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ABSTRACT
In this paper, we investigate the problem of estimating the probability density function. The
kernel density estimation with bias reduced is nowadays a standard technique in explorative
data analysis, there is still a big dispute on how to assess the quality of the estimate and
which choice of bandwidth is optimal. This framework examines themost important bandwidth
selection methods for kernel density estimation in the context of with bias reduction. Normal
reference, least squares cross-validation, biased cross-validation and β-divergence lossmethods
are described and expressions are presented. In order to assess the performance of our various
bandwidth selectors, numerical simulations and environmental data are carried out.
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1. Introduction

Selecting an appropriate bandwidth for a kernel den-
sity estimator is of crucial importance, and the purpose
of the estimation may be an influential factor in the
selection method. In many situations, it is sufficient to
subjectively choose the smoothing parameter by look-
ing at the density estimates produced by a range of
bandwidths. A good overview on kernel density esti-
mators is supplied by Silverman (1986), Scott (1992),
Mugdadi and Ibrahim (2004). Let (X1, . . . ,Xn) be a
sample of size n identically distributed with unknown
probability density function (p.d.f) f. The kernel den-
sity estimator was introduced by Parzen (1962). Let K
be a kernel function on real line, and let h be a positive
value called bandwidth. Then kernel density estimator
of f is defined as

fn,h(x) = 1
nh

n∑
i=1

K
(
x − Xi

h

)
. (1)

To make the estimator meaningful, the kernel func-
tion is usually required to satisfy conditions K(x) > 0,∫
K(x) dx = 1,

∫
xK(x) dx = 0 and

∫
x2K(x) dx < ∞.

Note that the bandwidth h := hn ↓ 0, as n ↑ ∞. The
choice of this bandwidth is very important. Several
approaches are known for the choice of bandwidth in
the kernel smoothing methods, via cross validation or
by minimising a measure of error.

Studies are shown that the kernel density estima-
tion of f in (1) is biased. Recently, Xie and Wu (2014)
studied a bias reduced version of fn and proved its per-
formances comparing it to the usual methods. If the
density f is twice continuously differentiable, this bias

reduced estimator is given as follows

f̂n,h(x) = fn,h(x) − B̂ias(fn,h(x)),

= fn,h(x) − h2

2
f ′′n (x)

∫
t2K(t) dt. (2)

The bandwidth h is the most dominant parame-
ter in the kernel density estimator. This parameter
controls the amount of smoothing and is analogous
to the bandwidth in a histogram. Even though the
kernel estimator depends on the kernel and the
bandwidth in a rather complicated way, a graphical
representation clearly illustrates the difference in
importance between these two parameters, see
Figure 3.3 and 2.6(a) in Wand and Jones (1995). To
explore themost relevant bandwidth selectionmethods
in density estimation for complete data see the reviews
of Turlach (1993), Cao et al. (1994), Jones et al. (1996)
or Mammen et al. (2011) and Mammen et al. (2014),
and the recent work on β-divergence for Bandwidth
Selection by Dhaker et al. (2018).

It should be noticed that nonparametric estima-
tion procedures have been recently applied in envi-
ronmental data, e.g., Schmalensee et al. (1998), Taskin
and Zaim (2000), Millimet and Stengos (2000), and
Millimet et al. (2003). However, the nonparametric
modelling used in this paper is for another purpose
which is to study the dynamics of the entire distribution
of CO2 emissions per capita.

Our aim in this paper is to propose and com-
pare several bandwidth selection procedures for the
kernel density estimator in (2). The procedures we
study are bandwidth selector based on the criterion of
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β-divergence with different β values. A simulation
study is then carried out to assess the finite sample
behaviour of these bandwidth selectors.

The remainder of the paper is organised as follows.
In Section 2, we state our main results which presents
the proposal method for bandwidth selector based on
β-divergence Dβ . Section 3 gives the estimation of the
optimal bandwidth selection. Section 4 is devoted to
our simulation results, Section 5 applies the methods
to real datasets and finally, we conclude the paper in
Section 6.

2. Bandwidth selection based on β-divergence

The β-divergence (see, e.g., Basu et al., 1998; Cichocki
et al., 2006; Eguchi & Kano, 2001) is a general frame-
work of similarity measures induced from various sta-
tistical models, such as Poisson, Gamma, Gaussian,
Inverse Gaussian and compound Poisson distribution.
For the connection between the β-divergence and var-
ious statistical distributions, see Jorgensen (1997). Beta
divergence was proposed in Basu et al. (1998) and
Minami and Eguchi (2002) and is defined as dissimi-
larity between the density function and its estimator as

Dβ(f̂n,h, f ) = 1
β

∫ (
f̂n,h(x)

)β

dx − 1
β − 1

×
∫ (

f̂n,h(x)
)β−1

f (x) dx + 1
β(β − 1)

×
∫ (

f (x)
)β dx.

In the case where β = 2, we have

2D2(f̂n,h, f ) = ISE(f̂n,h) =
∫ (

f̂n,h(x) − f (x)
)2

dx.

Before we start our results, we introduce the following
assumptions on the probability density function f and
on the kernel K:

(F1) f is compactly supported on I.
(F2) f is four times continuously differentiable on I.
(F3)

∫
I(f

(4)(x))2(f (x))β−2 dx < ∞.

