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ABSTRACT
Toxicity study, especially in determining the maximum tolerated dose (MTD) in phase I clinical
trial, is an important step in developing new life-saving drugs. In practice, toxicity levels may be
categorised as binary grades, multiple grades, or in a more generalised case, continuous grades.
In this study, we propose an overall MTD framework that includes all the aforementioned cases
for a single toxicity outcome (response). Themechanismof determiningMTD involves a function
that is predetermined by user. Analytic properties of such a system are investigated and simu-
lation studies are performed for various scenarios. The concept of the continual reassessment
method (CRM) is also implied in the framework and Bayesian analysis, including Markov chain
Monte Carlo (MCMC) methods are used in estimating the model parameters.
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1. Introduction

The Continual Reassessment Method (CRM), first
introduced by O’Quigley et al. (1990), draws much
attention from the biostatistical community. The fun-
damental idea behind the CRMwas that a dose-toxicity
curve would be fit to the data and that each patient
or patient cohort would be assigned to the dose most
likely to be associated with the target toxicity level, des-
ignated as maximum tolerated dose (MTD). In phase
I cancer clinical trials, the primary goal is to find the
maximum tolerated dose (MTD). In practice, theMTD
is often defined as the dose of the drug that will produce
a defined dose-limiting toxicity (DLT) in a pre-specified
percentage of patients.

The toxicitymeasurement in the original CRMstudy
by O’Quigley et al. (1990) is for binary data, i.e., the
response is either toxic, or non-toxic. CRM has several
attractive properties. One is its quantitative explanation
for the probability of toxicity for the MTD. The second
is its utilisation of prior information about the possible
toxicity at each dose level since the Bayesian infer-
ence is employed. Lastly, it often has smaller number of
patients assigned to lower, ineffective doses.Most of the
recent literature report properties of CRM using simu-
lations, e.g., see Chevret (1993), Faries (1994), Good-
man et al. (1995), Korn et al. (1994), O’Quigley (1992),
and O’Quigley and Chevret (1991).

Variations of the CRM, its comparisons to other
methods, and its applications can be found in Cheng
and Lee (2015), Heyd and Carlin (1999), Iasonos
et al. (2008), Liu et al. (2015), Morita (2011), Onar

et al. (2009), Onimaru et al. (2015), Piantadosi
and Liu (1996), Salter et al. (2015), Storer (2001), Yang
et al. (2010), Zohar and Chevret (2003), and Zohar
et al. (2011). In addition, Clertant andO’Quigley (2017,
2019) propose semiparametric methods in dose find-
ing, which may be reduced to the family of CRM
under certain parametric conditions. On the other
hand, some proposals made to include both toxic-
ity and efficacy as endpoints to guide escalation or
to consider competing endpoints can be found in
Braun (2002), Gooley et al. (1994), Ji et al. (2019),
North et al. (2019), and Thall and Lee (2003).
Stopping rules in designs under the CRM frame-
work are considered in Ishizuka and Ohashi (2001),
O’Quigley (2002), O’Quigley and Reiner (1998), and
Zohar and Chevret (2003). The last one considers two-
stage CRM designs.

On the other hand, toxicity levels in phase I cancer
trials are commonly categorised to multiple grades in
the Common Toxicity Criteria (CTC) by the National
Cancer Institute (1999). The general guidelines of the
NCI are grade 0 for no toxicity; grade 1 for mini-
mal toxicity; grade 2 for moderate toxicity; grade 3 for
severe toxicity; grade 4 for life threatening; and grade 5
for death. In most dose allocation procedures, these
grades are dichotomised based on the DLT. For exam-
ple, if grade 4 is considered as DLT, then grades 0-3
will be non-DLT and treated identically from the point
of view of experimental design. Such polychotomous
structure works for relatively mild toxicities such as
neutropenia (a usually reversible deficiency in white
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blood cells). Although both grade 3 and 4 neutropenia
may be considered as DLT, their difference in severity
is usually not important in dose escalation. This is not
the case for severe and possibly irreversible effects such
as renal, liver, and neurological toxicities. For exam-
ple, grade 4 renal toxicity requires dialysis and is much
more dangerous than grade 3. Also, for renal and many
other toxicities even grade 2 severity may be of con-
cern to physicians, both for its implications on patient
health and comfort, and because of the possibility of
progression to grade 3 and grade 4 toxicity (i.e., irre-
versibility). Such concerns should be addressed in the
dose escalation process. Wang et al. (2000) extended
the CRM incorporating the idea of unequal weights
on the assessments of grade 3 and grade 4 toxicity in
the dose escalation. Bekele and Thall (2004) proposed
a Bayesian method for dose-finding in a sarcoma trial
based on a vector of correlated, ordinal-valued toxici-
ties with severity levels varying with dose and they also
developed amethod for jointly eliciting the prior, a vec-
tor of weights quantifying the clinical importance of
each level of each type of toxicity, and a target total tox-
icity burden (TTB) acceptable to the physicians. Later,
Yuan et al. (2007) propose another extension of the con-
tinual reassessment method (CRM), called the Quasi-
likelihood approach, to incorporate grade information.
They convert the toxicity grades to numeric scores
that reflect their impacts on the dose allocation pro-
cedure, and then incorporated into the CRM using the
quasi-Bernoulli likelihood. A simulation study demon-
strates that the Quasi-CRM is superior to the standard
CRM and comparable to a univariate version of the
Bekele and Thall (2004) method. Zhong et al. (2012)
proposed a trivariate continual reassessment method
for clinical trials of toxicity, efficacy, and surrogate
efficacy.

