that the limit-
ing variance σ 2

S is invariant with respect to randomi-
sation methods. Hence, not only result (8) holds for
any covariate-adaptive randomisation method as long
as the minimal (D1) –(D2) are satisfied, but also θ̂S in
(7) has the same asymptotic distribution and efficiency
regardless of which randomisation scheme is used for
treatment assignments. Such kind of result has not be
seen in the literature except that Ye and Shao (2020)
showed that the asymptotic distribution of the strati-
fied log-rank test in (6) is invariant to the randomisa-
tion schemes. Existing results in the literature (Bugni
et al., 2018; Ma et al., 2015; Shao & Yu, 2013; Shao
et al., 2010) are typically dependent with randomisation
methods and many of them are not applicable to Type
3 methods such as the minimisation.

When the covariate-adaptive randomisation scheme
is Type 1, result (8) also holds with θ̂S replaced by the
strata fixed effect estimator in Bugni et al. (2018). In
general, however, θ̂S is asymptotically more efficient
than the strata fixed effect estimator or the simple esti-
mator Ya − Yb.

For inference on θ under any type covariate-adaptive
randomisation, if θ̂S is adopted to estimate θ , then all
we need to do is to derive an estimator σ̂ 2

S of σ 2
S that is

consistent, i.e., σ̂ 2
S − σ 2

S ⇒ 0 under any type covariate-
adaptive randomisation. This is actually not difficult
once we establish a result like (8). It is shown in Ye
et al. (2020) that a consistent estimator of σ 2

S under any
type covariate-adaptive randomisation is

σ̂ 2
S = 1

n

∑
z

n2(z)

{
S2a(z)
na(z)

+ S2b(z)
nb(z)

}

+ 1
n

∑
z

n(z)
{
Ya(z) − Yb(z)

}2 − θ̂2S ,

where na(z) and S2a(z) are the sample size and sample
variance of Yi’s, respectively, of the patients in stratum
Z = z and under treatment a.

Under any randomisation scheme satisfying (D1)–
(D2), an asymptotically valid (1 − α)% confidence
interval for θ has limits θ̂S ± z1−α/2σ̂S, where z1−α is
the quantile of the standard normal distribution.

More estimators of the average treatment effect θ are
considered in Section 6.

We now consider inference on another important
parameter, the quantile treatment effect defined as
q(a)
τ − q(b)

τ in Section 2, where q(a)
τ is the τ th quantile

of the distribution of Y(a) under treatment a and τ is a
fixed fraction.

Unlike themeans, for quantiles we cannot use differ-
ences as in (7). Instead, we estimate q(a)

τ and q(b)
τ sep-

arately, and then take a difference of estimates. Under
treatment a, we estimate the marginal distribution of
Y(a) at a fixed point y as

F̂(a)(y) = 1
n

∑
z

n(z)
na(z)

∑
i∈L(z)

I(Ai = ea)I(Y
(a)
i ≤ y),

(9)
a = 1, . . . , k. Then, q(a)

τ is estimated by q̂(a)
τ = the τ th

quantile of F̂(a), and q(a)
τ − q(b)

τ is estimated as q̂(a)
τ −

q̂(b)
τ . For inference on quantiles, however, a simple
estimator of the asymptotic variance of q̂(a)

τ may not
be easily obtained. Methods such as the bootstrap or
Woodruff’s interval may be applied (Shao, 2003).

The stratification in (6), (7) or (9), together with the
asymptotic theory, provides a solid foundation for valid
and model free inference after covariate-adaptive ran-
domisation and, thus, it largely eliminates the concern
and controversy as discussed by regulatory agencies
about the use of covariate-adaptive randomisation such
as minimisation.

Combining the results and discussions in this
section and Section 5.1, we reach a general conclusion
that a valid inference procedure can be obtained as long
as the covariate Z utilised in covariate-adaptive ran-
domisation is fully used in the construction of inference
procedure. A simple way to do this is to use all joint
levels of Z as strata.