Proposition 2.1: Under assumptions (F1)–(F3), the
mean of Dβ(f̂n,h, f ) is given by

EDβ(f̂n,h, f ) := AEDβ(f̂n,h, f ) + Op(n−c) + O(h6),

0 < c <
1
8
, (3)

where AEDβ(f̂n,h, f ) is the asymptotic mean of
Dβ(f̂n,h, f ) expressed as

AEDβ(f̂n,h, f ) = h8

2 × 576

(∫
I
t4K(t) dt

)2

×
∫ (

f (x)
)β−2

(
f (4)(x)

)2
dx

+ 1
2nh

∫
I
(K(t))2 dt

∫ (
f (x)

)β−1 dx.

(4)

For the proof of the Proposition 2.1, see appendix
in Section A. The following theorem allows us to give
the analytical value of bandwidth which minimises the
asymptotic mean of Dβ(f̂n,h, f ).

Theorem 2.2: Assume that (F1)–(F3) hold, then the
bandwidth hEDβ

that minimises AEDβ(f̂n,h, f ) is

hβ = hEDβ

=
{
72

∫
(K(t))2 dt

∫
I
(
f (x)

)β−1 dx(∫
t4K(t) dt

)2 ∫
I
(
f (x)

)β−2 (f (4)(x))2 dx

}1/9

× n−1/9. (5)

The proof of Theorem 2.2 is derived from
Proposition 2.1. From Theorem 2.2, we deduce the
particular case where β = 2 of optimal bandwidth
selection.

Corollary 2.3: Assuming that the assumptions in
Theorem 2.2 hold. Then, we have for β = 2

ED2(̂fn,h, f ) = 1
2
MISE(̂fn,h),

AED2(̂fh, f ) = 1
2
AMISE(̂fn,h),

with AMISE(̂fn,h) is the asymptotic MISE(̂fn,h) =
EISE(̂fn,h), and its corresponding optimal bandwidth is

hAMISE := h2 =
{
9
2

R(K)

(μ4(K))2 R(f (4))

}1/9
n−1/9, (6)

where

R(g) =
∫ (

g(t)
)2 dt and μ4(K) =

∫
x4K(x) dx.

3. The choice of the bandwidth h

In this section, we describe bandwidth selection meth-
ods for the density estimator defined in (2). These
methods are adapted to common automatic selectors
for kernel density estimation.We propose two selection
methods a Normal reference and the cross-validation
method. The Normal reference bandwidth is based
on estimating the infeasible optimal expression (6), in
which the unknown element is R(f (4)).

3.1. Rule-of-thumb for bandwidth selection

This method is based on the rule-of-thumb for com-
plete data (see, e.g., Silverman, 1986). The idea is
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to assume that the underlying distribution is normal,
N (μ, σ), and in this situation, we have

Proposition 3.1: If f is Normal density function with
mean μ and variance σ 2, then the asymptotically opti-
mal bandwidth hβ in (5) becomes the normal reference
bandwidth as

hNRβ =σ

{√
2
π

4β4

9β4−36β3+90β2+270β+105

}1/9

× n−1/9. (7)

In the particular case where β = 2, we have

hNR2 = σ

{√
2
π

64
861

}1/9

n−1/9.

The standard deviation σ can be estimated by the
sample standard deviation (S) or by the standardised
interquartile range IQR/1.34 for robustness against out-
liers (1.34 = �−1(3/4) − �−1(1/4)), but a better rule
of thumb (e.g., Silverman, 1986, pp. 45–47; Härdle,
1991, p. 91) is to use σ̂ = min(S, IQR1.34 ), and to define the
following estimator of hNRβ as

ĥNRβ = σ̂

{√
2
π

4β4

9β4−36β3+90β2+270β+105

}1/9

× n−1/9.

Proof: See Appendix.

3.2. Cross-Validation

The method previously defined is based on minimis-
ing estimations of the mean EDβ(f̂n,h, f ), more pre-
cisely of the asymptotic mean AEDβ(f̂n,h, f ). The least
squares Cross-Validation is the most popular method
and is related on the minimising procedure of the ISE
(integrated squared error), i.e., the particular case of
β-divergence with β = 2 (see, e.g., Bowman (1984)
and Rudemo (1982)). As a generalisation of the ISE,
we introduce a β-Divergence Cross Validation (DβCV)
method. Recall that

Dβ(f̂n,h, f ) = 1
β

∫
f̂ βn,h(x) dx − 1

β − 1

∫
f̂ β−1
n,h (x)

× f (x) dx + 1
β(β − 1)

∫
f β(x) dx.

Since 1
β(β−1)

∫
f β(x) dx does not depend on h, our

β-Divergence Cross Validation approach is based on
the minimising procedure likes the ISE method, of the
following loss function:

Lβ(h) = Dβ(f̂n,h, f ) − 1
β(β − 1)

∫
f β(x) dx,

= 1
β

∫
f̂ βn,h(x) dx − 1

β − 1

∫
f̂ β−1
n,h (x)f (x) dx,

= 1
β

∫
f̂ βn,h(x) dx − 1

β − 1
E

(
f̂ β−1
n,h (X)

)
.

Using the same methodology as the least squares cross-
validationmethod we estimate Lβ(h) from the data and
minimise it over h. Considering the following estimator
of Lβ(h):

DβCV(h)= 1
β

∫
f̂ βn,h(x) dx−

2
n(β − 1)

n∑
i=1

f̂ β−1
n,h,−i(Xi),

with

f̂h,h,−i(Xi) = 1
h(n − 1)

n∑
j �=i

K
(
Xi − Xj

h

)
.