In Yang and Ye (2012), the CRM is extended to
the multi-toxicity grade case by introducing latent ran-
dom variable, along with the idea of the overall MTD,
which will be investigated in length in this research.
In the current study, a more general setup of the tox-
icity grade system for any toxicity measure will be
introduced.

The article is organised as follows. In Section 2, a
unified system of theMTD for a single toxicity response
is introduced, along with some examples and discus-
sions of its analytic properties. In Section 3, the frame-
work of the MTD finding for the continuous toxicity
response in location-scale family with linear mean in
dosage is established and investigated. It is followed by
simulation studies for the normal response with lin-
earmean in dosage by incorporating Bayesian posterior
analysis in Section 4. Discussions of the target tox-
icity probability curve defined in Section 2 are also
given in Section 4. Section 5 contains conclusions and
discussions. All the necessary proofs are given in the
Appendix.

2. A unified system of themaximum tolerated
dose

2.1. Themodel and theMTD definition

Let X = [Dosemin, Dosemax] denote the range of all
possible doses for the drug under investigation. In prac-
tice, a set of K doses, D = {d1, d2, . . . , dK}, from X

(i.e. D ⊂ X), is pre-selected. Denote by Y the toxic-
ity response at dose x ∈ X, which is assumed to be
a random variable on Y. The support of Y could be
either discrete or continuous sets. Assume that Y has
a cumulative distribution function as

Y|x ∼ F(y|x), −∞ < y < ∞. (1)

In general, the higher the dose, the more severe the
response. Hence, we assume that F(y|x) satisfies the
following regularity condition.

Regularity condition: For all y ∈ Y \ inf{Y}, the
probability P(Y ≥ y|x) is continuous and strictly
increasing in dose x.

In the above regularity condition, y takes value inY \
inf{Y} because P(Y ≥ inf{Y}|x) ≡ 1, for all x ∈ X.

For any value y ∈ Y, we define a level-y severe toxi-
city region, denoted by Ty = {Y ≥ y}, as the following:
there is a severe toxicity response if Y ≥ y, and no
severe toxicity response if Y < y. Given y ∈ Y and a
level-y severe toxicity region Ty, there is a pre-specified
target toxicity tolerance probability function, θy. Such a
function defines the belief of the tolerated toxicity level
(probability) by the users at themeasure level y. To illus-
trate the concept of the systematic MTD, we need to
define certain terminologies.

Definition 2.1: A dose x is said to be level-θy tolerable
if the probability of the severe toxicity region Ty at dose
x is no more than θy, i.e. P(Y ≥ y|x) ≤ θy, and the dose
x is said not level-θy tolerable if the probability of Ty at
dose x is more than θy, i.e. P(Y ≥ y|x) > θy.

For a given y, Definition 2.1 gives the dose level x at
which its probability of toxicity region is smaller than
the predetermined level θy. In addition, for a given a
critical value y, we define the level-y maximum toler-
ated dose as follows.

Definition 2.2: For a value y ∈ Y, associated with its
target toxicity tolerance probability θ = θy, the level-
y maximum tolerated dose (or briefly level-y MTD),
denoted by yMTD(θ), is defined by

yMTD(θ) = sup{x|P(Y ≥ y|x) ≤ θ}
= sup{x|P(Y < y|x) ≥ 1 − θ}. (2)

Using the Definition 2.2, the following propositions
are straightforward due to the increasing in x function
P(Y ≥ y|x) and hence their proofs are omitted.
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Proposition 2.1: For any critical value y, y ∈ Y, the
level-y MTD, yMTD(θ), is increasing in θ , i.e.,

yMTD(θ ′) ≤ yMTD(θ ′′), for any θ ′ < θ ′′.

