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ABSTRACT
Various studies have provided awide variety ofmathematical and statisticalmodels for early epi-
demic prediction of the COVID-19 outbreaks inMainland China and other epicentres worldwide.
In this paper, we present an integrated modelling framework, which incorporates typical expo-
nential growth models, dynamic systems of compartmental models and statistical approaches,
to depict the trends of COVID-19 spreading in 33 most heavily suffering countries. The dynamic
system of SIR-X plays the main role for estimation and prediction of the epidemic trajectories
showing the effectiveness of containmentmeasures, while the othermodelling approaches help
determine the infectious period and the basic reproduction number. The modelling framework
has reproduced the subexponential scaling law in the growth of confirmed cases and adequate
fitting of empirical time-series data has facilitated the efficient forecast of the peak in the case
counts of asymptomatic or unidentified infected individuals, the plateau that indicates the sat-
uration at the end of the epidemic growth, as well as the number of daily positive cases for an
extended period.
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1. Introduction

Starting from Wuhan in early December 2019, a novel
severe acute respiratory syndrome coronavirus, named
asCOVID-19, prevailed unexpectedlywith a detrimen-
tal effect on public health. Though mainland China as
the first epicentre of COVID-19, had the coronavirus
successfully controlled within two months, its initial
success has not prevented the beginning of a global
pandemic due to the ignorance of the new virus and
contempt of its threat. With the first COVID-19 case
outside of China reported on January 13 in Thailand,
in a short period of time, the unruly contagion boosted
promptly in a wide array of countries all over the world,
resulting in the continuous shift of the epicentre. In
March, the COVID-19 hit massively on Italy, while
jumping the fences into other countries of the Euro-
pean Union. At the same period of time, it cropped up
in Iran, and the cumulative number surged to the peak
by the end ofMarch, radiating theMiddle East and part
of Central Asia. Followed after Europe, the USA took
over and became themost infected country in theworld
with the highest total cases ever since. In April, Russia
began to suffer seriously in consequence of the failure
of lockdown. FromMay, more positive cases have been
emerging in a wide range of countries of Latin Amer-
ica, with the new epicentres mainly consisting of Brazil,
Mexico, Chile and Peru. India, along with Pakistan and
Bangladesh in South Asia, has been triggered to an

epidemic explosion around late May. After June, Africa
became the latest epicentre with abounding underesti-
mated positive cases in most of the African countries
due to their limited conditions of detection. By mid-
July, over 13 million people have been infected, with
more than 500 thousands deaths worldwide. Currently,
the highest incidences appear in the USA and the epi-
demic situation keeps deteriorating at a rapid growth
rate in a great number of developing countries. The
COVID-19 has been continuing sweeping the globe at
a tremendous speed, bringing about the massive threat
to the public health, economy and numerous aspects of
society. Currently, epicentres in Latin America, Africa,
part of Asia and Europe continue undergoing the first
wave of the outbreaks. The collapse of a nationwide
health system, high mortality rate and increasing eco-
nomic recession have brought forth heavy losses in the
vast majority of countries across the globe. As a con-
sequence, the World Health Organisation (WHO) offi-
cially announced the outbreak of COVID-19 as a Public
Health Emergency of International Concern (PHEIC)
on 11 March 2020.

Under such circumstance, academic effort to com-
prehend the mechanism of the transmissibility is an
urgent need to alleviate the negative effects of COVID-
19, which will help adequate decision-making related
to the public health system and other social and eco-
nomic aspects. However, limited understanding of the
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epidemic source and spread remain the crucial prob-
lem to be solved. There has emerged a huge lit-
erature on modelling studies for COVID-19, start-
ing from simple data-driven approaches concluded by
Huang et al. (2020), mostly focusing on the dynamic
ODE-based compartmental models, up to the popu-
lar machine learning and deep learning methods (see
Mohamadou et al., 2020). These modelling tools have
been widely employed to study global pandemic from
various perspectives, including transmissibility, epi-
demic prediction, import risk assessment, management
strategies and image-based automatic detection.

Apart from the traditional data-drivenmodelling for
epidemiological parameters like R0 and effective repro-
duction number (see Li et al., 2020; Zhao et al., 2020),
enormous number of worksmainly focused on the con-
struction of compartmental models aiming to interpret
the trends of COVID-19, including the most frequently
used Susceptible-Infected-Recovered (SIR) and the
Susceptible-Exposed-Infected-Removed (SEIR) mod-
els. The SIR model is the basis for epidemiological
dynamic systems, which could be easily applied for
basic prediction of the trends of COVID-19, see Song
et al. (2020), González (2020). Sun et al. (2020) and
Chen et al. (2020) proposed a modified SIR model with
varying coefficients, vSIR for short, to characterise the
time-varying dynamic regimes due to the significant
intervention measures implemented by governments
of different countries. Via the locally weighted regres-
sion given by Cleveland and Devlin (1988) that pro-
duces estimates for parameters with desired smooth-
ness, the vSIR model makes the transmission rate
α and the effective reproduction number Rt vary-
ing with time and possesses the capability for captur-
ing the changing dynamics with guaranteed statistical
consistency.

Compared with the SIR, the SEIR model owns an
additional compartment ‘E’ (Exposed), which con-
tributes to the flexibility of the infectious period.
Among recent studies, Zhao et al. (2020) modelled the
epidemic trends of COVID-19 at the early stage and
estimated the transmission rate of COVID-19 via R0
based on the data of Wuhan, China from 10 January to
24 January 2020. Tang et al. (2020) proposed a deter-
ministic SEIR compartmental model for COVID-19
spreading. Wu et al. (2020) used a typical SEIR com-
partmental model to infer the number of infected cases
in Wuhan from the data on the number of cases that
internationally exported fromWuhan. Later on, various
modifications of SEIR were put forward with inter-
esting prediction results. In the study given by Yang
et al. (2020), the epidemics trend of COVID-19 in
China was predicted under public health interventions.
Peng et al. (2020) proposed a generalised SEIRmodel to
analyse the spread of COVID-19 in China. The model
can describe the trends of isolated individuals, recov-
ered individuals and dead individuals.

