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ABSTRACT
Dose–response experiments and data analyses are often carried out according to an optimal
design under a model assumption. A two-parameter logistic model is often used because of its
nice mathematical properties and plausible stochastic response mechanisms. There is an exten-
sive literature on its optimal designs and data analysis strategies. However, a model is at best
a good approximation in a real-world application, and researchers must be aware of the risk
of model mis-specification. In this paper, we investigate the effectiveness of the sequential ED-
design, the D-optimal design, and the up-and-down design under the three-parameter logistic
regression model, and we develop a numerical method for the parameter estimation. Simula-
tions show that the combination of the proposedmodel and the data analysis strategy performs
well. When the logistic model is correct, this more complex model has hardly any efficiency loss.
The three-parameter logistic model works better than the two-parameter logistic model in the
presence of model mis-specification.
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1. Introduction

Dose–response experiments are routinely conducted to
study the relationship between the dose of a stimu-
lus and the response of the experiment subjects. Sim-
ple and easy-to-interpret models are preferred for the
dose–response relationship. The goal of the experi-
ment is often to accurately determine the median dose
level: the level of stimulant at which half the recipients
respond. Other effective dose levels are also of interest.

There has been much discussion of optimal designs
where the dose–response relationship is completely
known (Ford et al., 1985; Sitter & Fainaru, 1997; Sit-
ter & Forbes, 1997; Sitter & Wu, 1993; Wu, 1985). In
applications, one may first run a pilot study to obtain
an estimate of the dose–response relationship. The opti-
mal design based on the fitted model is then used
to guide further experiments (P. Li & Wiens, 2011;
Wang et al., 2013; Wu & Tian, 2014). A full sequential
approach can also be used: the parameter estimates are
updated after each run, and the result is used to suggest
dose levels for the subsequent runs.

Naturally, if the model is mis-specified, the opti-
mal design is misguided and the effective dose levels
can be poorly estimated. One way to reduce the risk
of model mis-specification is to apply a more flexible
and hence more complex dose–response model. We
seek a trade-off between model flexibility and infer-
ence efficacy. A nonparametric model is the most flexi-
ble and free from the risk of model mis-specification.
However, it likely needs more experiment runs to

achieve the same estimation precision as an analy-
sis under approximately valid parametric assumptions.
The commonly used logistic or probit models are sim-
ple and have good mathematical and statistical prop-
erties. They are satisfactory in many applications, but
their model assumptions impose restrictions on the
dose–response relationship. A slightly more complex
model can lower the risk of mis-specification without
complicating the issues related to optimal design and
data analysis (El-Saidi, 1993; G. Li & Majumdar, 2008;
O’Brien et al., 2009).

In this paper, we study the design and analy-
sis problems for a three-parameter logistic regres-
sion model. We develop an easy-to-implement iterative
numerical algorithm with guaranteed convergence for
the maximum likelihood estimate (MLE). We inves-
tigate the effectiveness of the sequential ED-design
(Yu et al., 2016) and the D-optimal design. The ED-
design optimises the estimation of targeted effective
dose-levels while the D-optimal design targets model
parameters. See Sections 3.3 and 3.2. We use the vertex
directionmethod (VDM) to find the D-optimal design.

Simulation studies show that the combination of the
proposedmodel, design, and data analysis strategy per-
forms well. When the logistic model is correct, the
three-parameter model has little efficiency loss. When
the three-parameter model holds but the logistic model
is violated, the new approach is more efficient.

The paper is organised as follows. In Section 2,
we introduce the three-parameter logistic model and
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a numerical algorithm for the MLE. Design prob-
lems under this model are discussed in Section 3. In
Section 4, we present some simulation results and an
example. Section 5 provides concluding remarks.

2. Three-parameter logistic model and the
MLE

Consider a dose–response experiment in which a stim-
ulant at levelX is applied to a subject. The subject either
responds (Y = 1) or does not respond (Y = 0) to the
stimulus. The dose–response relationship is defined to
be

π(x) = P(Y = 1 |X = x).

In most applications, we envisage π(x) as a smooth
increasing function of x. Based on data collected on
the response values, y1, . . . , yn, for selected dose levels,
x1, . . . , xn, scientists may be interested in the accurate
estimation of a specific dose level x = ed50 at which
π(x) = 0.5. We use edγ to denote the effective dose
level at which the probability of response is γ%. One
may also focus on the shape of π(x) for x between, for
example, ed25 and ed75.

If one is interested in a single ED level, effective
statistical inference is possible without a parametric
assumption on π(x). If a detailed dose–response rela-
tionship is desired over a dose range, then a suggested
parametric form π(x) is likely necessary and helpful.
A commonly employed model for π(x) is the logistic
dose–response relationship:

logit{π(x)} = log
{

π(x)
1 − π(x)

}
= α + βx (1)

for parameters α and β . In applications, the dose level
may be log-transformed before the logistic or other
model is applied (G. Li & Majumdar, 2008; O’Brien
et al., 2009). In addition to its mathematical conve-
nience, the logistic regression model permits the inter-
pretation of the size of β . For example, in epidemiology,
whenY stands for catching a disease and x for the expo-
sure level, the value ofβ is the log-odds ratio of catching
the disease when the exposure level is increased by a
unit.