Referring to any level-y maximum tolerated dose,
yMTD(θ), Proposition 2.1 shows that, in general, the
higher the toxicity tolerance probability θ is, the larger
the dose level can be applied to achieve the maximum
efficacy of the drug. On the other hand, the higher the
toxicity grade that is treated as the DLT, the larger the
amount of the drug dose level can be tolerated. So, we
have the following proposition.

Proposition 2.2: Given the target toxicity tolerance
probability θy, the level-y MTD, yMTD(θ), is increasing
in the critical value y, i.e.,

y′MTD(θ) ≤ y′′MTD(θ), for any y′ < y′′,

where y′, y′′ ∈ Y.

As in the polychotomous case, see Yang and
Ye (2012), we take the supremum here because we
believe that, given a target toxicity probability, the
higher the dosage, the more efficient the chemical
compound, i.e. dose-response curves for both toxic-
ity and efficacy are increasing in the dosage, or, simply
expressed, ‘the more pain, the more gain’.

Using Definition 2.2 above, the overall MTD may
be defined as the largest dose x such that it is level-y
tolerable for all y ∈ Y. Based on Definition 2.2, dose x
is level-y tolerable if and only if dose x ≤ yMTD(θy).
Hence, the overall MTD can be defined as the infimum
of all the level-yMTD as follows.

Definition 2.3: Given y ∈ Y and the pre-specified tar-
get toxicity tolerance probability θ = θ(y), the overall
MTD, denoted by YMTD(θ), is defined as

YMTD(θ) = inf{yMTD(θ(y))|y ∈ Y},
where inf{S} is the infimum of set S and yMTD(θ(y))
is the level-y MTD associated with its target toxicity
tolerance probability θ(y), for y ∈ Y.

Before we discuss more on this overall MTD, let’s
take a look at some examples.

2.2. Illustrative examples

Example 2.1 (Dichotomous Responses): For the
dichotomous situation (see O’Quigley et al., 1990, Yang
& Ye, 2012, and many others), the toxicity grade Y
defined on Y = {0, 1} is Bernoulli distributed, with
P(Y = y|x) = pyx(1 − px)1−y, y = 0 or 1 at any dose
x ∈ X, where px is the probability of toxicity at dose
x. Under the dichotomous situation, the only possible
critical value is y = 1 such that the DLT is experienced

if Y = 1 or DLT is not experienced if Y = 0. Here,
given the target toxicity tolerance probability θ , the
overall MTD is

YMTD = sup{x|P(Y = 1|x,λ) ≤ θ},

where � is a vector of parameters related to the stated
probability. As a special case, in the original CRM
procedure of O’Quigley et al. (1990), P(Y = 1|x, λ) =
([1 + tanh(x)]/2)λ, for λ > 0, is utilised, which is con-
tinuous increasing in x, the overall MTD is

YMTD(θ) = sup

{
x

∣∣∣∣∣
(
1 + tanh(x)

2

)λ

≤ θ

}

= −1
2
log(θ−1/λ − 1).

Since there are only two y responses, we can define

θy =
{
1, if y = y0,
θ0, if y = y1,

where θ0 is the target toxicity tolerance probability at
y = y1. In the dichotomous case, we can just let y0 = 0
and y1 = 1. In this special case, the cumulative distri-
bution function F in (1) is

F(y|x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if y > 1,(
1 + tanh(x)

2

)λ

, if 0 < y ≤ 1,

0, if y ≤ 0,

at dose x.

Example 2.2 (Polychotomous Responses): Polycho-
tomous toxicity response in phase I clinic trials has
drawn attention recently in research and practice.
Wang et al. (2000) extended the CRM by incorporat-
ing the idea of unequal weights on the assessments
of grade 3 and grade 4 toxicity in the dose escala-
tion. Bekele and Thall (2004) proposed a Bayesian
solution for dose finding in a sarcoma trial based on
a vector of correlated, ordinal-valued toxicities with
severity levels varying with dose. Yuan et al. (2007) pro-
posed another extension of the continual reassessment
method (CRM), called the Quasi-CRM, to incorporate
the grade information. In 2012, Yang and Ye (2012)
first proposed the MTD system for polychotomous
responses.