A variety of extensions of compartmental models
were derived from traditional SIR and SEIR models to
measure the influence of asymptomatic individuals and
the effects of intervention (see X.Wang et al., 2020). He
et al. (2020) combined the SEIR models with particle
swarm optimisation algorithm for parameter optimisa-
tion. Liu et al. (2020) proposed a SAIR (Susceptible-
Asymptomatic-Infected-Removed) model in the con-
text of social networks where nodes represent individ-
uals and links stand for the contacts between individ-
uals. Rajagopal et al. (2020) developed a SEIRD model
with fractional-order derivatives based on the data in
Italy and showed that the model has less error than
the classical ones. Maier and Brockmann (2020) pre-
sented a parsimonious SIR-X model to absorb quar-
antine measures, containment policies and unidenti-
fied infectious individuals (containing asymptomatic
patients). In addition to the standard parameters of
SIR models, the SIR-X model extends the model with
a new compartment ‘X’ to show effective quaran-
tine measures acting on both symptomatic individuals
and susceptible individuals. Another series of exten-
sion is based on SEIR model to reflect the effective-
ness of actual measures like intervention implemented
by the government. For instance, Xu et al. (2020)
created a complex SEIQRP model with six compart-
ments (Susceptible-Exposed-Infectious-Quarantined-
Recovered-Insusceptible) in order to accurately predict
the cumulative number of cases. T. Wang et al. (2020)
proposed a novel SCEIRD model with susceptible sub-
jects (S), close contacts (C), latent (E, infected and
infectious but asymptomatic), infected (I), recovered
(R), and dead (D) as its compartments and two new
parameters to depict the social transmissibility and the
pathologic transmissibility.

The structure of this article is organised as follows.
Section 2 briefly describes the modelling framework.
Section 3 elaborates the detailed methodologies for our
modelling framework. Section 4 describes the model
fitting and prediction results. Conclusions and discus-
sions are given in Section 5.

2. Modelling framework

Although a wealth of recent modelling studies has
demonstrated well-fitted results obtained from miscel-
laneous compartmental models, they are particularly
dependent on epidemiological parameter estimation
and the quality of real data collected in different coun-
tries. In this study, in order to overcome the shortage,
we propose an integrated modelling framework which
consists of three parts: estimation of epidemiological
parameters, estimation of infectious period and com-
partmental models for the dynamic system. The com-
partmental models focus on the estimation and pre-
diction of the epidemic trajectories and effectiveness of
containment measures, while the other two parts play
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supplementary roles that specifically assess the infec-
tious period and the basic reproduction number of
each studied country, which directly determines the
two main parameters (the transmission rate α and the
recovery rate β) in the dynamic system.

In the first modelling part, we manage to estimate
epidemiological parameters for different studied coun-
tries. The basic reproduction number R0, the final size
of infected and timing of the turning point consti-
tute the crucial epidemiological parameters during an
outbreak. These parameters, summarising the tempo-
ral pattern of the pandemic, quantify the extent of
contagiousness, epidemic severity and the inflection
time point, respectively. The estimation of the key epi-
demiological parameters contributes to the forecast of
the trend of transmissibility, which plays a vital role
in the planning of containment policies. Inspired by
the previous work of Zhao et al. (2019), we adopt
classical non-linear phenomenological models, includ-
ing growth models like Gompertz model (see Gom-
pertz, 1825), logistic model (see Verhulst, 1838) and
Richards model (see Richards, 1959), to study the
parameters of epidemic features.

In the second modelling part, we introduce another
decisive factor, the infectious period TI , that seriously
affects the transmissibility. TI stands for the duration of
which pathogens could be transmitted from an infected
individual to a susceptible host. It is considered as a
critical feature that partly reflexes the extent of inter-
vention, including the efficiency of quarantining the
infected population. Here, we employ the statistical
framework recently proposed by Lin et al. (2020). This
approach is technically based on a time-varying Poisson
increment of daily cases, which was proved to be con-
sistent in determining the infectious period of various
countries despite spatial heterogeneity.

In the last modelling part, we concentrate on eval-
uating the transmissibility of the pandemic and check-
ing if the current implemented containment measures
are effective in decreasing the spread of the pandemic.
Compartmental models, like the SIR models and their
derivatives, are among the most commonly applied
methodologies in the study of epidemic dynamics.
However, the well-fitted results appear to be substan-
tially dependent on the precise estimation of two cru-
cial parameters, basic reproduction number R0 and the
infectious period TI , which could be solved by the first
two parts of our modelling framework.

We collected the exact number of COVID-19 con-
firmed positive cases in 33 highly infected countries
using the data from 15 February 2020 to 10 July 2020
(with the date of the earliest case reported in a cer-
tain country) from the official websites of the World
Health Organisation (https://covid19.who.int). Time-
dependent incidence data were retrieved, covering a list
of current epicentres in five continents: South Amer-
ica, North America, Asia, Africa and Europe. Countries

with massive infected population, such as Brazil, India,
Mexico, Russia, South Africa, were selected for our
study following the basis that they kept the trends
of developing within the first wave up to the end of
this study. Note that the USA was excluded from our
study not only because it has been preponderating over
any other countries and demonstrating a unique and
steadily-paced growth, but headed for an unknown sec-
ond crest which is a completely different pattern in
contrast to other countries as well.

3. Methods

We now describe the three parts in the integrated mod-
elling framework, which play different roles but closely
related to each other.

3.1. Estimation of epidemiological parameters

R0 is the expected number of infections by an infected
individual over his/her infectious period at the start of
the epidemic, which is closely connected to the time-
varying effective reproduction number Rt . Both R0 and
Rt are keymeasures of an epidemic. For fixed coefficient
models, if R0 < 1, the epidemic will eventually subside
with speed depending on the value of R0; otherwise, an
inevitable explosion will occur until the growth ceased
by the powerful containment or the rise of mortality.