Hence, the optimal bandwidth that minimises the esti-
mator DβCV(h) is

ĥDβCV = argmin
h

DβCV(h).

Remark 3.1: In the preceding section three band-
widths hNRβ and ĥDβCV were presented as possible
optimal choices for density estimation. However, in
practice none of them is known since they depend
on the unknown parameter β . In the article Dhaker
et al. (2018) the authors have shown that optimal β

verifies:

1 < β < 2,

For a β value close to 1 we obtain optimal h obtained
using the Kullback-Leibler criteria, and for beta close
to 2 we obtain that of the mean integrated square error.

Remark 3.2: FromTheorem 2.1 in Xie andWu (2014),
we have

Var(f̂n,h(x)) = 1
nh

f (x)
(∫

u2K(u) du
)2

×
∫

(K ′′)2(u) du + O(n−1), (8)

this variance decreasing in h, while the optimal h for
fn,h(x) is given by:

ĥ =
{ ∫ K(t)2 dt

∫
I f (x)

β−1 dx[∫
t2K(t) dt

]2 ∫
I f (x)β−2f (2)(x)2 dx

}1/5

n−1/5,

more reference see Dhaker et al. (2018). The optimal
ĥ of the ordinary kernel estimator fn,h(x) is asymptot-
ically inferior to the bias reduced kernel density esti-
mator, f̂n,h(x), since its convergence rate is O(n−1/5)

compared to the bias reduced kernel density estima-
tor’s O(n−1/9) rate, which results in a decrease in
variance (8).
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4. Simulations

In this section, we evaluate the performance of the
bandwidth selection procedures presented in Section 2.
To this goal we have carried out a simulation study
including rule-of-thumb (̂hNR2 ), the Least Squares
Cross-Validation bandwidth (̂hLSCV := ĥD2CV ) and
the β-Divergence Cross Validation (̂hDβCV with β ∈
{1.5, 1.1, 1.9}). Two simulation studies are carried out
to evaluate different situations. First of all, as the popu-
lation density, we used a normal mixture. In the second
place, we used a lognormal mixture, who is a heavy-
tailed distribution is subexponential.

4.1. Simulation study 1

For consideration of computation and generality,
assume that the true density f is a normal mixture

m(μ, σ 2) = 0.5N (0, 1) + 0.5N (μ, σ 2), (9)

where μ ∈ {0, 1, 5} and σ ∈ {1, 0.5, 0.1}. One thou-
sand Monte Carlo samples of size n are generated
from the normal mixture model in Equation (9) for
each combination of n ∈ {50, 200, 700}. The results
of our different sets of experiments are presented in
Tables 1–3. The Table 1 gives the exhibits simulated

Table 1. RE(̂h) for normal mixture f (x) = 0.5φ(x) +
0.5φσ (x − μ).

n ĥNR ĥLSCV ĥD1.1CV ĥD1.5CV ĥD1.9CV

μ = 0 σ = 1
50 0.934 0.953 0.853 0.723 0.703
200 0.945 0.925 0.955 0.931 0.903
700 0.990 0.945 0.982 0.987 0.952

μ = 0 σ = 0.5
50 0.870 0.837 0.867 0.890 0.905
200 0.937 0.880 0.897 0.954 0.932
700 0.964 0.930 0.929 0.842 0.858

μ = 0 σ = 0.1
50 0.584 0.767 0.634 0.631 0.623
200 0.553 0.892 0.625 0.879 0.721
700 0.529 0.946 0.612 0.877 0.813

μ = 1 σ = 1
50 0.864 0.899 0.904 0.853 0.876
200 0.938 0.928 0.914 0.962 0.987
700 0.973 0.952 0.974 0.927 0.932

μ = 1 σ = 0.5
50 0.882 0.852 0.823 0.734 0.872
200 0.963 0.880 0.780 0.925 0.967
700 0.836 0.925 0.743 0.943 0.780

μ = 1 σ = 0.1
50 0.230 0.770 0.611 0.587 0.554
200 0.101 0.912 0.686 0.769 0.687
700 0.051 0.949 0.727 0.880 0.721

μ = 5 σ = 1
50 0.400 0.810 0.723 0.889 0.457
200 0.285 0.945 0.852 0.934 0.579
700 0.222 0.963 0.967 0.978 0.789

μ = 5 σ = 0.5
50 0.2390 0.852 0.712 0.845 0.831
200 0.1390 0.926 0.897 0.915 0.805
700 0.0817 0.956 0.945 0.921 0.878

μ = 5 σ = 0.1
50 0.1360 0.588 0.702 0.645 0.613
200 0.0523 0.458 0.764 0.758 0.802
700 0.0205 0.341 0.861 0.655 0.841

Table 2. E(̂h) for normal mixture f (x) = 0.5φ(x) +
0.5φσ (x − μ).

n ĥNR ĥLSCV ĥD1.1CV ĥD1.5CV ĥD1.9CV hMISE

μ = 0 σ = 1
50 0.464 0.528 0.530 0.520 0.323 0.347
200 0.362 0.393 0.399 0.383 0.321 0.328
700 0.287 0.302 0.310 0.293 0.308 0.309

μ = 0 σ = 0.5
50 0.330 0.397 0.425 0.343 0.223 0.286
200 0.248 0.267 0.312 0.248 0.193 0.280
700 0.196 0.197 0.242 0.200 0.186 0.244

μ = 0 σ = 0.1
50 0.134 0.104 0.358 0.098 0.510 0.041
200 0.087 0.060 0.027 0.087 0.485 0.038
700 0.068 0.043 0.219 0.057 0.421 0.0370