Suppose that a 5-point ordinal scale is used to
describe the severity of each type of toxicity, with
grade 0 representing no toxicity, grade 1 minor tox-
icity, grade 2 moderate toxicity, grade 3 severe tox-
icity and grade 4 very severe toxicity. Hence, Y =
{0, 1, . . . , 4}. For an individual subject treated at dose
x, suppose P(Y = y|x) = py(x), for y = 0, 1, 2, 3, 4 and
x ∈ X. For the critical value y = 1, 2, 3, 4, set the target
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toxicity tolerance probabilities θ = (θ1, θ2, θ3, θ4), the
level-yMTD is

yMTD(θy) = sup{x|P(Y ≥ y|x,β) ≤ θy}

= sup

⎧⎨
⎩x

∣∣∣∣∣∣
4∑

i=y
pi(x) ≤ θy

⎫⎬
⎭ .

Hence, the overall MTD is

YMTD(θ) = min{1MTD(θ1), 2MTD(θ2), 3MTD(θ3),

4MTD(θ4)}.

In Example 2.2, the cumulative distribution function F
in (1) is

F(y|x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if y > 4,
p0(x) + p1(x) + p2(x) + p3(x), if 3 < y ≤ 4,
p0(x) + p1(x) + p2(x), if 2 < y ≤ 3,
p0(x) + p1(x), if 1 < y ≤ 2,
p0(x), if 0 < y ≤ 1,
0, if y ≤ 0,

at dose x.

Examples 2.1 and 2.2 show that the dichotomous and
polychotomous responsemodels are special cases of the
unified system defined in Section 2.1.

2.3. The target toxicity probability function

In Definition 2.3, we propose a criterion in determin-
ing the overall MTD as the smallest level-y MTD. In
the CRM procedures with binary toxicity response, the
practitioner oftenwould control a level-yMTDat a pre-
specified value. For instance, the target level of θ = 0.2
was used in O’Quigley et al. (1990), where θ is the
probability of response corresponding to the aimed-for
target level. Since we are dealing with a response that
might be continuous, the target toxicity tolerance prob-
ability curve θ(y) represents the ‘aimed-for target level
curve’ that we would like to control. Hence, the target
level in the dichotomous case, as well as in the poly-
chotomous case, described in Yang and Ye (2012), are
special cases of the θ(y) curve defined here.

2.4. Properties of the system

In order to investigate the properties of the overallMTD
defined in Section 2.1, we introduce the following nota-
tions. Denoted by Y the set of all possible values of the
toxicity response. Y can be either an ordered categor-
ical or a numerical set. Suppose F = {F(y|x),−∞ <

y < ∞|x ∈ X} such that F(·|x) is a cumulative distribu-
tion function, for all x ∈ X, and θ = θ(y), y ∈ Y, where

θ(y) is the target toxicity tolerance probability asso-
ciated with the level-y severe toxicity Ty, y ∈ Y. The
triplet (Y, F, θ) is called the toxicity system defined on
X. The following lemmawill be shown in theAppendix.

Lemma 2.1: Suppose that g(y) and g0(y) are two func-
tions defined on Y, such that |g0(y)| < ∞. Then

inf
y∈Y

{g(y) − g0(y)} ≤ inf
y∈Y

{g(y)} − inf
y∈Y

{g0(y)}

≤ sup
y∈Y

{g(y) − g0(y)}.

Using Lemma 2.1, the proof of the following Con-
vergence Theorem is also given in the Appendix.

Theorem 2.1 (Convergence Theorem): Suppose that
{(Y, F, θn)|n = 0, 1, 2, . . .} is a sequence of toxicity sys-
tems, such that |yMTD(θ0(y))| < ∞, where yMTD(θ0(y))
is the level-y MTD of the toxicity system (Y, F, θ0). If
θn converges uniformly to a limit θ0, i.e., for any ε > 0,
there exists an N>0, such that for all n>N and y ∈ Y,
| θn(y) − θ0(y)| < ε, then

lim
n→∞

YMTD(θn) = YMTD(θ0), (3)

where YMTD(θn) is the overall MTD with respect to the
toxicity system (Y, F, θn), n = 0, 1, 2, . . ..

Theorem 2.1 shows that ‘θn converges uniformly to
θ0’ is a sufficient condition of (3), which means that if
{θn} gets closer to θ0, as n → ∞, the MTDs resulted
from (Y, F, θn) converges to the MTD resulted from
(Y, F, θ0). Similar to the proof of Theorem 2.1, we
can straightforwardly show the following Robustness
Theorem.

Theorem 2.2 (Robustness Theorem): Suppose (Y, F,
θ1) and (Y, F, θ2) are two toxicity systems, such
that all the level-y MTDs are finite. Define � =
supy∈Y

{|θ1(y) − θ2(y)|}. For any ε > 0, there exists a
δ > 0, such that if � < δ then∣∣∣YMTD(θ1) − YMTD(θ2)

∣∣∣ < ε.