Statisticians and scientists are keenly aware that the
logistic and other two-parameter models can be poor
approximations of the true dose–response relationship.
A more flexible model can be advantageous if it is not
too complex. One such choice is a three-parameter
logistic dose–response model (El-Saidi, 1993):

logit{πλ(x)} = log
{

πλ(x)
1 − πλ(x)

}
= α + βx. (2)

We require λ > 0 to ensure that πλ(x) is between 0 and
1, and we do not place restrictions on α and β .

We note that when λ = 1, the three-parameter
model becomes the commonly used logistic model. In
this case, for any γ ∈ (0, 100), the model satisfies

edγ + ed(100 − γ ) = −2α
β

assuming β �= 0. Such a restriction is hard to justify in
applications. The introduction of the parameter λ helps
to soften this restrictionwithout overburdening the sys-
tem. Under this model, the effective dose level at γ is
given by

edγ = logit
(
(γ /100

)λ
)− α

β
.

An explicit expression for the dose–response relation-
ship is

π(x) = P{Y = 1 |X = x} =
{

exp(α + βx)
1 + exp(α + βx)

}1/λ
.

As discussed in Yu et al. (2016), many sequential
designs, including the ED-design, contain a step to
update the estimate of the model parameters. The MLE
is a common choice.

2.1. Numerical method forMLE

Let (xi, yi) : i = 1, . . . , n be observations from a dose–
response experiment and assume model (2). The log-
likelihood based on this data set is given by

�n(θ) =
n∑

i=1
{yi log

(
π(xi)

) + (1 − yi) log
(
1 − π(xi)

)}

where θ = (α,β , λ)T.
When λ = 1 is fixed, the model becomes the usual

logistic model, and �n(θ) is known to be concave in α
and β . The concavity permits a simple numerical solu-
tion to the MLE of α and β . We remark that when
the xi’s corresponding to y = 1 are completely sepa-
rated from those corresponding to y = 0, the maxi-
mum point β̂ = ±∞. This problem is easily avoided
by adding informative pseudo-observations, as in Yu
et al. (2016), and this is done implicitly in our calcu-
lations.

Given any value of λ, the log-likelihood is concave
in α and β . Given any α and β , the log-likelihood is
concave in λ. Because of these properties, the following
two-loop iterative numerical algorithm works nicely.
We start with the initial value λ(0) = 1 and set k = 0.
Let ε be a small positive value such as 10−5.

(1) Let �(k)n (α,β) = �n(α,β , λ(k)). Use an iterative
algorithm to solve

(α(k+1),β(k+1)) = argmax
α,β

�(k)n (α,β).
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(2) Let

ai = exp(α(k+1) + β(k+1)xi)
1 + exp(α(k+1) + β(k+1)xi)

and define

�(k)n (λ) =
n∑

i=1
{(1 − yi) log(1 − aλi )+ yi log(aλi )}.

Use an iterative algorithm to solve

λ(k+1) = argmax
λ
�(k)n (λ).

Write θ(k) = (α(k),β(k), λ(k))τ . If �n(θ
(k+1))−

�n(θ
(k)) ≤ ε, stop and report θ(k+1) and �n(θ(k+1)).

Otherwise, set k = k+ 1 and return to Step (1).

In the above presentation, we have used �(k)n (α,β)
and �(k)n (λ) as two different functions. The objective
functions in both loops are concave, and they thus
guarantee the convergence of any sensible iterative pro-
cedures that wemay use in these two steps, and hence of
the entire algorithm. We state the concave conclusions
in two lemmas.

Lemma: Function �(k)n (λ) in Step (2) is concave in λ
given any data set (xi, yi) for i = 1, 2, . . . , n with n ≥ 1.

Proof: To prove the concavity, it suffices to show that
the second derivative of this function is always nonneg-
ative. Straightforward algebra shows that

∂�
(k)
n (λ)

∂λ
=

n∑
i=1

(yi − aλi )(log ai)
1 − aλi

and subsequently

∂2�
(k)
n (λ)

∂λ2
=

n∑
i=1

aλi (yi − 1)(log ai)2

(1 − aλi )2
≤ 0

since yi ≤ 1 for all i. Therefore, the function is concave
as claimed. �

Lemma: Given any data set (xi, yi) for i = 1, 2, . . . , n
with n ≥ 1, the objective function �(k)n (α,β) in Step (1)
is concave in α,β given any λ > 0.