It can be seen that the conditions needed for this
conclusion is much weaker than (i) and (ii) stated in
Section 4.1, but (i)–(ii) in Section 4.1 are considered
for the validity of a conventional test under covariate-
adaptive randomisation.

5.3. Effect of types of randomisation schemes

Result (8) about the asymptotic distribution of θ̂S in (7)
is invariant to any types of randomisation schemes
described in Section 3. But this does not imply that the
stratification in (7) or in (6) is the best way for inference,
especially when problems other than the inference on
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average treatment effect are considered. An example is
that the modified log-rank test in Ye and Shao (2020)
may be more powerful than the stratified log-rank test
in (6), as discussed in the end of Section 5.1.

If an inference procedure is not invariant to differ-
ent randomisation schemes, then it is interesting to
find out which randomisation scheme, or which type,
provides better inference procedures. For the modified
log-rank test in Ye and Shao (2020), it is more power-
ful when a Type 1 randomisation scheme is used, rather
than the Type 2 or 3. The same may be true for any
inference procedure not invariant to different randomi-
sation schemes. For different Type 1 methods, such as
the stratified permuted block and the stratified biased
coinmethods, so far there is no result indicating that the
inference procedures based on these two randomisation
schemes have different performances.

6. Efficiency considerations

Question (C) in Section 1 is about whether a test under
covariate-adaptive randomisation can be more pow-
erful than it is under simple randomisation. Another
question is, if Z is used in randomisation and stratifica-
tion as in (6) or (7) and if X contains more information
than Z, can we obtain more powerful tests or more effi-
cient estimators by utilising covariate information in X
that is not in Z? Note that X may contain a compo-
nent that is not in Z but is related with the potential
responses Y(1), . . . ,Y(k), or some components of Z are
discretised components of X and the remaining infor-
mation after discretisation is still useful in predicting
the potential responses.

6.1. Adjusting for covariates

We first consider the second question in the estimation
of θ = E(Y(a) − Y(b)) for two fixed treatments a and b.
Let U be a function of X that we want to further utilise
in improving the efficiency of θ̂S in (7). Since the infor-
mation generated by Z is not in that of U , we assume
that var(U|Z = z) is positive definite for every z.

For model free estimation and inference, we do
not want to impose any model between the potential
responses and U . In fact, it is hard to find a correct
model within each stratum Z = z, if we still apply strat-
ification in estimating θ . How do we adjust for covari-
ates without using a model? Ye et al. (2020) adopted
the model-assisted generalised regression approach in
survey sampling, first discussed in Cassel et al. (1976)
and studied extensively in the literature, for example,
Särndal et al. (2003), Shao and Wang (2014), and Ta
et al. (2020).

In this section, we review some results from Ye
et al. (2020). Let U i be the covariate U-value of
patient i, and for each z, let Ua(z) be the sample
mean of U i’s of patients in stratum La(z) = {i : Zi =

z under treatment a}, and

β̂a(z) =
⎡⎣ ∑
i∈La(z)

{U i − Ua(z)}{U i − Ua(z)}T
⎤⎦−1

×
∑

i∈La(z)
{U i − Ua(z)}Yi.

Within treatment a and stratum L(z) = {Z = z}, β̂a(z)
is the least squares estimator of the coefficient vector in
front ofU under a linearmodel betweenY(a) andU , but
the model is not required to be correct. An estimator of
θ following θ̂S but further adjusting for covariate U is
(Ye et al., 2020)

θ̂A =
∑
z

n(z)
n

[Ya(z) − Yb(z) − {Ua(z)

− U(z)}Tβ̂a(z) + {Ub(z) − U(z)}Tβ̂b(z)],

whereU(z) is the sample mean ofU i’s of all patients in
stratum L(z).

An alternative estimator θ̂B of θ in Ye et al. (2020)
is obtained by replacing both β̂a(z) and β̂b(z) in the
definition of θ̂A with a combined estimator

β̂(z)

=
⎡⎣ k∑

a=1

∑
i∈L(z),Ai=a

{U i − Ua(z)}{U i − Ua(z)}T
⎤⎦−1

×
k∑

a=1

∑
i∈L(z),Ai=a

{U i − Ua(z)}Yi.