Theorem 2.2 states that if θ1 and θ2 are close, so are
the overall MTDs resulted from them. Based on Propo-
sitions 2.1 and 2.2, we have the following Reduction
Theorem whose proof is given in the Appendix.

Theorem 2.3 (Reduction Theorem): Suppose (Y, F,
θ) is a toxicity system. For the target toxicity tolerance
probability θ = θ(y), if there exist y1, y2 ∈ Y such that
y1 < y2 and θ(y) ≥ θ(y1) for all y1 ≤ y < y2, then the
toxicity system (Y, F, θ) is equivalent to the toxicity sys-
tem (Y∗, F∗, θ∗), whereY∗ = Y \ {y ∈ Y|y1 ≤ y < y2}
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Figure 1. Graph illustration for target toxicity tolerance probability in Theorem 2.3. (a) The target toxicity tolerance probability θ in
system (Y, F, θ); (b) The target toxicity tolerance probability θ∗ in system (Y∗, F∗, θ∗).

Figure 2. Graph illustration for F in Theorem 2.3, where x1 < x2. (a) F in system (Y, F, θ); (b) F∗ in system (Y∗, F∗, θ∗).

and F∗ = {F∗(y|x),−∞ < y < ∞|x ∈ X} such that,
for all x ∈ X,

F∗(y|x) =
{
F(y|x), if y < y1 or y ≥ y2,
F(y2|x), if y1 ≤ y < y2,

(4)

where F(·|x) ∈ F, for all x ∈ X. Furthermore, restricted
on Y∗, the target toxicity tolerance probability θ∗ =
θ(y), y ∈ Y∗, i.e. all the toxicity grade levels between and
including y1 and y2 should be combined into one single
toxicity grade level y1. Here, ‘equivalence’ is in the sense
of finding the overall MTD.

Figure 1(a,b) graphically illustrate the target tox-
icity tolerance probabilities in systems (Y, F, θ) and
(Y∗, F∗, θ∗), respectively.

Figure 1 indicates that the set of toxicity levels,
Y, reduces to the the set of toxicity levels, Y∗ = Y \
[y1, y2) and, restricted on Y∗ = Y \ [y1, y2), the target

toxicity tolerance probability θ∗ (the curve in Figure
1(b)) serves exactly the same purpose in finding the
overall MTD as the target toxicity tolerance probability
θ (the curve in Figure 1(a)). In addition, Figure 2(a,b)
graphically illustrate the F and F∗ in systems (Y, F, θ)

and (Y∗, F∗, θ∗), respectively. It indicates that, at all
dose levels x ∈ X, the toxicity response Y ∼ F(y|x)
(the curve in Figure 2(a)) becomes a mixture toxic-
ity response Y∗ ∼ F∗(y|x) (the curve in Figure 2(b)),
where F∗(y|x) is given in (4).

Theorem 2.3 shows that the redundant portions in a
toxicity system can be removed so that a simpler system
can be considered. The following corollary is a direct
result from Theorem 2.3.

Corollary 2.1: Suppose Y is a continuous toxicity
response which takes value on interval Y = [a, b], where
−∞ < a < b < +∞ and (Y, F, θ) is a toxicity system.
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If the target toxicity probability θ = θ(y) is a stepwise
increasing function, i.e., there exists θ1 > · · · > θM such
that

θ = θ(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ1, if a ≤ y < y1,
θ2, if y1 ≤ y < y2,
...

...
θM , if yM−1 ≤ y ≤ b,

then the toxicity system (Y, F, θ) reduces to a poly-
chotomous toxicity system (Y∗, F∗, θ∗), where Y∗ =
{1, . . . ,M} which is a polychotomization of Y corre-
sponding to the bin boundaries a = y0 < y1 < · · · <

yM−1 < yM = b, and θ∗ = {θ1, . . . θM}. Furthermore,
F∗ = {F∗(y|x),−∞ < y < ∞|x ∈ X} such that,
F∗(y|x)

=

⎧⎪⎨
⎪⎩
0, if y < a,
F(yi|x), if yi−1 ≤ y < yi, for i = 1, . . . ,M,
1, if y ≥ b,

where F(·|x) ∈ F, for all x ∈ X.

Corollary 2.1 shows that once the target toxicity tol-
erance probability curve is reduced to a step function,
we reduce the continuous toxicity response problem to
a polychotomous toxicity response problem.

3. Continuous toxicity response case: location
and scale family response with linear mean in
dose x

Suppose that a continuous toxicity response Y belongs
to a location-scale family with the cumulative distribu-
tion function

Y|x ∼ F
(
y − (β0 + β1x)

σ

)
, −∞ < y < ∞, (5)

at dose level x, where β1 > 0. In order to obtain an
analytic solution of the overall MTD, a common scale
parameter, σ , is assumed and the location parameter,
μ(x) = β0 + β1x, is assumed to be linearly increasing
in the dose level x.