μ = 1 σ = 1
50 0.520 0.590 0.592 0.588 0.429 0.426
200 0.404 0.437 0.444 0.434 0.395 0.423
700 0.316 0.336 0.344 0.333 0.354 0.345

μ = 1 σ = 0.5
50 0.401 0.430 0.479 0.373 0.326 0.342
200 0.320 0.298 0.373 0.265 0.280 0.282
700 0.254 0.214 0.287 0.212 0.233 0.239

μ = 1 σ = 0.1
50 0.366 0.103 0.464 0.203 0.0422 0.0451
200 0.276 0.061 0.342 0.053 0.0380 0.0380
700 0.221 0.0428 0.267 0.0426 0.0343 0.0314

μ = 5 σ = 1
50 1.290 0.770 1.400 0.608 0.420 0.475
200 0.989 0.477 0.1.070 0.441 0.330 0.470
700 0.768 0.353 0.829 0.336 0.442 0.272

μ = 5 σ = 0.5
50 1.270 0.468 1.370 0.369 0.310 0.295
200 0.961 0.297 1.040 0.262 0.210 0.286
700 0.750 0.208 0.810 0.197 0.209 0.270

μ = 5 σ = 0.1
50 1.270 0.0982 1.370 0.0745 0.045 0.0415
200 0.955 0.061 1.030 0.053 0.040 0.0385
700 0.745 0.0424 0.804 0.040 0.039 0.0339

relative efficiency RE(̂h) = MISE(̂fn,hMISE)/MISE(̂fn,̂h)
of the kernel estimator, with ĥ takes the bandwidth
estimators ĥNR2 ,̂hLSCV and ĥDβCV , it is lower than 1,
because the optimal bandwidth hMISE minimiseMISE.
Each bandwidth, mean E(̂h) and mean relation error
E(̂h/hMISE − 1) are obtained, these values are given by
respectively, Tables 2 and 1.

(1) For all situations, each relative efficiency RE(̂h) <

1 because the optimal bandwidth hMISE minimises
theMISE.

(2) The normal reference bandwidth ĥNR2 performs
well if the true density is not very far from normal,
such as the cases of (μ, σ) ∈ {(0, 1), (0, 0.5), (1, 1),
(1, 0.5)}. Otherwise, it usually has the smallest
RE(̂h) and largest E(̂h), tending to oversmooth its
kernel density estimate the most.

(3) We have to remark that in Table 1, ĥLSCV needs a
large sample size in order to be competitive. Note
also that in Table 2, it is seen that E(̂hLSCV) is
close to the optimal hMISE, but the corresponding
E(̂hLSCV /̂hMISE) is large, whichmeans that the bias
of ĥLSCV is small but its variation is large in Table 3.

(4) The bandwidth ĥDβCV seems to be the best existing
bandwidth selectors. Inmost situations, it is indeed
one of the best bandwidth selectors, However, it
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Table 3. E|̂h/hMISE − 1| for normal mixture f (x) = 0.5φ(x) +
0.5φσ (x − μ).

n ĥNR ĥLSCV ĥD1.1CV ĥD1.5CV ĥD1.9CV

μ = 0 σ = 1
50 0.124 0.072 0.077 0.0874 0.379
200 0.0785 0.0829 0.1050 0.0578 0.1620
700 0.0396 0.0717 0.0572 0.0436 0.0509

μ = 0 σ = 0.5
50 0.1370 0.1510 0.1670 0.1510 0.4560
200 0.0655 0.1360 0.0882 0.1010 0.2490
700 0.0559 0.0729 0.0537 0.0818 0.0104

μ = 0 σ = 0.1
50 0.772 0.2530 0.3000 0.3990 0.4410
200 0.674 0.1210 0.1250 0.1520 0.2070
700 0.679 0.0772 0.0506 0.0726 0.185

μ = 1 σ = 1
50 0.1430 0.1040 0.1630 0.0748 0.398
200 0.0774 0.0800 0.0931 0.0501 0.184
700 0.0483 0.0626 0.0600 0.0361 0.037

μ = 1 σ = 0.5
50 0.172 0.1930 0.1400 0.2260 0.4560
200 0.236 0.1530 0.0899 0.1460 0.121
700 0.285 0.0989 0.0506 0.0794 0.119

μ = 1 σ = 0.1
50 3.67 0.2620 1.380 0.3980 0.431
200 4.29 0.1250 0.986 0.1720 0.353
700 4.58 0.0838 0.652 0.0878 0.137

μ = 5 σ = 1
50 1.14 0.1450 0.2390 0.2430 0.4580
200 1.23 0.0815 0.1210 0.0899 0.2530
700 1.29 0.0686 0.0745 0.0540 0.0203

μ = 5 σ = 0.5
50 2.40 0.1860 0.600 0.2510 0.4340
200 2.68 0.1180 0.444 0.1440 0.2020
700 2.80 0.0743 0.296 0.0804 0.0597

μ = 5 σ = 0.1
50 15.7 0.884 5.95 0.3980 0.4810
200 17.1 1.021 4.51 0.1570 0.2630
700 17.7 1.104 3.34 0.0656 0.0178

behaves very poorly for small σ (the true density
curve is sharp).