When k>2, both U(z) and β̂(z) involve data from
patients in treatment arms other than a and b.

The following result parallel to result (8) is estab-
lished in Ye et al. (2020). If (C1) and (D1)–(D2) hold
and the second order moments of Y(a) andU are finite,
then

√
n(θ̂A − θ) ⇒ N(0, σ 2

A) and
√
n(θ̂B − θ) ⇒ N(0, σ 2

B), (10)

where

σ 2
A = E[var{Y(a) − UTβa(Z)|Z}/πa

+ var{Y(b) − UTβb(Z)|Z}/πb]

+ E[{βa(Z) − βb(Z)}T
× var(U|Z){βa(Z) − βb(Z)}]

+ var{E(Y(a) − Y(b)|Z)},
σ 2
B = E[var{Y(a) − UTβ(Z)|Z}/πa

+ var{Y(b) − UTβ(Z)|Z}/πb]

+ var{E(Y(a) − Y(b)|Z)},
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βa(z) = {var(U|Z = z)}−1cov(U ,Y(a)|Z = z), a = 1,
. . . , k, and β(z) = ∑k

a=1 πaβa(z).
Several conclusions can be made from result (10).

First, result (10) ismodel free and invariant with respect
to covariate-adaptive randomisation schemes, as long
as the minimal (D1)–(D2) hold.

Second, from the definitions of σ 2
S and σ 2

A, it is
shown in Ye et al. (2020) that

σ 2
S − σ 2

A

= E
[
{πbβa(Z) + πaβb(Z)}T

× var(U | Z){πbβa(Z) + πaβb(Z)}
]

× {πaπb(πa + πb)}−1

+ E
[
{βa(Z) − βb(Z)}T var(U | Z) {βa(Z) − βb(Z)}

]
× {(πa + πb)

−1 − 1}

and, hence, adjusting covariate U always gains effi-
ciency, i.e., θ̂A is asymptotically more efficient than θ̂S,
unless

πbβa(z) + πaβb(z) = 0 and

{βa(z) − βb(z)}(1 − πa − πb) = 0 for every z,
(11)

in which case θ̂S and θ̂A have the same asymptotic effi-
ciency. When there are more than two treatments, 1 −
πa − πb > 0 and, consequently, (11) holds only when
βa(z) = βb(z) = 0 for every z, i.e., U is uncorrelated
with the potential responses Y(a) and Y(b) after con-
ditioning on Z so that adjusting for U is unnecessary.
When there are only two treatments, (11) also holds if
πa = πb = 1/2 and βa(z) = −βb(z) for every z.

Third, from the definitions of σ 2
A and σ 2

B , it can be
shown (Ye et al., 2020) that

σ 2
B − σ 2

A

= E
[
{βa(Z) − β(Z)}Tvar(U | Z){βa(Z) − β(Z)}

]
π−1
a

+ E
[
{βb(Z) − β(Z)}Tvar(U | Z){βb(Z) − β(Z)}

]
π−1
b

− E
[
{βa(Z) − βb(Z)}T var(U | Z) {βa(Z) − βb(Z)}

]
.

and, hence, θ̂A is asymptotically more efficient than θ̂B
unless

β(z) = πbβa(z) + πaβb(z)
πa + πb

and

{βa(z) − βb(z)}(1 − πa − πb) = 0

for every z, (12)

in which case θ̂B and θ̂A have the same asymptotic
efficiency.

Note that β̂(z) used in θ̂B ignores the fact that
cov(U ,Y(a) | Z = z) may depend on treatment a. That

is why θ̂B is asymptotically not as efficient as θ̂A in
general, and σ 2

B = σ 2
A when these covariances are the

same for every a and every z, i.e., β1(z) = · · · = βk(z)
so that (12) holds. If (12) holds, θ̂B may have bet-
ter finite sample performance than θ̂A, although two
estimators are asymptotically equivalent. An excep-
tional case for σ 2

A = σ 2
B is when k = 2 and π1 =

π2 = 1/2, in which we even do not need βa(z)
= βb(z).