In practice, it is common to give a lower critical
value, y0, and a upper critical value, y1, for the toxicity
grade Y. Only those toxicity grades which fall in inter-
val (y0, y1) are seriously considered. Hence, based on
Theorem 2.3, one can define the target toxicity toler-
ance probability as follows.

θ = θ(y) =

⎧⎪⎨
⎪⎩
1, if y ≤ y0,
h(y, y0, y1), if y0 < y < y1,
θ0, if y ≥ y1,

, (6)

where 0 < θ0 ≤ h(y, y0, y1) ≤ 1 for all y ∈ (y0, y1) and
h(y, y0, y1) is strictly decreasing in y. Usually, θ0 = 0

means the toxicity is 100% fatal and hence we can
restrict to θ0 > 0, since extremely large toxic grades
should be avoided as much as possible.

Since β1 > 0 due to the fact the probability of the
toxicity increases in dosage, according to (2), the level-y
MTD is

yMTD(h(y, y0, y1))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞, y − σF−1[1− for y ≤ y0,
h(y, y0, y1)] − β0

β1
, for y ∈ (y0, y1),

y − σF−1(1 − θ0) − β0

β1
, for y ≥ y1.

(7)

Consequently, since β1 > 0 the overall MTD is
YMTD(θ) = inf

y∈Y

{yMTD(θ(y))}

= min
{
inf
y≤y0

{yMTD(θ(y))},

inf
y∈(y0,y1)

{yMTD(θ(y))},

inf
y≥y1

{yMTD(θ(y))}
}

= min{x∗
1, x

∗
2}, (8)

where,

x∗
1 = inf

y∈(y0,y1)

{
y − σF−1[1 − h(y, y0, y1)] − β0

β1

}
,

and

x∗
2 = y1 − σF−1(1 − θ0) − β0

β1
.

Since (β0,β1) are constants, we have

arg inf
{
y − σF−1[1 − h(y, y0, y1)] − β0

β1

}

= arg inf{y − σF−1[1 − h(y, y0, y1)]}.
Hence, for a fixed distribution F(·), the optimal point,
y∗, is only determined by the target toxicity tolerance
probability h(y, y0, y1). Therefore, the choice of the
function h(y, y0, y1) in (6) is crucial. In Example 3.1
with the normal response, we will discuss the choice of
h(y, y0, y1). According to (7), the following propositions
are straightforward.

Proposition 3.1: Suppose F(·) is the standard cumu-
lative distribution function of the location-scale family
in (5) and the target toxicity tolerance probability is in the
form of (6). Then, for a fixed β1 > 0, the overall MTD is
decreasing in β0.

Proposition 3.1 indicates that, for a fixed positive
slope β1, the higher the mean toxicity response of a
toxicity system, the lower is the overall MTD.
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Figure 3. Graph illustration for (a) the target toxicity tolerance probability with form (10) and (b) the negative derivative curve of
the target toxicity tolerance probability.

Proposition 3.2: Suppose F(·) is the standard cumula-
tive distribution function of the location-scale family in
(5) and the target toxicity tolerance probability is in the
form of (6). Then, for fixed β0,

(a) if y∗ − σF−1[1 − h(y∗, y0, y1)] < β0, the overall
MTD is increasing in β1;

(b) if y∗ − σF−1[1 − h(y∗, y0, y1)] > β0, the overall
MTD is decreasing in β1,

where y∗ = arg inf{y − σF−1[1 − h(y, y0, y1)]}.

Next, we use normal toxicity response with linear
predictor (dose) to illustrate the location-scale family
responses.

Example 3.1 (Normal Response): Suppose that the
continuous toxicity response Y has a cumulative distri-
bution function

Y|x ∼ 	

(
y − (β0 + β1x)

σ

)
, −∞ < y < ∞, (9)

at dose level x, whereβ1 > 0, and	(·) is the cumulative
distribution function of the standard normal random
variable.

In order to illustrate the proposed dose-finding strat-
egy for the continuous toxicity response, we choose the
following target toxicity tolerance probability function

θα = θα(y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if y ≤ y0,

θ0 + (1 − θ0)

(
y1 − y
y1 − y0

)α

, if y0 < y < y1,

θ0, if y ≥ y1,
(10)

whereα > 0. It is easy to verify that (10) is a special case
of (6).