Mathematical modelling is broadly applied to study
the primary features of the pandemic by estimating
the epidemiological parameters. Here, we apply a typ-
ical epidemiological framework of Zhao et al. (2019)
for the estimation of R0. Following previous studies of
Wallinga and Lipsitch (2007), the basic reproduction
number R0 is given by the Euler–Lotka equation

R0 = 1
M(−r)

= 1∫ ∞

0
e−rνg(ν) dν

, (1)

where r is the intrinsic growth rate from common
growth models, and ν is the serial interval (SI) with
probability density function g(·). Thus, the function
M(·) is the Laplace transformation of g(·), also known
as the moment generating function (MGF). The serial
interval refers to the average time between clinical
onsets in an infector and the corresponding infectees.
For our study, SI was estimated using the result of
Li et al. (2020) based on the collected information
on demographic features, exposure history, and illness
onsets of the first 425 confirmed cases which had been
reported in Wuhan by 22 January 2020, while its prob-
ability density was approximated by a Gamma distri-
bution with a mean of 7.5 days and standard deviation
(SD) of 3.4 days, see Li et al. (2020).

Therefore, the intrinsic growth rate r remains to be
solved by data-driven process. Three typical growth
models are utilised in our attempt to fit the real number

https://covid19.who.int
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of cumulative cases C(t)

Logistic : C(t) = K
1 + e−r(t−ω)

, (2)

Gompertz : C(t) = K e−e−r(t−ω)

, (3)

and

Richards : C(t) = K
[1 + θ e−θr(t−ω)](1/θ)

. (4)

The standard nonlinear least square approach is
adopted for model fitting to estimate the parameters of
K (maximum cumulative case number), ω (the unique
inflection time point) and θ (the exponent of deviation)
and finally, the intrinsic per capita growth rate r, which
is the crucial factor required for calculating R0. In the
growthmodels, the growth rate r does not keep decreas-
ing but instead rises to a maximum before gradually
declining. The turning point ω is the moment indicat-
ing the cease of growth acceleration, which is equivalent
to the time of the maximum growth rate r.

The Akaike Information Criterion (AIC) (Akaike,
1973) and Bayesian Information Criterion (BIC)
(Schwarz, 1978) were both employed to evaluate model
performance and the model with the smallest AIC and
BIC values is selected for further estimation process.

3.2. Estimation of infectious period TI

Infectious period, denoted as TI , indicates average
time an infected individual remains infectious before

recovery or being intervened by containment measures
such as self-isolation and hospitalisation.

From the perspective of statistics, we also consider
the novel approach raised by Lin et al. (2020) which
is a very typical data-driven application of paramet-
ric model. This statistical model, without making any
explicit assumptions about the traditional epidemiolog-
ical parameters, is a scalable framework to estimate the
early dynamic trends of COVID-19. It assumes that the
increment of cumulative number C(t) up to day t fol-
lows a Poisson distribution with time-varying mean,
i.e.

dC(t) = C(t) − C(t − 1) ∼ Poisson(�(t)W(t − 1)),
(5)

whereW(t) is the underlying number of infected indi-
viduals at day t, and �(t) is the growth rate of the
Poisson mean defined as

�(t) = η(t) × �(t − 1), (6)

where η(t), the evolving parameter, is an arbitrary func-
tion (linear, polynomial, etc.) which could be specified
and fitted by real data. Note that after the infectious
period, the infected individuals will be hospitalised or
quarantined from the population, so that the actual
infected individuals should take those removals into
consideration. Thus,W(t) could be expressed as

W(t) =
{
W̃(t), t ≤ TI ,
W̃(t) − W̃(t − TI), t > TI ,

(7)

Table 1. Estimation and prediction results for key parameters and the epidemic trends.

Countries Study period TI R0 Final size Peak Plateau

Brazil Mar 4–July 10 8 2.9233 4.221 × 106 July 18 Sep 27
Mexico Mar 11–July 10 11 2.7751 5.903 × 105 July 8 Aug 30
Peru Mar 8–July 10 11 3.2014 6.019 × 105 June 28 Aug 8
Chile Mar 5–July 10 7 1.9774 4.078 × 105 June 18 Aug 3
Argentina Mar 6–July 10 9 2.4448 2.772 × 105 July 24 Sep 14
Colombia Mar 13–July 10 8 2.3555 1.075 × 106 Sep 8 Oct 7
Panama Mar 13–July 10 10 2.2895 8.232 × 104 July 4 Aug 16
Dominican Republic Mar 8–July 10 11 2.4386 1.392 × 105 July 30 Aug 23
Honduras Mar 16–July 10 9 2.4192 6.085 × 104 July 13 Sep 13
Bolivia Mar 12–July 10 9 2.3472 1.200 × 105 July 19 Sep 9
Venezuela Mar 15–July 10 5 1.8709 4.615 × 104 Aug 16 Sep 8
India Mar 2–July 10 12 3.2046 3.225 × 106 July 30 Sep 8
Pakistan Mar 8–July 10 10 2.7702 3.775 × 105 June 26 Sep 5
Bangladesh Mar 16–July 10 13 3.2815 3.762 × 105 July 7 Aug 31
Kazakhstan Mar 14–July 10 10 2.3183 1.427 × 105 July 17 Aug 31
Armenia Mar 13–July 10 9 2.4856 4.407 × 104 June 21 Aug 23
Saudi Arabia Mar 7–July 10 10 2.9943 3.244 × 105 June 20 Sep 22
Iraq Feb 26–July 10 12 2.6678 2.622 × 105 Aug 2 Aug 28
United Arab Emirates Feb 15–July 10 13 2.3070 6.553 × 104 May 13 June 23
Bahrain Feb 24–July 10 12 2.0831 5.299 × 104 June 27 July 30
Qatar Mar 6–July 10 9 2.0913 1.152 × 105 June 3 July 12
Oman Mar 3–July 10 9 2.0824 9.901 × 104 July 5 Aug 19
Kuwait Feb 24–July 10 7 1.8349 7.469 × 104 June 19 Aug 7
Philippines Mar 6–July 10 8 2.1685 1.563 × 105 July 18 Sep 15
Indonesia Mar 8–July 10 10 2.4314 1.592 × 105 July 12 Aug 31
South Africa Mar 11–July 10 12 2.9269 6.973 × 105 July 20 Sep 1
Egypt Mar 6–July 10 8 2.4587 1.053 × 105 June 17 Sep 15
Nigeria Mar 17–July 10 11 3.0606 5.887 × 104 July 4 Sep 10
Algeria Mar 2–July 10 9 2.4885 5.859 × 104 Aug 5 Aug 18
Morocco Mar 10–July 10 8 1.8561 5.486 × 104 Aug 14 Sep 25
Russia Mar 5–July 10 9 3.9657 1.026 × 106 June 22 Aug 26
Ukraine Mar 16–July 10 6 1.8126 8.209 × 104 June 26 Aug 11
Romania Mar 3–July 10 7 1.6016 1.112 × 105 Aug 28 Sep 18
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where W̃(t) represents the observed number of cumu-
lative infected individuals, and W̃(t − TI) for t > TI
denotes the total number of removed infected indi-
viduals at data t. Let dW̃(t) = W̃(t) − W̃(t − 1). Note
that the new cases diagnosed at day t may not be
fully reported, which indicates E(dC(t)) = p · dW̃(t),
p<1. Though the estimation for p might not be easily
archieved due to the limited data we have, fortunately,
simple mathematical derivation shows that the value of
p will not affect the trend of the epidemic, particularly,
the duration, the peak time, the turning point, as well as
the infectious period in which we are interested. Thus,