In general, θ̂B may be asymptotically less efficient
than θ̂S, i.e., covariate adjustment with only the main
effects may hurt efficiency, a perspective in Freed-
man (2008) and Lin (2013). For example, there are
scenarios in which (11) holds but (12) does not.

Finally, inference about θ can be carried out based
on (10) and the availability of consistent estimators
of σ 2

A and σ 2
B . Some model free consistent variance

estimators under any covariate-adaptive randomisation
schemes are derived inYe et al. (2020), which are similar
to σ̂ 2

S in Section 5.2.

6.2. Can covariate-adaptive randomisation boost
efficiency?

We now address Question (C) raised in Section 1 and
the beginning of this section: Can a test (or an inference
procedure) under covariate-adaptive randomisation be
more efficient than it is under simple randomisation?

For the types of covariate-adaptive randomisation
schemes described in Section 3, the answer is no,
assuming that exactly the same test is used under simple
randomisation or under covariate-adaptive randomi-
sation without adjusting for conservativeness. This
answer is based on the first-order asymptotic prop-
erty. With a fixed n, the test or inference procedure
under covariate-adaptive randomisation may perform
slightly better due to the balancedness of treatment
assignments.

In our previous discussions, a conventional pro-
cedure may be conservative under covariate-adaptive
randomisation, and a valid procedure can often be
constructed by modifying the conventional procedure.
This modified procedure can be more efficient than the
conventional procedure, but the comparison is not fair
because the modified procedure makes some adjust-
ment typically depending on the covariate Z.

Then, what is the advantage of applying covariate-
adaptive randomisation? It is appliedmainly for balanc-
ing treatment assignments across prognostic factors,
which may be important for reviewing clinical results
and other practical considerations.

There is a stream of developments and results in bal-
ancing discrete or continuous covariates and increas-
ing estimation efficiency at the same time (Atkin-
son, 1982, 1999, 2002; Baldi Antognini & Zago-
raiou, 2011; Rosenberger & Sverdlov, 2008; Senn
et al., 2010). The approaches are typically model-based
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and the gains in efficiency may be from the second-
order asymptotics.

Boosting efficiency can also be achieved by adjusting
covariates under simple randomisation with less effort
comparedwith applying covariate-adaptive randomisa-
tion, which is discussed next.

6.3. Designing versusmodelling

Utilising covariate Z in randomisation can be viewed as
a kind of designing for better quality of data, although
this is not the same as what in the traditional exper-
iment design, because in clinical trials we typically
cannot control covariate values of patients. Adjusting
for covariates, either model-based or model-assisted,
fits into the general framework of modelling. In this
section, we address the issue of designing versus mod-
elling.

First, consider inference on the average treatment
effect θ = E(Y(a) − Y(b)). If Z is the only covari-
ate, i.e., X = Z, then the conclusion is that designing
and modelling (adjusting for covariate) can achieve
the same efficiency asymptotically. In this case, θ̂S =
θ̂A = θ̂B and it has the same asymptotic normal
distribution under simple randomisation and under
any other covariate-adaptive randomisation satisfying
(D1)–(D2). The stratification in (7) serves the pur-
pose of modelling under simple randomisation, but it is
essential for obtaining easy inference under covariate-
adaptive randomisation including minimisation.

Consider next the situation where X 
= Z and the
covariate U as discussed in Section 6.1 together with
Z are available for modelling (the entire covariate X
may still contain more information than that from U
and Z). The conclusion is, modelling with Z and U
achieves more efficiency than designing with Z only,
and is the same as designing with Z plus an addi-
tional modelling withU (adjusting forU). This directly
comes from result (10). Under simple randomisation,
θ̂A in Section 6.1 is the estimator after modelling with
Z and U , in view of the fact that Z is discrete so that
stratification is the same as modelling with Z, and its
limiting variance is σ 2

A in (10). On the other hand,
designing with Z only leads to the estimator θ̂S in (7),
which has limiting variance σ 2

S in (8) regardless of
which covariate-adaptive randomisation is applied, and
σ 2
A ≤ σ 2

S . Finally, designing with Z plus an additional
modelling with U leads to estimator θ̂A.