Proof: For notational simplicity, we will drop the
superscript k and subscript n from �

(k)
n (α,β) and

denote it simply as �(α,β) in this proof. We start with
the case where n = 1, so we also drop the summation
and the subindex i. To prove this result, it suffices to

show that the Hessian matrix

H = −

⎡
⎢⎢⎣
∂2�

∂α2
∂2�

∂α∂β
∂2�

∂α∂β

∂2�

∂β2

⎤
⎥⎥⎦

is positive definite. We have

∂�

∂α
=

{
y

π(x)
− (1 − y)

1 − π(x)

}
π(x)
∂α

= (y − π(x))(1 − πλ)

λ(1 − π(x))

and

∂2�

∂α2
=

{
(y − 1)(1 − πλ(x))
λ(1 − π(x))2

−λπ
λ−1(y − π(x))
1 − π(x)

}
π(x)
∂α

= 1
λ2
π(x)(1 − πλ(x))

{
(y − 1)(1 − πλ(x))

(1 − π(x))2

−λπ
λ−1(y − π(x))
1 − π(x)

}
.

We now show that the above second derivative is less
than or equal to 0. Note that the first factor in ∂2�/∂α2

is nonnegative, so we need to determine only the sign
of the second factor. We consider the cases y = 1 and
y = 0 separately.

(a) When y = 1, the first term in the second factor
vanishes, and the second term is clearly less than
or equal to 0.

(b) When y = 0, the second factor becomes

λπλ(1 − π(x))− (1 − πλ(x))
(1 − πλ(x))2

.

Denote its numerator as f (λ), with derivative

f ′(λ) = πλ(1 − π(x))+ λπλ(1 − π(x)) logπ(x)

+ πλ(x) logπ(x)

= πλ(x){1 − π(x)+ (1 + λ− λπ(x)) logπ(x)}
≤ πλ(x){logπ(x)+ (1 + λ− λπ(x)) logπ(x)}
= λπλ(x)(1 − π(x)) logπ(x) ≤ 0,

where we have used the inequality 1 − π(x) ≤ −
logπ(x). Combining this with the fact that f (0) = 0,
we find f (λ) ≤ 0 for all λ ≥ 0. This further implies
∂2�/∂α2 ≤ 0 when y = 0.
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Combining (a) and (b), since y is either 0 or 1, we
conclude that for all λ > 0,

∂2�

∂α2
≤ 0.

To complete the proof, we note that

∂2�

∂α∂β
= x

∂2�

∂α2
;

∂2�

∂β2
= x2

∂2�

∂α2
.

Therefore, in the sense of nonnegative definiteness, we
find

H = −

⎡
⎢⎢⎣
∂2�

∂α2
∂2�

∂α∂β
∂2�

∂α∂β

∂2�

∂β2

⎤
⎥⎥⎦ = − ∂2�

∂α2

[
1 x
x x2

]
≥ 0.

When the design contains n dose levels, the Hessian
matrix is the sum of n nonnegative definite matrices.
Hence, it remains nonnegative definite. This completes
the proof. �

By these two lemmas, �n(θ(k)) is an increasing
sequence in k with upper bound 0. Hence, �n(θ(k)) has
a finite limit as k → ∞. The corresponding θ(k) likely
converges to at least a local maximum point. A rigorous
discussion of the global maximum can be tedious and
distracting; we do not pursue the issue in this paper.

3. Designs for the three-parameter logistic
model

The choice of a new model leads to routine deriva-
tions rather than new design issues. All the optimality
criteria may be applied to the three-parameter logistic
model (2), and we discuss some specific issues below.

3.1. Up-and-down design

The up-and-down design and its variations do not
require a parametric model on the dose–response rela-
tionship π(x). This design is used for the purpose of
accurately estimating a specific effective dose level edγ
such as ed50. It requires the user to choose beforehand
a grid of dose levels

� = {x1, . . . , xK}
for some K based on prior information on π(x) such
that x1 < edγ < xK .

The experiment starts by assigning a stimulus at level
xj in� to the subject. If the subject responds, the level is
decreased to xj−1, and otherwise it is increased to xj+1.
Special rules apply if xj is on the boundary of �. Vari-
ations may include staying at xj with a specific positive
probability related to the target edγ , and a nonparamet-
ric estimate of edγ may be used. Our experience shows
that such estimators are not efficient. In the simulations,

we use theMLE under the assumedmodel and estimate
edγ even though the data are generated according to an
up-and-down design.

3.2. D-optimal design and the vertex direction
method

The variance–covariance matrix of the MLE of the
parameter θ is well approximated by I

−1
n (θ) when the

number of runs n is large, where In(θ) is the Fisher
information. A D-optimal design 
∗ maximises the
determinant of In(θ). Under the (two-parameter) logis-
tic response model, 
∗ is a uniform distribution on
ed17.6 and ed82.4; and under the probit model, 
∗
is a uniform distribution on ed12.8 and ed87.2 (Sitter
&Wu, 1993).

As far as we are aware, there have been no direct
results on theD-optimal design for the three-parameter
logistic model. We can apply a numerical method
called VDM (Fedorov, 1972; Wu, 1978; Wynn, 1972).
We implemented this method via an R function to
obtain approximate D-optimal designs for the simula-
tion studies. Some particulars are as follows.

A nonsequential design is composed of a set of dose
levels x1, . . . , xk and the numbers of units applied at
these levels m1, . . . ,mk. Mathematically, a design is a
distribution 
 on X with probability mass function
ψ(xj) = mj/n where n is the total number of units in
the experiment. Let the Fisher information of the obser-
vations obtained under 
 be I(
), and let δx be the
design assigning dose level x to all the units.We use I(x)
for I(δx). It can be seen that

I(
) =
∫
X

I(x) d
(x).