we set p = 1 for simplicity, and it follows that

dW̃(t) = E(dC(t)) = �(t)W̃(t − 1). (8)

By chain calculation, the final expression for the actual
number of infected individuals (considering removals
after infectious period TI) could be expressed as

W(t) = A
t∏

j=1
(�(j) + 1) − AI(t > TI)

t−TI∏
j=1

(�(j) + 1),

(9)

Figure 1. Fitting for the selected growthmodel by countries. The fitted growth curve (solid) and the actual number (dotted) of daily
confirmed cases over the ordered days of the outbreak (I).
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whereA = W̃(0) is the initial value of cumulative cases
at t = t0 = 0. With the estimated parameters by max-
imising the log-likelihood function based on the Pois-
son assumption of dC(t)

L(δ) =
T∑
t=1

{dC(t) log(λ(t)) − λ(t)} + C, (10)

where λ(t) = �(t) · W(t − 1) and C is a constant, we
could estimate and predict the average daily new cases

dW̃(t)

dW̃(t) = A�(t)
t−1∏
j=1

(�(j) + 1). (11)

With the calculated dW̃(t), we could therefore per-
form the fitting with the actual numbers. The best-
fitted infectious period TI could therefore be derived by
minimising the prediction error.

This is a parsimonious but effective fashion to anal-
yse the dynamic of COVID-19 outbreak by a com-
pletely parametric statistical model other than typical

Figure 2. Fitting for the selected growthmodel by countries. The fitted growth curve (solid) and the actual number (dotted) of daily
confirmed cases over the ordered days of the outbreak (II).
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ODE-based dynamicmodelswhich seriously require an
adequate initialisation of epidemiological parameters.
Though it has shown versatility, we specifically employ
it for estimating TI rather than other variables since its
deficiency of a naivemodel hypothesis could be supple-
mented by other parts of our modelling framework.

3.3. SIR-Xmodel

The SIR model is the origin of epidemiological com-
partmental models, which simplify the mathemati-
cal modelling of infectious diseases. The population

affiliated to the contagion is assigned to three com-
partments with labels S, I and R (Susceptible, Infec-
tious and Recovered, respectively). Transitions could
be performed between compartments to symbolise the
dynamics. They satisfy the system of partial differential
equations ⎧⎪⎨⎪⎩

∂tS = −αSI,
∂tI = αSI − βI,
∂tR = κI.

(12)

The statistical inference has been discussed in litera-
ture in terms of stochastic versions of the SIR model,

Figure 3. Fitting for the selected growthmodel by countries. The fitted growth curve (solid) and the actual number (dotted) of daily
confirmed cases over the ordered days of the outbreak (III).
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showing that it is one of the most explanatory and
scalable dynamic systems for epidemiological mod-
elling, see Becker (1977), Becker and Britton (1999),
Yip and Chen (1998) and Ball and Clancy (1993).
One of its generalisations, the Susceptible-Exposed-
Infected-Removal (SEIR) model, was proposed by
Hethcote (2000), with four compartments, to depict
the dynamics of epidemic outbreaks. It is generally

assumed that the transmission coefficients are constant,
which is not considered as ideal enough for modelling
COVID-19, as it is unable to reflect the intervention
imposed on the population by government.

Note that most of these methods studied the early
exponential growth dynamics, which often lead to sig-
nificant overestimation of the epidemic timing and
size. However, in the real epidemic trajectories of

Figure 4. Fitting for the selected growthmodel by countries. The fitted growth curve (solid) and the actual number (dotted) of daily
confirmed cases over the ordered days of the outbreak (IV).
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COVID-19,whatwe could expect is that an initial expo-
nential growth mitigates with the postponement due
to containment policies for abating transmission and
effective reproduction. This would lead to the satura-
tion in the count of cumulative cases along with an
exponential decline in the increment of infected popu-
lation. As is suggested byMaier and Brockmann (2020),
the subsequent rise follows a sub-exponential and alge-
braic scaling law which was regarded as a consequence
of internal and basic epidemiological processes and a
balance between transmission events and containment
factors. Thus, a parsimonious epidemiological com-
partmental model, the SIR-X model, was presented by
Maier and Brockmann (2020) to absorb quarantine
measures, containment policies and unidentified infec-
tious individuals (containing asymptomatic patients).
In addition to the standard parameters of SIR model,
the SIR-X model reflected effective quarantine mea-
sures acting on both symptomatic individuals and sus-
ceptible individuals, which is simply quantified by the
new compartment ‘X’. A major revision is on the com-
partment ‘I’ which denotes the unidentified infecteds.
We apply the SIR-X model to quantify the removal of
symptomatic infecteds by quarantine procedures, based
on the assumption that the containment strategies vary
with regards to the epidemic and significantly deplete
their contribution in the transmission process. Fur-
thermore, indirect estimation of the peak time in the
number of unidentified infectious individuals is also
performed by the SIR-X model.

Note that in the setting of SIR-X model

R0 = α

β
= α · TI .