Similar conclusions can be obtained for testing in
survival analysis as discussed in Section 4.4. Consider
the situation of X = Z. Since Z is discrete, the Cox
model given by (5) is always correct. Modelling with
Z produces the score test under simple randomisation,
whereas designing with Z leads to the stratified log-
rank test in (6). It is shown in Ye and Shao (2020)
that the two tests have the same Pitman’s asymptotic
efficiency. If X 
= Z and the Cox model (5) with X is

correct, then it is shown in Ye and Shao (2020) that the
score test under simple randomisation is more efficient
than the stratified log-rank test based on designing and
stratification with Z, in terms of Pitman’s asymptotic
efficiency. In this case, designing with Z plus an addi-
tional modelling leads to the score test. Unlike the case
of inference on average treatment effect, however, in
survival testing all results for the situation of X 
= Z
relies on the correctness of Cox model (5). If model (5)
is wrong, then the score test can be less powerful than
the unstratified log-rank test.

7. Further research work

We end this review with the following discussion of
further research topics in this area.

(1) Although some estimation and inference proce-
dures previously discussed have asymptotic distri-
butions invariant to covariate-adaptive randomisa
tion schemes, it may be still important to study
and understand the Type 3 randomisation meth-
ods such as the minimisation whose properties
are unclear at this stage. In particular, the asymp-
totic property of D(a)(z) defined in (D2). Efforts
should be made to establish the joint asymptotic
distribution of D(a)(z) with z being all levels of
Z. A different direction is to develop more and
better covariate-adaptive randomisation schemes.
For example, in Section 5.3 we point out that a
Type 1 randomisation scheme may produce more
efficient inference procedures than a Type 2 or 3
randomisation scheme. Hu and Hu (2012) modi-
fied Pocock and Simon’s approach and proposed
to use an imbalance measure that is a weighted
sum of the overall imbalance, marginal imbalance,
and strata imbalance. Some effort should be made
to study the implementation of this scheme for
practical uses.

(2) To utilise covariates, we considered the model-
assisted generalised regression approach for the
estimation of average treatment effect and score
test under a working Cox model for testing
hypotheses in survival analysis. It is interesting to
develop other model-assisted approaches to gain
efficiency without relying on models.

(3) From result (8), if Z′ is another covariate such that
the σ -field of Z′ contains the σ -field of Z, then
the θ̂A using Z′ in randomisation is asymptotically
more efficient than the θ̂A using Z in randomi-
sation. That is, utilising more covariate informa-
tion in randomisation can increase asymptotic effi-
ciency. On the other hand, using aZwith toomany
levelsmay cause sparsity of data. Some guidance on
this may be useful for practical users.

(4) The stratification in (6) or (7) uses all levels of Z as
strata. In applications, it is possible that some strata
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contain very few number of patients or even no
patient. Some methods of handling this scenario
should be developed to produce asymptotically
valid or at least conservative inference procedures,
such as combining some strata with small sizes.

(5) The result and discussion on inference about quan-
tile treatment effects are very limited. In survival
analysis, due to the presence of censoring, the
distribution function estimator in (9) has to be
replaced by the Kaplan–Meier product-limit type
estimator. Furthermore, how to adjust for covari-
ates has not been considered.

(6) The bootstrap, re-randomisation and permutation
methods described in Section 4.3 are promising
alternative tools to the approach of asymptotic dis-
tribution plus variance estimation for statistical
inference. Two issues have to be addressed. The
first one is that the re-randomisation and permu-
tation methods are naturally developed for testing.
Applying these tools for inference on parameters
other than the average treatment effect requires
further development. The other issue is what we
discussed in the end of Section 4.4, i.e., the devel-
opment of bootstrap or re-randomisation meth-
ods when censoring distributions conditioned on
X can be different under the null hypothesis that
the survival distributions conditioned on X are
identical.
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