The popular D-optimal design is defined to be


∗ = argmax



{log[det(I(
))]}.

Define the directional derivative

D(
 ; x) = lim
ε→0+{log[det(I((1 − ε)
)+ εδx)]

− log[det I(
)]}ε−1.

For the three-parameter logistic regression model (2),

D(
 ; x) = tr(I−1(
)I(x))− 3,

where the constant 3 is the dimension of I. It is
known that 
∗ is the D-optimal design if and only if
D(
∗; x) ≤ 0 for any x. Starting from an initial design

 = 
(0), VDM searches for x∗ = argmaxD(
 ; x)



STATISTICAL THEORY AND RELATED FIELDS 269

Table 1. D-optimal design for
three-parameter logistic models.

λ Dose levels

0.50 ED2 ED35 ED91
0.75 ED3 ED39 ED92
1.00 ED3 ED43 ED93
1.25 ED4 ED46 ED94
1.50 ED5 ED49 ED94
1.75 ED5 ED52 ED95
2.00 ED6 ED55 ED95

and

ε∗ = argmax log[det(I((1 − ε)
 + εδx∗)}.
It updates
(k) via


(k+1) = (1 − ε∗)
(k) + ε∗δx∗ ,

k = 0, 1, 2, . . . until the determinant of the Fisher infor-
mation stops increasing.

Under the three-parameter logistic model, the opti-
mal design depends on the λ values but not the (α,β)
values. We implement VDM with an R function for
the three-parameter logistic model (2). The D-optimal
designs for a number of λ values are given in Table 1. Up
to potential round-off error, all the D-optimal designs
are found to be uniform distributions on three dose lev-
els. In the future, we hope to show that this is always
true.

3.3. ED-design

The D-optimal design and many other optimal designs
focus on the precision of the parameter estimation
under the assumed model. The form of the param-
eter under consideration is generally that permit-
ting the most convenient analytical presentation of
the dose–response model. Under the three-parameter
logistic regression model, for instance, one naturally
takes θ = (α,β , λ) as the target parameter. In appli-
cations, we are more interested in precisely estimating
ed levels. Hence, the ED-design to be introduced is
more relevant.

Let ξ = g(θ) for some smooth function g with gradi-
ent function �g(θ). The variance of its MLE is approx-
imately

{�gT(θ)}{I−1(θ)}{�g(θ)}. (3)

The ED-design aims to minimise

m∑
j=1

{�gTj (θ)}{I−1(θ)}{�gj(θ)} (4)

given m selected ed levels ξj = gj(θ) among all pos-
sible designs 
 . Clearly, the solution depends on the
value of the unknown parameter θ . One may avoid this
difficulty with a sequential design.

Suppose the experiment has been carried out at dose
levels x1, . . . , xi with response values y1, . . . , yi. Let θ̂i be

the intermediate MLE of θ based on the data obtained
from these i trials. Let Ii(θ̂i;+x) be the Fisher informa-
tion based on the first i trials and the potential (i + 1)th
trial to be run at dose level x. We choose the next dose
level x that minimises

v(i; x) =
m∑
j=1

{�gTj (θ̂i)}{I−1
i (θ̂i;+x)}{�gj(θ̂i)}. (5)

This rule is applied until a sufficient number of trials is
obtained. The outcome is a sequential ED-design.

The sequential ED-design needs an initial set
of trials and the corresponding θ̂ . We recommend
and use a uniform initial design on a set of doses
� = {x1, . . . , xK} for K = 7, with x1 and xK being
equally spaced grids between the perceived ed01
and ed99.

4. Simulation studies

We conduct simulation studies to explore several issues
related to the use of the three-parameter logistic regres-
sion model (2) for the dose–response experiment. We
use N = 1000 repetitions for all model/design combi-
nations. The sample sizes are chosen to be n = 30, 60,
and 120.We choose three effective dose levels each time
as the estimation targets and obtain their MLEs. For
each model/design setting, we compute the RMSE of a
single ed level as

RMSE(ξ̂j) =
√√√√N−1

N∑
r=1
(ξ̂rj − ξj)2,

where ξ̂rj is the estimate of the ED-level ξj in the rth
repetition. The total RMSE is computed as

RMSE =
√√√√ 3∑

j=1
RMSE2(ξ̂j).

Three designs are included in the simulation. One is the
up-and-down design whose implementation does not
depend on the model, but a specific target ed level will
be indicated in the summary of the results. We choose
a set of doses � = {x1, . . . , x7}, with x1 and x7 being
equally spaced grids between the anticipated ed01 and
ed99. We simulate on the D-optimal design and the
sequential ED-design, assuming the relevant knowl-
edge of the dose–responsemodel as discussed in the last
section. For the sequential ED-design, we use a uniform
initial design on � as specified for the up-and-down
design.