Here, the basic reproduction number R0 and the infec-
tious period TI directly define the transmission rate
α and the recovery rate β . As an evolution of typical
SIR models, the dynamics of SIR-X could be stated as
follows: ⎧⎪⎨⎪⎩

∂tS = −αSI − κ0S,
∂tI = αSI − βI − κ0I − κI,
∂tX = (κ + κ0)I,

(13)

where κ > 0 is the quarantine rate, κ0 > 0 is the con-
tainment rate, and I(t0) is the initial value of I(t).
They can be numerically fitted by nonlinear least square
method. Specifically, κ0 = 0 corresponds to an excep-
tional scenario in which the containment policies com-
mit no behavioural change on removal of susceptible
and infected individuals, while κ = 0 refers to the cir-
cumstance under which the symptomatic infecteds are
not quarantined. Note that the infecteds are subtracted
more efficiently from the compartment ‘I’ than from
the compartment ‘S’, which is analytically implied by
β + κ + κ0 > κ0.

In the SIR-X model, S, I, and X quantify the respec-
tive compartments’ fraction of the whole population.
Here, we assume that X(t) is proportional to the actual
number of confirmed cases with initialisation X(t0) =

Table 2. Parameters of growth models for estimating basic reproduction number.

Countries Model R2 AIC BIC r

Brazil Logistic 0.9998 2692.09 2703.56 0.1600
Mexico Logistic 0.9999 1912.69 1923.84 0.1514
Peru Gompertz 0.9994 2354.36 2365.71 0.1753
Chile Logistic 0.9974 2584.41 2595.85 0.0976
Argentina Logistic 0.9961 2367.22 2391.62 0.1308
Colombia Logistic 0.9996 2333.62 2343.79 0.1249
Panama Logistic 0.9966 2343.83 2366.07 0.1204
Dominican Republic Gompertz 0.9968 1795.71 1806.72 0.1304
Honduras Logistic 0.9790 2482.94 2490.42 0.1292
Bolivia Gompertz 0.9998 1602.32 1613.50 0.1243
Venezuela Richards 0.9961 1391.08 1401.99 0.0891
India Gompertz 0.9998 2304.74 2316.05 0.1754
Pakistan Logistic 0.9957 2514.15 2525.50 0.1511
Bangladesh Logistic 0.9996 1985.59 1996.68 0.1795
Kazakhstan Richards 0.9980 1697.99 1708.79 0.1224
Armenia Logistic 0.9983 1795.25 1806.43 0.1335
Saudi Arabia Richards 0.9987 2306.45 2317.77 0.1640
Iraq Logistic 0.9963 2244.70 2256.29 0.1450
United Arab Emirates Gompertz 0.9992 2017.57 2029.069 0.1216
Bahrain Logistic 0.9994 1883.66 1895.34 0.1056
Qatar Logistic 0.9990 2181.65 2193.05 0.1098
Oman Logistic 0.9990 1993.57 2005.07 0.1056
Kuwait Richards 0.9981 2234.13 2245.84 0.0862
Philippines Richards 0.9944 1958.55 1969.70 0.1119
Indonesia Gompertz 0.9988 1953.95 1965.20 0.1300
South Africa Logistic 0.9810 2015.26 2038.33 0.1602
Egypt Logistic 0.9980 2164.77 2176.18 0.1318
Nigeria Gompertz 0.9991 1664.38 1675.43 0.1677
Algeria Gompertz 0.9985 1592.98 1604.16 0.1337
Morocco Gompertz 0.9708 1999.16 2010.44 0.0879
Russia Logistic 0.9993 2631.52 2642.96 0.2123
Ukraine Gompertz 0.9934 2029.83 2040.91 0.0844
Romania Gompertz 0.9891 2130.86 2142.27 0.0659
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C(t0)
N which is equal to the ratio of the cumulative cases

C(t0) among the whole population N at time t0. Mean-
while the initialisation of I (Infected) and S (Suscepti-
ble) satisfies (see Maier and Brockmann, 2020 and its
supplementary materials)

I(t0) = φ0X(t0), (14)

S(t0) = 1 − I(t0) − X(t0). (15)

Since the initial size of unidentified infected popula-
tion remains unknown, the proportionality factor φ0 =
I(t0)
X(t0) was chosen as a parameter that requires numerical

optimisation by model fitting. In practice, the initiali-
sation of parameters in SIR-X plays a critical role for
the goodness-of-fit to real data. Thus, the previous two
modelling parts are closely associated to the eventual
effect.

Two newly defined quantities in ratio form are
defined to facilitate the assessment of the epidemiolog-
ical modelling with quarantine and isolation. The first
is

P = κ0

κ0 + κ
, (16)

which embodies the extent of containment measures
affecting the public compared to quarantine measures

Figure 5. Prediction error versus infectious period by countries (I).
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constraining the symptomatic infected solely. The sec-
ond one is defined as

Q = κ0 + κ

β + κ0 + κ
, (17)

which reflects how probable an infected was identified
and quarantined afterward.

3.4. Integratedmodelling and algorithm

As is mentioned above, due to the limited source of
data and the inclusion of quarantine and containment

measures taken, we propose an integrated modelling
framework, in which the compartmental model of SIR-
X plays the main role, while the growth model for
cumulative cases to determine the basic reproduction
number R0 and the Poisson model for the increment
of cumulative number to estimate the series interval TI
help determine the transmission rate α and the recov-
ery rate β . The connection of these three parts of the
framework is the basic equality of R0 = α/β = α · TI .
A good fitting of SIR-X requires accurate estimation
of parameters, especially the transmission rate α and
the recovery rate β , which are specified in advance

Figure 6. Prediction error versus infectious period by countries (II).
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and shows the necessity of the first two parts of our
modelling framework.

Our modelling framework is summarised into
Algorithm 1 with the following detailed procedures.

(1) Find the best-fitted intrinsic growth rate r by
adapting three typical growth models.

(2) Calculate the basic reproduction number R0 via
the Euler–Lotka equation.

(3) Apply the Poisson-based statistical approach to
evaluate the infectious period TI .

(4) Calculate the transmission rate α and the recovery
rate β based on R0 = α/β = α · TI .