Figure 1 compare, for densities with (μ = 0, 1, 5 and
σ = 1, 0.5, 0.1), the results of the five bandwidth selec-
tion ĥNR2 , ĥLSCV and ĥDβCV (discussed in Section 3),
relatively to the results obtained by using theMISE opti-
mal bandwidth (hMISE). These figures present boxplots
of the ratio RE(̂h) = MISE(̂fn,hMISE)/MISE(̂fn,̂h), where
ĥ takes the estimators ĥNR2 , ĥLSCV and ĥDβCV , with
β = 1.1, 1.5, 1.9. We see the LSCV and DβCV (with
β = 1.5) methods gave overall the bests ratios across
all simulations, and that this ratio was rather large in
general.

4.2. Simulation study 2

As the populational density, we used a lognormal
mixture.

m(μ, σ 2) = 0.5 logN (0, 1) + 0.5 logN (μ, σ 2), (10)

Where μ ∈ {0, 1, 5} and σ ∈ {1, 0.5, 0.1}, with μ and
σ are the means and standard deviations, respectively.
Similar to the previous subsection for each combina-
tion of n = 50, 200, 700,μ = 0, 1, 5, andρ = 1, 0.5, 0.1.

Table 4. RE(̂h) for lognormal mixture f (x) = 0.5φ(x) +
0.5φσ (x − μ).

n ĥNR ĥLSCV ĥD1.1CV ĥD1.5CV ĥD1.9CV

μ = 0 σ = 1
50 0.901 0.933 0.905 0.920 0.923
200 0.949 0.972 0.949 0.935 0.956
700 0.969 0.987 0.978 0.988 0.990

μ = 0 σ = 0.5
50 0.880 0.883 0.856 0.885 0.890
200 0.938 0.844 0.886 0.887 0.893
700 0.962 0.817 0.942 0.943 0.950

μ = 0 σ = 0.1
50 0.627 0.218 0.798 0.699 0.802
200 0.561 0.096 0.830 0.708 0.825
700 0.517 0.046 0.947 0.789 0.889

μ = 1 σ = 1
50 0.824 0.937 0.911 0.941 0.950
200 0.973 0.971 0.967 0.977 0.980
700 0.978 0.986 0.971 0.983 0.989

μ = 1 σ = 0.5
50 0.907 0.836 0.838 0.840 0.876
200 0.906 0.784 0.882 0.887 0.902
700 0.831 0.687 0.919 0.887 0.908

μ = 1 σ = 0.1
50 0.248 0.199 0.796 0.799 0.800
200 0.097 0.082 0.885 0.803 0.810
700 0.048 0.038 0.950 0.932 0.940

μ = 5 σ = 1
50 0.395 0.351 0.824 0.813 0.835
200 0.239 0.244 0.942 0.860 0.899
700 0.221 0.179 0.968 0.907 0.934

μ = 5 σ = 0.5
50 0.234 0.214 0.872 0.863 0.881
200 0.128 0.113 0.924 0.896 0.905
700 0.082 0.071 0.952 0.911 0.972

μ = 5 σ = 0.1
50 0.139 0.137 0.785 0.753 0.823
200 0.051 0.050 0.811 0.748 0.873
700 0.022 0.021 0.850 0.750 0.902

For each case, Table 4 exhibits the simulated rela-
tive efficiency RE, Tables 5 and 6 give the E(̂h) and
E|̂h/hMISE − 1| corresponding each bandwidth.

A summary of the results is provided below.
Firstly, in Table showed that the REs values for ĥNR

and ĥLSCV increased as n increased and close to 1, but
the performance is not so good in the case (μ, σ) =
{(1, 0.1), (5, 1), (5, 0.5), (5, 0.1)}. However ĥDβCV out-
perform others, especially ĥD1.9CV which has RE values
close to 1 in all situations.

5. Real data analysis

A very natural use of density estimates is in the infor-
mal investigation of the properties of a given set of data.
Density estimates can give valuable indication of such
features as skewness, multimodality and heavy tail in
the data. In some cases, they will yield conclusions that
may then be regarded as self-evidently true, while in
others all they will do is to point the way to further
analysis and data collection.

Three examples of data are provided to illustrate the
performance of kernel density estimation with differ-
ent bandwidths, where the Gaussian kernel is used. All
of them are classical examples of unimodal, bimodal
distributions and heavy tail respectively.
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Figure 1. Boxplots of the relative valuesRE for the bandwidth selectors for the estimation of densitiesμ = 0, 1, 5 andσ = 1, 0.5, 0.1.
The sample size varies from 100 to 2000.

5.1. Application 1

The first data set comprises the CO2 per capita in
the year of 2014. This data set is available in the
world bank website. Figure 2 shows the estimated den-
sity of CO2 per capita in the year of 2014 comput-
ing with bandwidths estimators ĥNR2 = 1.38, ĥLSCV =
0.439, ĥD1.5CV = 0.832, ĥD1.1CV = 0.932 and ĥD1.9CV =
0.542. The data set that the estimated density that was
computed with the ĥLSCV = 0.439 and ĥD1.9CV band-
widths captures the peak that characterises the mode,

while the estimated density with the bandwidths that
ĥNR2 , ĥD1.5CV and ĥD1.1CV smoothes out this peak. This
happens because the outliers at the tail of the distribu-
tion contribute to ĥNR2 , ĥD1.5CV and ĥD1.1CV be larger
than the other bandwidths.