The simulations answer several questions related
to the combination of the ED-design and the three-
parameter model for the dose–response experiment.
The first question concerns the performance of the ED-
design. Does it have any advantages over other designs
under a three-parameter model? The results indicate
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that the ED-design works well. The second question
concerns whether or not the three-parameter model is
necessary. If the true relationship is the three-parameter
rather than the two-parameter logistic model, then
using the correct model is expected to be helpful. The
results show that for ed levels over a local region, it is
important to apply the correct three-parameter model.
Finally, if the true dose–response relationship is a two-
parameter logistic model, how much efficiency do we
lose by using a more complex three-parameter model?
The results show that the loss is limited.

4.1. Three-parametermodel both true and
assumed

We generate data according to the three-parameter
logistic regression model (2) with α = −6.265, β =
0.055, λ = 0.5, and α = −14.148, β = 0.1, λ = 2 in
two separate simulations. We target three sets of
dose levels: (a) ed25, ed50, ed75; (b) ed10, ed25,
ed40; and (c) ed60, ed75, ed90. The corresponding
dose–response curves are depicted in Figure 1.

The up-and-down design requires a single target
ed level. In the simulation, we always take the mid-
dle level as its target. The ed01 and ed99 values under
λ = 0.5 are (74, 211); the ed01 and ed99 values under
λ = 2 are (49, 180). These values are used to deter-
mine the first-stage design �. The results are reported
in Table 2.

We observe that the RMSEs under each design
decrease as n increases. Their sizes are not dramati-
cally different, but those of the D-optimal design are
higher. The sequential ED-design has the best over-
all performance. The up-and-down design gives the
lowest RMSEs for a single ed level. This is expected
because D-optimality aims for precise estimation of θ ,
not the ed levels, and the up-and-down design was not
intended for the estimation of ed levels under a para-
metric model. Nevertheless, it is nice to find that the
sequential ED-design works well.

Figure 1. Dose–response curves in the simulation.

4.2. Applying a three-parameter logistic model
when two parameters suffice

When the two-parameter logistic model is appropri-
ate but a three-parameter model is assumed, the results
are likely suboptimal. In this section, we examine the
degree of efficiency loss. We generate dose–response
data from the two-parameter logistic regression model
and analyse the data under both two-parameter and
three-parameter models. We consider only the D-
optimal design and the sequential ED-design. The
up-and-down design is not included because it does
not depend on the model assumption, although the
data analysis could be performed under some model
assumption.

In this simulation, we generate data from the two-
parameter logistic model:

logit(π(x)) = −6.265 + 0.055x.

The results are presented in Table 3. The first two
columns are obtained under the correct two-parameter
model assumption. The D-optimal design in this case is
a uniform distribution on ed17.6 and ed82.4, which is
well known but not used in applications. The remain-
ing columns are obtained under the three-parameter
model, which is also correct but more complex than
necessary.

These results show that the ED-design has advan-
tages over the D-optimal design: the simulated RMSEs
under the former are always lower than those under the
latter. The efficiency gain can be as much as 40%.

In addition, the use of the more complex three-
parameter model does not significantly reduce the effi-
ciency. When we target ed10, ed25, and ed40, the total
RMSE increases from 17.93 to 18.36 when the sample
size n = 30. This loss is below 2.5%. The worst case is
when n = 120: the efficiency loss is 5.6%.

In comparison, the efficiency of the D-optimal
design can be strongly affected. When we target ed60,
ed75, and ed90 and n = 120, the efficiency loss is as
high as 18%. When n = 30, the use of the more com-
plex model makes the D-optimal design more efficient.
This may be because that the initial design takes a large
proportion of the number of trials.

Overall, if the ED-design is used, the use of a three-
parameter model does not greatly affect the efficiency
in the estimation of the ed levels.

4.3. Effects undermodelmis-specification

In this section, we investigate the effect of two kinds
of model mis-specification: (a) the dose–response rela-
tionship satisfies the three-parameter logistic regres-
sion model with λ �= 1, and (b) the relationship is not a
three-parameter logistic model.

In both situations, we compute the RMSEs of the
ed estimates in two settings: the design and analysis are
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Table 2. RMSEs when fitting data from three-parameter logistic models under a number of designs.

Size n = 30 n = 60 n = 120

Design ED Up-down D-opt ED Up-down D-opt ED Up-down D-opt

α = −6.265, β = 0.055, λ = 0.5
Total 13.32 16.20 16.82 9.87 10.33 11.96 6.93 7.42 8.44
ED10 8.62 9.39 11.33 6.66 6.79 8.16 4.71 4.97 5.82
ED25 6.78 8.09 9.03 4.78 5.05 6.34 3.23 3.61 4.45
ED40 7.55 10.43 8.54 5.50 5.92 6.02 3.93 4.15 4.19
Total 14.02 15.68 16.97 10.49 10.85 11.95 7.47 7.69 8.46
ED25 8.20 8.00 9.03 6.15 5.83 6.33 4.46 4.38 4.45
ED50 6.72 7.68 8.72 4.83 5.06 6.16 3.48 3.51 4.29
ED75 9.17 11.09 11.42 7.00 7.62 8.05 4.88 5.25 5.77
Total 17.36 21.59 22.27 12.63 13.49 16.01 8.89 9.26 11.61
ED60 9.00 9.08 8.94 6.29 6.01 6.45 4.39 4.24 4.60
ED75 8.69 10.64 11.23 5.92 6.45 8.09 4.07 4.34 5.82
ED90 12.04 16.44 17.03 9.22 10.21 12.21 6.57 7.00 8.93