(5) Estimate the quarantine rate κ , the containment
rate κ0 and the initial value of infected cases I(t0)
in the compartmental models of SIR-X.

(6) Calculate the quantities of interest: the peak time
point in the cases of asymptomatic or unidentified
infected individuals, prediction of daily positive
cases for an extended period. effectivenessmeasure
of containmentP andQ in Equations (16) and (17),
etc.

Figure 7. Prediction error versus infectious period by countries (III).
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Algorithm 1 Integrated modelling framework
(1) Calculate the basic reproduction number R0.
(2) Estimate the infectious period TI .
(3) Apply the results of Step 1 and Step 2 to determine

the SIR-X compartmental models, and further fit
for the dynamics.

4. Results

By applying the integrated epidemic modelling frame-
work, we reproduced the on-going trajectories of the
first wave of COVID-19 outbreaks as well as predicting
future trends based on daily confirmed case numbers
within the corresponding study periods of 33 countries
across Latin America, Asia, Europe and Africa.

Figure 8. Prediction error versus infectious period by countries (IV).
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Distinguished by three consecutive dayswith increas-
ing positive cases, the beginning dates of outbreaks var-
ied from 15 February 2020 to 17March 2020 due to the
imbalanced epidemic spreading worldwide. Regardless
of various beginning dates of each country, the study
periods lasted to 10 July 2020, which is the ending
date of our time-series data. We used case incidence
data within each epidemic period to fit our modelling
framework for the current trajectory. For validation, we
apply our model to forecast the epidemiological devel-
opment for the following 100 days, obtaining the final
epidemic size on the date of 19 October 2020. Estima-
tion and prediction results for key parameters depicting
the modelling framework are shown in Table 1.

4.1. Estimation of R0 for 33 countries

In the first part of our modelling framework, the
basic reproduction number R0 was estimated via
Euler–Lotka equation, given the parameters fitted by
three types of growth models. Among them, the Gom-
pertz model adapted for the countries which remained
in their early epidemic trends, while the Logistic model
and the Richards model demonstrated better fitness on
curves of the countries where the epidemic has already
developed to the prime stage (see Figures 1–4).

The selected growth model to determine the intrin-
sic growth rate r was judged by various evaluation cri-
teria. The model with the lowest AIC and BIC values
was considered as the best-fitted decision, leading to the
estimate of r (see Table 2).

Results showed that the basic reproduction number
R0 of the studied 33 countries ranged from 1.60 (of
Romania) to 3.28 (of Bangladesh) with a mean of 2.48
and a median of 2.43 approximately (see Table 1).

4.2. Estimation of infectious period TI

In the second part of the modelling framework, the
best-fitted TI was determined by the lowest prediction
error through a complex statistical model given by Lin
et al. (2020), which was built on the Poisson-distributed
increment and shown in Figures 5–8.

The similarity was demonstrated among most of the
studied countries with commonV-shaped line trend for
the relation between prediction error andTI , indicating
the optimal number of the infectious period which stay
at the trough.

The values of TI in Table 1, ranging from 5 (of
Venezuela) to 13 (of Bangladesh andUAE) days, reflects
the estimated average duration of infectious period,
which in practice could be significantly shortened by
intervention measures such as nationwide lockdown,
social distancing, earlier population-based testing and
self-isolation.

4.3. SIR-Xmodel fitting

After implementing the calibrated model based on the
R0 and TI determined in the previous two sections, we
then move on to the SIR-X dynamic model for achiev-
ing an explanatory prediction result for the potential

Table 3. Parameters of model SIR-X.

Countries N κ0 κ �0 P Q

Brazil 2.1264 × 108 0.00312 0.19693 25.93271 0.01561 0.64292
Mexico 1.2901 × 108 0.00717 0.00507 32.91247 0.58586 0.11859
Peru 3.2995 × 107 0.00232 0.12683 152.78813 0.01800 0.58690
Chile 1.9125 × 107 0.00298 0.00606 56.38177 0.32937 0.05953
Argentina 4.5195 × 107 0.00519 0.00549 9.06407 0.48594 0.08765
Colombia 5.0880 × 107 0.00125 0.10034 22.17644 0.01232 0.44834
Panama 4.3140 × 106 0.00400 0.00231 5.16581 0.63415 0.05927
Dominican Republic 1.0848 × 107 0.00380 0.02827 26.59146 0.11841 0.26076
Honduras 9.9040 × 106 0.00597 0.00722 6.88260 0.45292 0.10611
Bolivia 1.1673 × 107 0.00496 0.00537 11.26898 0.48019 0.08512
Venezuela 2.8431 × 107 0.00179 0.08095 3.16287 0.02166 0.29263
India 1.3800 × 109 0.00689 0.00110 20.59769 0.86268 0.08743
Pakistan 2.2089 × 108 0.00774 0.00865 21.85809 0.47220 0.14088
Bangladesh 1.6469 × 108 0.00850 0.00934 24.84376 0.47651 0.18832
Kazakhstan 1.8776 × 107 0.00524 0.00211 18.19945 0.71284 0.06850
Armenia 2.9630 × 106 0.00659 0.00876 5.07250 0.42926 0.12131
Saudi Arabia 3.4842 × 107 0.00556 0.05787 17.94944 0.08763 0.38811
Iraq 4.0266 × 107 0.00506 0.00396 5.28374 0.56096 0.09769
U.A.E 9.8960 × 107 0.00748 0.00317 87.47645 0.70228 0.12165
Bahrain 1.7040 × 107 0.00296 0.00682 43.45895 0.30275 0.10505
Qatar 2.8830 × 107 0.00178 0.00640 27.96857 0.21754 0.06856
Oman 5.1120 × 106 0.00361 0.00739 12.72974 0.32826 0.09013
Kuwait 4.2730 × 106 0.00294 0.00842 15.24312 0.25883 0.07369
Philippines 1.0966 × 108 0.00498 0.00561 13.24814 0.47002 0.07812
Indonesia 2.7368 × 108 0.00605 0.00709 24.92229 0.46062 0.11613
South Africa 5.9308 × 107 0.00612 0.00073 11.86611 0.89374 0.07599
Egypt 1.0233 × 108 0.00754 0.00801 16.31997 0.48470 0.11065
Nigeria 2.0638 × 108 0.00871 0.00761 8.23676 0.53379 0.15218
Algeria 4.3890 × 107 0.00191 0.09209 8.91648 0.02027 0.45826
Morocco 3.6910 × 107 0.00181 0.04686 57.28348 0.03728 0.28026
Russia 1.4593 × 108 0.00312 0.19693 25.93271 0.01561 0.64292
Ukraine 4.3717 × 107 0.00481 0.00998 71.79411 0.32516 0.08153
Romania 1.9229 × 107 0.00112 0.03947 127.18860 0.02769 0.22127
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development of epidemics. During the numerical
approximation procedure, a fourth-order Runge–Kutta
method was applied for the fitting of parameters.
Using the mid-year population sizes N which were
collected from official websites of the United Nations
(https://population.un.org), we obtained the specific
values for key modelling parameters κ0, κ and φ0,
shown in Table 3, alongwithα andβ which denoted the
transmissibility and recovery rate. The fitting curves for
the corresponding study periods generally fell close to