5.2. Application 2

We use the time between eruptions set for the
Old Faithful geyser in Yellowstone National Park,
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Wyoming, USA (107 sample data, source: Silver-
man, 1986). Figure 3 plots the data points and the ker-
nel density estimates for old faithful geyser data, using
bandwidths ĥNR = 0.442, ĥLSCV = 0.162, ĥD1.5CV =
0.176, ĥD1.1CV = 0.281 and ĥD1.9CV = 0.210.

An important point to note that the density curve
for eruption length is similar to bimodal normal density
(normal mixture). From ourApplication 2, we see that
the hNB2 is always larger than the others bandwidths, he
heavily oversmoothes its kernel density curve, underes-
timating the two peaks of the curve but overestimating
the valley between them. About hLSCV , ĥD1.5CV and
ĥD1.9CV seems to undersmooth the curve too much,
overestimating the two peaks but underestimating for
the valley. However ĥD1.1CV is proper bandwidth for
their density estimate to be able to capture the feature
of the true density curve.

5.3. Application 3

Maintenance data on 46 active repair times in hours
for an airborne communication transceiver reported by
Von Alven (1964) have been analysed by Sultan and Al-
Moisheer (2015) who conclude that mixture of inverse
Weibull and lognormal model was a good fit. The esti-
mated density function of maintenance data is pre-
sented in Figure 4, using commonly used bandwidths
ĥNR = 1.3150, ĥLSCV = 0.5207, as well as the newly

Table 5. E(̂h) for lognormal mixture f (x) = 0.5φ(x) +
0.5φσ (x − μ).

n ĥNR ĥLSCV ĥD1.1CV ĥD1.5CV ĥD1.9CV hMISE

μ = 0 σ = 1
50 0.451 0.452 0.512 0.518 0.520 0.507
200 0.356 0.354 0.387 0.396 0.383 0.364
700 0.282 0.280 0.299 0.308 0.293 0.281

μ = 0 σ = 0.5
50 0.329 0.316 0.389 0.416 0.343 0.345
200 0.253 0.236 0.271 0.314 0.248 0.234
700 0.196 0.182 0.197 0.244 0.188 0.201

μ = 0 σ = 0.1
50 0.133 0.092 0.105 0.337 0.075 0.072
200 0.086 0.057 0.060 0.282 0.053 0.061
700 0.067 0.041 0.043 0.219 0.040 0.058

μ = 1 σ = 1
50 0.504 0.498 0.398 0.576 0.588 0.439
200 0.401 0.398 0.426 0.442 0.431 0.417
700 0.319 0.320 0.340 0.346 0.333 0.309

μ = 1 σ = 0.5
50 0.408 0.362 0.438 0.487 0.373 0.354
200 0.322 0.269 0.296 0.369 0.265 0.236
700 0.255 0.204 0.213 0.287 0.199 0.186

μ = 1 σ = 0.1
50 0.339 0.171 0.103 0.453 0.075 0.089
200 0.278 0.104 0.059 0.341 0.053 0.072
700 0.222 0.065 0.042 0.269 0.040 0.051

μ = 5 σ = 1
50 1.300 0.753 0.743 1.410 0.610 0.616
200 0.992 0.500 0.477 1.070 0.441 0.509
700 0.770 0.362 0.352 0.831 0.336 0.350

μ = 5 σ = 0.5
50 1.270 0.596 0.458 1.370 0.369 0.325
200 0.962 0.375 0.290 1.040 0.262 0.211
700 0.749 0.256 0.210 0.808 0.197 0.163

μ = 5 σ = 0.1
50 1.260 0.521 0.102 1.360 0.075 0.070
200 0.953 0.262 0.060 1.030 0.053 0.059
700 0.743 0.172 0.042 0.802 0.040 0.038

developed bandwidth ĥD1.5CV = 2.143, ĥD1.1CV = 2012
and ĥD1.9CV = 1859.

As expected, the normal reference bandwidth hNR
heavily oversmoothes its kernel density curve. It seems

Table 6. E|̂h/hMISE − 1| for lognormal mixture f (x) =
0.5φ(x) + 0.5φσ (x − μ).

n ĥNR ĥLSCV ĥD1.1CV ĥD1.5CV ĥD1.9CV

μ = 0 σ = 1
50 0.143 0.165 0.090 0.081 0.078
200 0.079 0.102 0.056 0.051 0.049
700 0041. 0.065 0.045 0.050 0.046

μ = 0 σ = 0.5
50 0.133 0.167 0.175 0.221 0.207
200 0.067 0.095 0.122 0.268 0.202
700 0.052 0.062 0.071 0.295 0.195

μ = 0 σ = 0.1
50 0.777 0.307 409 4.010 0.532
200 0.629 0.109 0.153 4.320 0.321
700 678 0.058 0.087 4.511 0.029

μ = 1 σ = 1
50 0.156 0.178 0.097 0.088 0.076
200 0.078 0.109 0.050 0.041 0.039
700 0.043 0.054 0.041 0.036 0.