α = −14.15, β = 0.10, λ = 2.0
Total 16.76 18.61 21.35 12.26 12.98 15.84 8.92 9.09 11.05
ED10 12.01 12.16 15.58 9.03 9.00 11.63 6.61 6.66 8.22
ED25 8.34 9.44 11.23 5.79 6.38 8.24 4.12 4.45 5.66
ED40 8.21 10.46 9.32 5.93 6.85 6.91 4.35 4.30 4.75
Total 13.05 14.65 16.23 9.36 10.01 11.78 6.76 6.92 8.06
ED25 8.76 8.67 11.23 6.37 6.52 8.24 4.69 4.65 5.66
ED50 6.37 6.32 8.48 4.42 4.42 6.28 3.12 3.25 4.28
ED75 7.28 9.97 8.10 5.25 6.18 5.61 3.74 3.96 3.82
Total 12.32 15.42 16.30 8.67 9.98 11.54 6.23 6.66 8.30
ED60 6.84 7.22 7.93 4.81 4.99 5.77 3.46 3.52 3.89
ED75 6.24 7.63 8.10 4.14 4.96 5.61 2.83 3.27 3.82
ED90 8.12 11.28 11.72 5.90 7.08 8.28 4.35 4.61 6.26

Table 3. RMSEs when fitting three-parameter model to data from two-parameter model.

Simple logistic model Three-parameter logistic model

Design ED-design D-optimal ED-design D-optimal

Size 30 60 120 30 60 120 30 60 120 30 60 120

Total 17.93 13.25 9.35 23.58 15.79 10.87 18.36 13.63 9.88 23.56 17.50 12.41
ED10 12.68 9.48 6.73 17.53 11.96 8.02 12.30 9.60 7.03 17.29 13.04 9.32
ED25 8.93 6.52 4.55 12.15 8.02 5.63 9.55 6.57 4.68 12.03 8.76 6.18
ED40 9.01 6.56 4.63 10.07 6.46 4.69 9.74 7.10 5.13 10.56 7.72 5.37
Total 17.14 12.54 8.74 20.18 12.63 8.87 17.52 12.33 8.86 19.99 14.52 10.22
ED25 10.55 7.80 5.46 12.48 7.70 5.49 10.64 7.80 5.66 12.03 8.76 6.18
ED50 8.12 5.89 4.09 9.89 6.15 4.41 8.45 5.48 4.04 10.33 7.56 5.23
ED75 10.79 7.85 5.46 12.40 7.90 5.39 11.06 7.81 5.48 12.17 8.77 6.23
Total 18.91 13.42 9.40 26.03 15.76 10.58 19.00 13.48 9.92 23.77 17.25 12.49
ED60 9.49 6.64 4.86 9.09 6.45 4.62 9.77 6.97 5.08 10.57 7.70 5.33
ED75 9.39 6.51 4.57 12.87 8.01 5.47 9.43 6.36 4.51 12.17 8.77 6.23
ED90 13.40 9.67 6.63 20.72 11.94 7.79 13.30 9.64 7.22 17.47 12.70 9.42

done under (i) the three-parameter model assumption,
and (ii) the usual two-parameter model assumption.
We examine the accuracy of the design and analysis in
both cases.

For (a), we generate data from two three-parameter
models:

logit(πλ(x)) = −6.265 + 0.055x (6)

with λ = 0.5, and

logit(πλ(x)) = −14.148 + 0.1x (7)

with λ = 2. Under model (6), ed25 = 114, ed50 =
130, and ed75 = 148; and under model (7), ed25 =
114, ed50 = 130, and ed75 = 144. The results are pre-
sented in Table 4. The first two columns are obtained
under the two-parameter assumption. The D-optimal
design in this case is a uniform distribution on ed17.6
and ed82.4. The remaining columns are obtained under
the correct three-parameter assumption.

Weobserve that the ED-design is noticeably superior
to the D-optimal design in both situations: the simu-
lated RMSEs under the former are always lower than
those under the latter. The efficiency gain can be as
much as 30%.

In addition, the use of the three-parameter model
when the data are generated under that model signifi-
cantly increases efficiency. When λ = 0.5 and we target
ed25, ed50, and ed75, the total RMSE decreases from
15.57 to 14.02 when n = 30, a gain of 11%. Overall, the
use of the three-parameter model makes the ED-design
more efficient.

For (b), we generate data from the three-parameter
probit model:

π(x) = �1/λ(−6.265 + 0.055x) (8)

with λ = 0.5, and

π(x) = �1/λ(−14.148 + 0.1x) (9)
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Table 4. RMSEs when fitting three-parameter model to data from three-parameter model.