the observed trajectories, which suggested a relatively
effective model fitting performance (see Figures 9–12).

Assuming the sustainability of intervention mea-
sures, the values of P and Q, also shown in Table 3,
which are derived from the three estimated param-
eters κ0, κ and β , quantify the public containment
leverage and quarantine probability, respectively.Under
most circumstances, higher public containment lever-
ages leads to the substantial concordance with pure
algebraic growth.

Figure 9. SIR-X model fitting by countries. The fitted growth curve (red-solid, smooth) and the actual growth curve (blue-solid, dis-
cretised) of daily confirmed cases over the ongoing dates of the outbreak. The predicted trajectory (green-solid) forecasts the daily
growth of 100 days after the end of the study period (I).

https://population.un.org
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Appropriately, the SIR-X model was structurally
consistent with respect to these parameters, while high-
lighting a sub-exponential scaling law as the balance
between transmission and containment before the sat-
uration of the case counts due to the decay of unidenti-
fied infecteds.

4.4. Estimation of the peak and plateau

In this study, the turning point of the first wave
of a certain COVID-19 outbreak was defined as

the date when the cumulative case number numeri-
cally reached the plateau which satisfies | ∂f (v)

∂v | � c0
where the ratio of increment is defined as f (v) =
[ ∂C(t)

∂t |t=v]/[ ∂C(t)
∂t |t=v−1] and c0 is a prespecified small

number. Here, we take c0 = 5 × 10−4 (see Lin et al.,
2020), and judge the exact date of the plateau only if the
daily confirmed case numbers of all the following days
satisfying this criterion.

Besides, the unidentified infectious compartment
‘I’ distinguished the timing of the peak when the most
infectious cases emerged. Note that the exact value of

Figure 10. SIR-X model fitting by countries. The fitted growth curve (red-solid, smooth) and the actual growth curve (blue-solid,
discretised) of daily confirmed cases over the ongoing dates of the outbreak. The predicted trajectory (green-solid) forecasts the
daily growth of 100 days after the end of the study period (II).
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unidentified infecteds is sensitive to parameter chang-
ing, especially the population sizeN. However, the gen-
eral shape of I(t) remains consistent to be a Bell curve
whose exponential decay right after the peak induces
the saturation of the cumulative case number to a finite
level.

From Table 1, conclusions about the predicted
epidemic trends could therefore be drawn explicitly.
Among 33 studied countries, the peaks were observed
in 11 countries (with the earliest peak of UAE on the
13rd of May, 2020) and 15 countries before August,

while the latest peak (of Colombia) is the 8th of Septem-
ber, 2020. Meanwhile, the timing of plateau exhibited
that the first wave of epidemic would come into break
around late August to September across the majority
of the studied countries. Remarkably, under the cur-
rent fitted parameters with the continuity of contain-
ment measures, the durations of fading, counted from
the peak to the plateau, were mostly longer than one
month. The difference of fading durations might par-
tially reveal the significant effect of divergent contain-
ment measures implemented for various countries.

Figure 11. SIR-X model fitting by countries. The fitted growth curve (red-solid, smooth) and the actual growth curve (blue-solid,
discretised) of daily confirmed cases over the ongoing dates of the outbreak. The predicted trajectory (green-solid) forecasts the
daily growth of 100 days after the end of the study period (III).
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Specifically, in Asia, the epidemic will mostly con-
tinue until the end of August. India, Pakistan and Saudi
Arabia, along with the Philippines, were expected to
reach the plateau in September.With the second-largest
population in theworld, India has undoubtedly become
the epicentre in Asia and was estimated to have a final

size over 3.2 million cumulative confirmed cases by the
ending date (19 October 2020) of our prediction.

In Latin America, the epidemic will fade out not
before the second half of August, except for Peru
and Chile whose turning points will emerge in early
August. Among them, Brazil has the largest estimated

Figure 12. SIR-X model fitting by countries. The fitted growth curve (red-solid, smooth) and the actual growth curve (blue-solid,
discretised) of daily confirmed cases over the ongoing dates of the outbreak. The predicted trajectory (green-solid) forecasts the
daily growth of 100 days after the end of the study period (IV).
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infections with more than 4.2 million positive cases,
which accounts for almost 2% of the nationwide pop-
ulation.

In the three studied European countries, both Rus-
sia and Ukraine have passed through the peak in late
June and the plateau would be approached within this
August. Moreover, Russia will achieve a final epidemic
size of over 1 million confirmed infected cases. In addi-
tion, Romania was estimated to have a late climax a
few days before September and the epidemic would last
until the second half of September.

Though the substantial shortage of medical testing
condition has greatly influence the validity of the statis-
tics in Africa, it is no doubt that Africa has already
become one of the non-negligible epicentre suffer-
ing from COVID-19. Among the five studied African
countries, most of them would reach the plateau after
September with the exception of Algeria, whose com-
paratively smooth trajectory would lead to the turning
point at 18 August 2020. From our prediction,Morocco
would hold the latest peak at 14 August 2020, while
South Africa was expected to have the largest final size
of nearly 700 thousand.