μ = 1 σ = 0.5
50 0.165 0.149 0.207 0.306 0.295
200 0.217 0.091 0.155 0.394 0.281
700 0.279 0.052 0.086 0.442 0.248

μ = 1 σ = 0.1
50 3.510 1.280 0.394 5.020 0.943
200 4.24 0.957 0.136 5.440 0.675
700 4.570 0.646 0.080 5.760 0.430

μ = 5 σ = 1
50 1.140 0.239 0.243 1.310 0.430
200 1.250 0.132 0.096 1.430 0.270
700 1.291 0.076 0.056 1.474 0.094

μ = 5 σ = 0.5
50 2.430 0.616 258 2.712 0.756
200 2.683 0.433 0.129 2.975 0.415
700 2.802 0.298 0.079 3.102 0.234

μ = 5 σ = 0.1
50 15.8 5.930 0.380 17.10 0.342
200 17.00 4.520 0.146 18.40 0.132
700 17.75 3.332 0.081 19.20 0.063

Figure 2. Estimated density of CO2 per capita in 2008 using the
different bandwidths. ĥD1.1CV (solid line); ĥD1.9CV (dashed line);
ĥD1.5CV (dotted line); ĥLSCV , (dotdash line) and ĥNR2 (longdash
line).
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Figure 3. Estimated density of repair times (hours) for an air-
borne communication transceiver: ĥD1.1CV (solid line); ĥD1.9CV
(dashed line); ĥD1.5CV (dotted line); ĥLSCV , (dotdash line) and
ĥNR2 , normal reference (longdash line).

Figure 4. Estimated density of repair times (hours) for an air-
borne communication transceiver using the different band-
widths: ĥD1.1CV (solid line); ĥD1.9CV (dashed line); ĥD1.5CV (dotted
line); ĥLSCV , (dotdash line) and ĥNR2 , normal reference (longdash
line).

that hSJ and hLSCV4, especially the later, are appropri-
ate bandwidths for their density estimates to be able to
capture the feature of the true density curve.

As expected, the normal reference bandwidth hNR
heavily oversmoothes its kernel density curve. It seems
that ĥD1.9CV is appropriate bandwidth for their density
estimate to be able to capture the feature of the true
density curve.

6. Conclusion

This paper proposed the method for bandwidth selec-
tion of bias reduction kernel density estimator, given
in (2). A various bandwidth selection strategies have
been proposed such as normal reference ĥNR2 , least
squares cross-validation ĥLSCV and the β-Divergence
Cross Validation ĥDβCV , with β = 1.5, 1.1 and 1.9. The

normal reference bandwidth method is a simple and
quick selector, but limited the practical use, since they
are restricted to situations where a pre-specified fam-
ily of densities is correctly selected. The least squared
cross validation method do not provide a smooth den-
sity estimation, although asymptotically optimal, the
finite sample behaviour of ĥLSCV is disappointing for
its variability and undersmoothing. We have attempted
to evaluate choice of the optimal bandwidth ĥLSCV
and ĥNR2 , using β-divergence. Compared to traditional
bandwidth selection methods designed for kernel den-
sity estimation, our proposed Dβ bandwidth selection
method is always one of the best for having large RE(̂h)
and small E(̂h/hMISE − 1). Simulation studies showed
that our proposed optimal bandwidth Dβ method
designed for kernel density estimation adapts to differ-
ent situations, and out-performs other bandwidths. We
conclude that the choice of the bandwidth based on the
real data is consistent with the one based on simulations
which is the Dβ (β = 1.1 and 1.5 ) method gives us a
smoother density estimation.
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Appendix

Proof of Proposition 2.1:

f̂ βn (x) = (
fn(x) − B̂ias(̂f (x)

)β .

With a random variable ξ = Op(1) whose expectation is
0 and variance 1, we can write fn(x) as (see Kanazawa, 1993),

fn(x) = f (x)
[
1 + h2

2
f (2)(x)
f (x)

∫
I
t2K(t) dt + h4

24
f (4)(x)
f (x)

×
∫
I
t4K(t) dt + O(h6)

+
{∫

I K(t)2 dt
nhf (x)

}1/2

ξ + Op(n−1/2)

]
. (A1)

Using the result of the Corollary 2.6 (Eugene, 1969),

lim
n→∞ sup

x
nc|f (r)n (x) − f (r)(x)| = 0 with 0 < c <

1
2r + 4

,

we have,

f̂n(x) = fn(x) − B̂ias(fn(x)) = fn(x) − h2

2
f (2)n

∫
I
t2K(t)dt

= fn(x) − h2

2
f (2)

∫
I
t2K(t) dt + O(n−c),

= f (x)
[
1 + h2

2
f (2)(x)
f (x)

∫
I
t2K(t) dt + h4

24
f (4)(x)
f (x)

×
∫
I
t4K(t) dt + O(h6) +

{∫
I K(t)2 dt
nhf (x)

}1/2

ξ

+ Op(n−1/2)

]
− h2

2
f (2)

∫
I
t2K(t) dt + O(n−c),

= f (x)
[
1 + h4

24
f (4)(x)
f (x)

∫
I
t4K(t) dt + O(h6)

+
{∫

I K(t)2 dt
nhf (x)

}1/2

ξ + Op(n−1/2) + O(n−c)

]
.

Where the O(h6) terms depend upon x. Using (1 + z)β =
1 + βz + β(β−1)

2 z2 + O(z3),
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f̂ βn (x) = f (x)β
[
1 + h4

24
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I K(t)2 dt
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]β

,

= f (x)β
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24
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and
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[
1 + h4

24
f (4)(x)
f (x)

∫
I
t4K(t) dt + O(h6)

+
{∫

I K(t)2 dt
nhf (x)

}1/2

ξ+Op(n−1/2)+O(n−c)

⎤⎦β−1

= f (x)β−1

⎡⎣1 + (β − 1)

⎛⎝h4

24
f (4)(x)
f (x)

∫
I
t4K(t) dt

+
{∫

I K(t)2 dt
nhf (x)

}1/2

ξ

⎞⎠+ (β − 1)(β − 2)
2

×
(

h8

576
(f (4)(x))2

f 2(x)

(∫
I
t4K(t) dt

)2
+
∫
I K(t)2 dt
nhf (x)

ξ 2

)

+ Op(n−c) + O(h6)

]
.