Simple logistic model Three-parameter logistic model

Design ED-design D-optimal ED-design D-optimal

Size 30 60 120 30 60 120 30 60 120 30 60 120

α = −6.265, β = 0.055, λ = 0.5
Total 13.87 9.96 7.16 16.62 13.38 11.04 13.32 9.87 6.93 16.82 11.96 8.44
ED10 10.14 7.08 4.99 11.75 9.50 7.77 8.62 6.66 4.71 11.33 8.16 5.82
ED25 6.53 4.74 3.43 8.63 7.15 6.09 6.78 4.78 3.23 9.03 6.34 4.45
ED40 6.86 5.17 3.82 7.97 6.14 4.94 7.55 5.50 3.93 8.54 6.02 4.19
Total 15.57 11.14 7.65 15.72 11.46 8.69 14.02 10.49 7.47 16.97 11.95 8.46
ED25 9.45 6.63 4.30 8.63 7.15 6.09 8.20 6.15 4.46 9.03 6.34 4.45
ED50 6.64 5.06 3.57 8.12 5.82 4.30 6.72 4.83 3.48 8.72 6.16 4.29
ED75 10.44 7.39 5.22 10.34 6.81 4.47 9.17 7.00 4.88 11.42 8.05 5.77
Total 18.98 12.89 8.98 19.80 13.86 10.23 17.36 12.63 8.89 22.40 15.83 11.48
ED60 8.16 5.78 4.23 8.65 5.82 3.90 9.00 6.29 4.39 9.33 6.58 4.63
ED75 8.74 5.90 4.21 10.34 6.81 4.47 8.69 5.92 4.07 11.42 8.05 5.77
ED90 14.73 9.89 6.71 14.50 10.57 8.34 12.04 9.22 6.57 16.86 11.94 8.78

α = −14.15, β = 0.10, λ = 2.0
Total 17.43 12.39 8.99 24.82 15.78 12.04 16.76 12.26 8.92 21.35 15.84 11.05
ED10 14.00 9.78 6.98 19.42 12.80 10.33 12.01 9.03 6.61 15.58 11.63 8.22
ED25 7.50 5.40 3.95 12.51 7.47 5.11 8.34 5.79 4.12 11.23 8.24 5.66
ED40 7.19 5.35 4.06 9.07 5.42 3.50 8.21 5.93 4.35 9.32 6.91 4.75
Total 13.80 9.57 6.95 16.25 10.09 6.93 13.05 9.36 6.76 16.23 11.78 8.06
ED25 9.43 6.64 4.76 12.51 7.47 5.11 8.76 6.37 4.69 11.23 8.24 5.66
ED50 5.95 4.25 3.47 7.52 4.69 3.13 6.37 4.42 3.12 8.48 6.28 4.28
ED75 8.14 5.43 3.70 7.13 4.90 3.49 7.28 5.25 3.74 8.10 5.61 3.82
Total 13.06 8.75 6.35 15.63 10.30 7.10 12.32 8.67 6.23 16.30 11.54 8.30
ED60 6.27 4.57 3.49 6.59 4.37 3.06 6.84 4.81 3.46 7.93 5.77 3.89
ED75 6.22 4.08 2.96 7.13 4.90 3.49 6.24 4.14 2.83 8.10 5.61 3.82
ED90 9.63 6.25 4.40 12.25 7.93 5.37 8.12 5.90 4.35 11.72 8.28 6.26

Table 5. RMSEs when fitting three-parameter model to data from probit model.

Simple logistic model Three-parameter logistic model

Design ED-design D-optimal ED-design D-optimal

Size 30 60 120 30 60 120 30 60 120 30 60 120

α = −6.265, β = 0.055, λ = 0.5
Total 9.27 6.29 4.31 9.02 6.81 7.48 8.58 5.75 4.25 12.36 7.65 4.95
ED10 6.68 4.49 3.01 5.44 3.98 4.69 5.76 3.94 2.94 7.24 4.40 3.14
ED25 4.36 3.08 2.11 4.85 3.86 4.37 4.42 2.85 2.06 7.11 4.41 2.77
ED40 4.72 3.16 2.24 5.31 3.95 3.85 4.57 3.08 2.27 7.06 4.43 2.64
Total 9.73 6.22 4.38 10.29 7.28 6.40 8.57 6.00 4.25 12.09 7.56 4.83
ED25 6.22 3.91 2.72 4.85 3.86 4.37 5.17 3.70 2.68 7.11 4.41 2.77
ED50 4.18 2.71 2.00 5.72 4.06 3.52 4.27 2.85 2.00 6.99 4.41 2.65
ED75 6.21 4.01 2.80 7.05 4.65 3.07 5.34 3.77 2.61 6.84 4.28 2.94
Total 10.17 6.71 4.45 12.75 8.38 5.64 9.14 6.52 4.58 12.55 7.71 5.26
ED60 5.05 3.29 2.21 6.19 4.23 3.25 4.77 3.45 2.47 6.89 4.36 2.72
ED75 4.78 3.17 2.14 7.05 4.65 3.07 4.49 3.07 2.12 6.84 4.28 2.94
ED90 7.41 4.90 3.21 8.63 5.55 3.44 6.37 4.60 3.22 7.94 4.70 3.42