5. Conclusions and discussions

In this study, we focus on conducting analytical assess-
ment and prediction on the degree of the epidemic
outbreak across the currently developing epicentres.
Considering the commonplace that when a brand new
contagion starts evolving into the outbreak, there exists
deficiency of public health related information, leav-
ing only the reported cases available for academic
research. Thus, we propose an integrated framework
for analysing the COVID-19 time series cases, which
were reported from 15 February 2020 to 10 July 2020.
We track, evaluate and forecast the epidemic by com-
parative study of the epidemiological parameters and
estimating the number of cumulative cases across var-
ious countries, assessing the impact of containment
strategies, which should be constructive in mitigation
planning and redeployment of resources.

The modelling framework has demonstrated adap-
tiveness and consistency on portraying epidemic trends
across the studied countries, which is advisable for the
quantitative analysis of the transmission mechanism of
COVID-19, together with the implementation of con-
trol measures in current epicentres and for potential
future outbreaks worldwide.

In summary, using the data from the first stage
of the epidemic, our study provided a concrete mod-
elling framework for estimation of the epidemiological
parameters and prediction of future trajectories as well
as explanatory features including the peak, the plateau
and the final epidemic size of the current epicentres.
Results of prediction were mostly considered as con-
sistent with the observed growth curves. Meanwhile,

we highlighted the importance of effective contain-
ment policies and quarantinemeasures in flattening the
epidemic curves.

Fitted by the empirical case counts, the modelling
framework generates the basic reproduction numberR0
and the infectious period TI catering for each country
through typical epidemic growth models and a par-
simonious statistical approach respectively. Plausible
parameter values were well archived in most of our
studied countries, indicating decent results obtained for
the following modelling procedure of the dynamics.

Thus, the reproduced epidemic trajectories of the 33
studied countries could be applied to estimate the trend
of the number of asymptomatic infected individuals,
which is the key quantity for estimating the peak time
of the outbreak.

The SIR-X model discussed here unveils that the
remarkable feature to better depict the dynamics of
the COVID-19 outbreaks in 33 studied countries is the
sub-exponential scaling law in the growth of positive
case numbers during the first wave of the epidemic.
This common behaviour demonstrates that fundamen-
tal principles are practically correlated with the epi-
demic that are manipulated by the coaction of internal
behavioural changes in the susceptibles as well as exter-
nal containment policies and quarantine measures.

Despite the explanatorymodelling performance, our
study has several limitations. First of all, high reliance
on the quality of data collection always remains a real-
istic constraint for most of the modelling study. The
under-reporting of infection, the delay of testing feed-
back and the bandwidth of update in statistics are com-
monplace in a vast majority of countries. Even under
such circumstances, our model framework has still
been proved to accomplish the analysis with credible
results including the dynamics and the predictions of
final epidemic size, the peak and the plateau.

Secondly, during the process for estimating the basic
reproduction number R0, we directly applied the result
of serial interval from a former study of Li et al. (2020),
which was considered as a general alternative in con-
sequence of lacking in the specific onset data from
each studied country. We believe that the estimation
of the basic reproduction number R0 for each country
will become more reliable with the support of its onset
data that will lead to a precise assessment of the serial
interval.

Thirdly, according to the setting of the statistical
modelling in Section 3.2, the infectious period TI
could only be achieved as a positive integer. Though
more interpretable in practice, the neglect of numerical
smoothness might restrict the parameter space for tun-
ing of the SIR-X dynamic model, which would concern
the accuracy for prediction.

Additionally, in the part of the SIR-X model, we
simply assumed that the containment rate κ0 and
the quarantine rate κ are constant considering the
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fundamentality of data. In practice, the intervention
strategies in a certain country would probably change
dramatically for different epidemic stages, resulting
in the time-varying containment and quarantine rate
which remain the modification for further research.

Last but not least, as is shown in the results, the sat-
uration of confirmed cases informs that eventually all
susceptibles will ideally fall into the removal from the
epidemic transmission process assuming that the con-
tainment and quarantine measures could be held on
to the end of the epidemic for an extended period of
time. However, a considerable number of susceptibles
will not be quarantined as the consequence of either
the ignorance of intervention policies or the short-
age of quarantine space and testing resources. Indeed,
the number of daily new cases expected will decline
following a slower path and finally saturate to a com-
paratively small, yet non-zero level instead. Advisably,
aiming to thoroughly cease the epidemic transmission,
it would be worthy to extend statistics for unidenti-
fied and unquarantined infecteds. As a result, we expect
that our predictions will partly underestimate the final
epidemic sizes for studied countries.

Though generally well-fitted, there are still some of
the studied countries, such as the last four studied coun-
tries (Morocco, Russia, Ukraine and Romania), whose
goodness-of-fit seems rather poor. One of the poten-
tial reasons is that these countries have already entered
the secondwave of the epidemic trajectories, which will
certainly not be suitable for our single wave model. The
extension could be considered in further research so
that our modelling framework will be adaptive to the
second wave. With the complete empirical time-series
data for the first epidemic wave, an accurate estima-
tion for the reproduction number will be carried out.
Moreover, due to the accumulated experience for the
policy-making of containment, it is most likely that
the infectious period of the second wave will be mod-
ified with more complexity, as well as different sets of
transmission rates α and recovery rates β for the SIR-
X dynamic models. With increasing data collected, it
will be practical to develop piecewisemodelling accord-
ing to different stages of policy implementation period,
resulting in the multiple sets of parameters κ0 and κ .

The major difference between the modelling of the
early epidemic and the second wave trajectories will be
the initialisation, since the starting cases will remain
non-negligible quantities on the basis of unidentified
infected individuals that we’ve estimated. Thus, an ade-
quate recognition of the initial point for launching the
second wave will bring substantial influence on the
prediction of trajectories.

It is generally believed that the second wave inclines
to have a more extensive exponential rise to a higher
peakwhichwill probably last longer in a consequence of
the hidden population of unidentified infected individ-
uals and the relatively loosened containment policies

implemented throughout the world. The upcoming
vaccine will become another important factor that
will affect the trajectories of some countries. Under
such complicated circumstances,multi-wavemodelling
requires to be specifically validated by our future
research based on the current modelling framework.
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