Figure 3(a) shows the target toxicity tolerance prob-
ability curve of θ(y) in (10). On interval (y0, y1), θ(y) is
convex if the power α > 1, concave if the power α < 1
and straightly decreasing if the power α = 1. Figure
3(b) shows the negative derivative curve of the θ(y).
It is clear that if α > 1, the toxicity tolerance proba-
bility decreases quickly as the toxicity response level
increases near the lower toxicity response level which
means that the drug in study could quickly become
toxic in the range. On the other hand, if α < 1, the
toxicity tolerance probability decreases slowly as the
toxicity response level increases near the lower toxicity
response level and then moves quickly near the upper
toxicity response level. If α = 1, the toxicity tolerance
probability from y0 to y1 decreases at the same rate. In
Section 4, simulation studies are preformed to check the
influence of the power α on the overall MTD.

Under this setting, both	(·) and θ(·) are continuous
functions. Hence, using (8), the overallMTDunder this
setting is

YMTD(θα) = inf
y∈(y0,y1)

{
y − σ	−1{(1 − θ0)

×[1 − (
y1−y
y1−y0 )

α]} − β0

}
β−1
1 .

(11)

Based on (11), the following proposition is proven in
the Appendix.

Proposition 3.3: Suppose that the toxicity response is
normally distributed as in (9), and the target toxicity tol-
erance probability is set to be of the form (10), then the
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overall MTD in (11) is decreasing in α and

lim
α→∞

YMTD(θα) = y0 − σ	−1(1 − θ0) − β0

β1

= y0 + σ	−1(θ0) − β0

β1
, (12)

where YMTD(θα) is defined in (11).

Proposition 3.3 shows that the larger the power α

is or the more expected weights the lower toxicity
response (close to left critical point y0) is assigned, the
lower the overall MTD is. As the power α → ∞, the
minimum overall MTD is obtained at the dose level
x∗ at which the probability of level-y0 severe toxicity
Ty0 = {Y ≥ y0} achieves θ0, i.e., P(Y ≥ y0|x∗) = θ0.

Notice that as α → ∞, the target toxicity probability
in (10) reduces to

θα = θα(y) =
{
1, if y ≤ y0,
θ0, if y > y0.

According to Corollary 2.1, the continuous toxicity sys-
tem reduces to the dichotomous toxicity system shown
in Section 2.2. The MTD can thus be determined as

MTD = 	−1(θ0) − β∗
0

β1
. (13)

In (12), denote β∗
0 = β0 − y0 and set σ = 1, then (13)

and (12) are exactly same. In the dichotomous case
discussed in Yang et al. (2010), the underlying distri-
bution of the toxicity response is unknown, hence we
introduce the normal latent variable. In this study, the
toxicity response is assumed to be normally distributed.
Hence, (12) is obtained as the power α in (10) goes to
infinity. Table 1 shows illustrative results of MTD in
Proposition 3.3 for various α.

4. Simulation studies for the normal toxicity
response with Bayesian analysis

4.1. Bayesian posterior analysis

Suppose d1, . . . , dK are K ordered dose levels under
investigation. Let

Fj = {(x1, y1), . . . , (xj, yj)}
denote the history of the first j assignments and
responses, where xl ∈ {d1, . . . , dK} is the dose level

Table 1. An Illustration of Proposition 3.3. The parameters for
the true model are β0 = −1, β1 = 1 and σ = 1. The param-
eters for the target toxicity tolerance probability are y0 = −1,
y1 = 1 and θ0 = 0.05.

α y∗ MTD(θα ) α y∗ MTD(θα )

1 1.00 0.35 10 −0.34 −0.84
2 0.72 0.23 50 −0.79 −1.40
3 0.34 −0.04 100 −0.88 −1.51
4 0.14 −0.25 1000 −0.98 −1.63
5 0.00 −0.41 10000 −1.00 −1.64

assigned to the lth patient and yl is the correspond-
ing observed response, l = 1, . . . , j. According to (9) in
Example 3.1, the likelihood function of β0, β1 and σ 2 is

L(β0,β1, σ 2|Fj)

=
j∏

l=1

1√
2πσ 2

× exp
{
− [yl − (β0 + β1xl)]2

2σ 2

}

∝ (σ 2)−j/2 exp

⎧⎨
⎩− 1

2σ 2

j∑
l=1

[yl − β0 − β1xl]2

⎫⎬
⎭ .