α = −14.15, β = 0.10, λ = 2.0
Total 8.52 5.65 3.70 8.75 5.95 4.31 8.39 5.43 3.13 12.89 7.62 4.33
ED10 6.33 4.13 2.67 6.24 4.19 3.05 5.81 3.80 2.13 9.13 5.16 2.80
ED25 3.97 2.69 1.79 4.63 3.10 2.16 4.24 2.67 1.57 6.67 4.02 2.39
ED40 4.09 2.75 1.83 4.04 2.87 2.14 4.32 2.82 1.68 6.19 3.91 2.28
Total 8.25 5.39 3.52 7.51 5.80 4.77 7.33 5.21 3.66 10.47 6.59 4.21
ED25 5.42 3.50 2.28 4.63 3.10 2.16 4.59 3.21 2.31 6.67 4.02 2.39
ED50 3.40 2.36 1.57 3.93 3.00 2.41 3.67 2.57 1.78 5.98 3.82 2.24
ED75 5.20 3.36 2.17 4.43 3.89 3.50 4.37 3.19 2.21 5.42 3.57 2.66
Total 8.29 5.30 3.55 8.29 7.05 6.24 7.12 5.06 3.65 9.63 6.39 4.99
ED60 3.97 2.66 1.79 3.99 3.27 2.80 3.97 2.77 2.05 5.76 3.70 2.29
ED75 3.87 2.51 1.71 4.43 3.89 3.50 3.76 2.51 1.71 5.42 3.57 2.66
ED90 6.17 3.84 2.55 5.76 4.88 4.33 4.56 3.41 2.48 5.48 3.79 3.54

with λ = 2. Under this model, ed25 = 114, ed50 =
124, and ed75 = 134 when λ = 0.5; and ed25 =
86, ed50 = 102, and ed75 = 117 when λ = 2. The
results are presented in Table 5. The first two columns
are obtained under the two-parameter assumption. The
D-optimal design in this case is a uniform distribu-
tion on ed12.8 and ed87.2. The remaining columns are

obtained under the three-parameter assumption. Both
model assumptions are incorrect, but is it better to use
the three-parameter logisticmodelwith the ED-design?

Clearly, the ED-design is noticeably superior to the
D-optimal design in both situations: the simulated
RMSEs under the former are always lower than those
under the latter.When λ = 2 and we target ed10, ed25,
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Figure 2. Observed data and fitted curves for British coal
miners.

and ed40, the total RMSE decreases from 12.89 to 8.39
when n = 30, a gain of 54%.

In addition, the use of the more complex model
when the data are generated under the three-parameter
probit model noticeably increases the efficiency. When
we target ed60, ed75, and ed90 with λ = 2 the total
RMSE decreases from 8.29 to 7.12 when n = 30, a gain
of 16%. Overall, combining the more complex model
with the ED-design leads to efficiency gains when the
model is mis-specified.

4.4. Example

Brown (1982) assumed a three-parameter logistic
responsemodel for the relationship between thewheez-
ing symptom and the age of British coal miners. The
number of subjects examined and the number with the
symptom can be found in their paper.

We first fit the observed data using model (2). The
MLEs of the model parameters are α̂ = −1.798, β̂ =
0.044, and λ̂ = 0.400. We then fit the observed data
using a simple logistic model. The MLEs of the model
parameters are α̂ = −4.225 and β̂ = 0.065. For com-
parison, Figure 2 shows the observed data and the two
fitted curves.

Based on fitted two-parameter and three-parameter
models, the age at which 25% coal miners will develop
the symptoms is 47.7 and 48.1, respectively. Bothmatch
the real data closely. The three-parameter model pre-
dicts the ages at which 50% and 75% of miners develop
the symptoms are 66.8 and 88.7, respectively. In com-
parison, these figures are 65.0 and 81.9 based on the
two-parameter model. While two models give very dif-
ferent numbers, predicting the proportion based on
either model is not reliable at age 80 due to extreme
extrapolation. At each observed ED level, we com-
pute the corresponding age based on fitted models and
the difference to the observed age. The resulting sum
of squares (weighted) is 6906 for the three-parameter
model and 15,420 for the two-parameter model. The
use of the three-parameter model provides a much-
improved fit.

5. Concluding remarks

We have explored the use of a three-parameter logis-
tic regression model for dose–response experiments.
The sequential ED-design can easily be applied to this
model, and the resulting data analysis is effective.

Simulation results show that the three-parameter
logistic regression model is an effective extension of
the commonly used two-parametermodel that does not
lead to more complex data analysis issues. The combi-
nation of the ED-design and the data analysis strategy
works well. When the logistic model is correct, the
more complex model has hardly any efficiency loss.
When the three-parameter model holds but the logistic
model is violated, the new approach gains substantial
ground. It will be a useful addition to the toolbox for
dose–response experiments.
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