Dβ(f̂n(x), f (x))

= 1
β

∫
f̂ βn (x) dx − 1

β − 1

∫
f̂ β−1
n (x)f (x) dx

+ 1
β(β − 1)

∫
f β(x) dx,

= 1
β

∫
f (x)β

[
1 + β

(
h4

24
f (4)(x)
f (x)

∫
I
t4K(t) dt

+
{∫

I K(t)2 dt
nhf (x)

}1/2

ξ

⎞⎠
+β(β − 1)

2

(
h8

576
(f (4)(x))2

f 2(x)

(∫
I
t4K(t) dt

)2

+
∫
I K(t)2 dt
nhf (x)

ξ 2

)
+ Op(n−c) + O(h6)

]
dx

− 1
β − 1

∫
f (x)β

[
1 + (β − 1)

×
⎛⎝h4

24
f (4)(x)
f (x)

∫
I
t4K(t) dt +

{∫
I K(t)2 dt
nhf (x)

}1/2

ξ

⎞⎠
+ (β − 1)(β − 2)

2

×
(

h8

576
(f (4)(x))2

f 2(x)

(∫
I
t4K(t) dt

)2
+
∫
I K(t)2 dt
nhf (x)

ξ 2

)

+ Op(n−c) + O(h6)

]
dx + 1

β(β − 1)

∫
f β(x) dx,

= 1
β

∫
f (x)β

[
β(β − 1)

2

(
h8

576
(f (4)(x))2

f 2(x)

(∫
I
t4K(t) dt

)2

+
∫
I K(t)2 dt
nhf (x)

ξ 2

)
+ Op(n−c)

+ O(h6)

]
dx − 1

β − 1

∫
f (x)β

×
[

(β − 1)(β − 2)
2

(
h8

576
(f (4)(x))2

f 2(x)

(∫
I
t4K(t) dt

)2

+
∫
I K(t)2 dt
nhf (x)

ξ 2

)
+ Op(n−c) + O(h6)

]
dx

=
∫

f (x)β
[(

β − 1
2

− β − 2
2

)

×
(

h8

576
(f (4)(x))2

f 2(x)

(∫
I
t4K(t) dt

)2
+
∫
I K(t)2 dt
nhf (x)

ξ 2

)

+ Op(n−c) + O(h6)

]
dx

= 1
2

[
h8

576

(∫
I
t4K(t) dt

)2 ∫
f β−2(x)

(
f (4)
)2

(x) dx

+ 1
nh

∫
I
K2(t) dt

∫
f β−1(x) dxξ 2

]
+ Op(n−c) + O(h6),

EDβ(f̂n(x), f (x))

= 1
2

[
h8

576

(∫
I
t4K(t) dt

)2 ∫
f β−2(x)

(
f (4)
)2

(x) dx

+ 1
nh

∫
I
K2(t) dt

∫
f β−1(x) dx

]
+ Op(n−c) + O(h6).

�

Proof of Proposition 3.1:

f (x) = 1
σ
√
2π

e−1/2( x−m
σ

)2 ,

so

f (4)(x) = 1
σ 5

√
2π

e−1/2( x−m
σ )2

×
(
3 − 6

(
x − m

σ

)2
+
(
x − m

σ

)4
)
,

(
f (4)(x)

)2 = 1
σ 102π

e−( x−m
σ )2

×
(
9 − 36

(
x − m

σ

)2
+ 30

(
x − m

σ

)4
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+18
(
x − m

σ

)6
+
(
x − m

σ

)8
)
,

∫
f β−2(x)

(
f (4)(x)

)2
dx = 1

σβ+7√β(2π)
β−2
2

×
(
9β4 − 36β3 + 90β2 + 270β + 105

β4

)
.

and ∫
f β−1(x) dx = 1

√
β − 1(2π)

β−2
2

.

In that case the asymptotically optimal bandwidth
hβ in Equation (5) becomes the normal reference
bandwidth.

hβ =hEDβ =
{
72

R(K)
∫
I f (x)

β−1 dx

μ4(K)2
∫
I f (x)β−2

(
f (4)(x)

)2 dx

}1/9

n−1/9

=(72R(K))1/9
(√

β − 1(2π)
β−2
2 μ4(K)2

× 1

σβ+7√β(2π)
β−2
2

)−1/9

×
(
9β4 − 36β3 + 90β2 + 270β + 105

β4

)−1/9

n−1/9

with σ being the standard deviation of f.

For theGaussian kernel,μ4(K) = 3 andR(K) = (4π)−1/2

so that

hNRβ =
{√

2
π

4β4

9β4 − 36β3 + 90β2 + 27β + 105
1
n

}1/9

σ

in the particular case for β = 2

hNR2 =
{√

16
861

2
π

1
n

}1/9

σ . (A2)

The standard deviation σ can be estimated by the sam-
ple standard deviation s or by the standardised interquar-
tile range IQR/1.34 for robustness against outliers (1.34 =
�−1(3/4) − �−1(1/4)), but a better rule of thumb is (e.g.,
Silverman, 1986, pp. 45–47; Härdle, 1991, p. 91).

ĥNR2 =
{√

2
π

16
861

1
n

}1/9

σ̂ , (A3)

with σ̂ = min(s, IQR/1.34) �
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