Let π(β0,β1, σ 2) be the prior on (β0,β1, σ 2), the joint
posterior density function of (β0,β1, σ 2) given data
Fj is

π(β0,β1, σ 2|Fj) ∝ π(β0,β1, σ 2)(σ 2)−j/2

× exp

⎧⎨
⎩− 1

2σ 2

j∑
l=1

[yl − β0 − β1xl]2

⎫⎬
⎭ . (14)

Since it is assumed that the average toxicity response
is increasing in dose level x, i.e., the parameter β1 is
assumed to be greater than 0, the prior π(β0,β1, σ 2)

should be defined on {(β0,β1, σ 2)|β1 > 0, σ 2 > 0}.
Furthermore, we assume that (β0,β1, σ 2) are indepen-
dent in the prior. According to (14), the full conditional
posterior distributions are obtained as follows.

π(β0|β1, σ 2,Fj): The posterior densities of β0,
given β1, σ 2 and data, is given as follows.

• If a flat prior π(β0) ∝ 1 is assigned on β0, then,

β0|β1, σ 2,Fj ∼ N

(∑j
l=1(yl − β1xl)

j
,
σ 2

j

)
.

• If a proper conjugate prior N(β̄0, σ̄ 2
0 ) is assigned,

then,

β0|β1, σ 2,Fj

∼ N

(
σ̄ 2
0
∑j

l=1(zl − β1xl) + σ 2β̄0

σ 2 + σ̄ 2
0 j

,
σ 2σ̄ 2

0
σ 2 + σ̄ 2

0 j

)
.

π(β1|β0, σ 2,Fj): The posterior densities of β1, given
β0, σ 2 and data, is given as follows.

• If a flat prior π(β1) ∝ I(β1 > 0) is assigned on β1,
then,

β1|β0, σ 2,Fj

∼ N

(∑j
l=1(yl − β0)xl∑j

l=1 x
2
l

,
σ 2∑j
l=1 x

2
l

)
I(β1 > 0).
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• If a proper conjugate truncated normal prior
N(β̄1, σ̄ 2

1 )I(β1 > 0) is assigned, then,

β1|β0, σ 2,Fj ∼ N

(
σ̄ 2
1
∑j

l=1(yl − β0)xl + σ 2β̄1

σ 2 + σ̄ 2
1
∑j

l=1 x
2
l

,

σ 2σ̄ 2
1

σ 2 + σ̄ 2
1
∑j

l=1 x
2
l

)
I(β1 > 0).

• If a proper, but non-conjugate exponential prior
exp{−β1}I(β1 > 0) is assigned, then,

β1|β0, σ 2,Fj ∼ N

(∑j
l=1(yl − β0)xl − σ 2∑j

l=1 x
2
l

,

σ 2∑j
l=1 x

2
l

)
I(β1 > 0).

π(σ 2|β0,β1,Fj): The posterior densities of σ 2, given
β0, β2 and data, is given as follows.

• If σ 2 has an inverse gamma prior Inv − Gamma
(a, b)with the probability density function. Then the
posterior distribution of σ 2, given β0 and β1, follows

σ 2|β0,β1,Fj ∼ Inv − Gamma

⎛
⎝a + j/2, b

+
j∑

l=1

(yl − β0 − β1xl)2/2

⎞
⎠ .

• If π(σ 2) ∝ 1/σ 2, then

σ 2|β0,β1,Fj

∼ Inv − Gamma

⎛
⎝j/2,

j∑
l=1

(yl − β0 − β1xl)2/2

⎞
⎠.

4.2. MTD determination procedure

Based on the Gibbs samplers, β0,β1, and σ 2 could be
generated from those full conditional posterior distri-
butions given in Section 4.1. After drawing from the
joint posterior distribution π(β0,β1, σ 2|Fj), one can
estimate the overall MTD by using the following for-
mula.

YM̂TD(θα)

= inf
y∈(y0,y1)

{
y − σ̂	−1{(1 − θ0)

×[1 − (
y1−y
y1−y0 )

α]} − β̂0

}
β̂−1
1 . (15)

The estimates of the parameters in (15) can be obtained
based on the MCMC simulation. Suppose one has
obtained N generations of (β0,β1, σ 2), which are

(β
(i)
0 ,β(i)

1 , (σ 2)(i)), i = 1, 2, . . . ,N, then,

β̂0 = Êπ(β0|Fj)(β0) = 1
N

N∑
i=1

β
(i)
0 ,

β̂1 = Êπ(β1|Fj)(β1) = 1
N

N∑
i=1

β
(i)
1 ,

and

σ̂ =
√
Êπ(σ 2|Fj)(σ 2) =

√√√√ 1
N

N∑
i=1

(σ 2)(i).

With regarding to the dose allocation, one can find the
next dose level xj+1 ∈ {d1, . . . , dK}, at which the (j +
1)th patient is to be treated, such that it is the closest
dose to the estimated overall MTD, i.e.,

xj+1 = argmin
x∈{d1,...,dK }

{|x −Y M̂TD(θα)|}, (16)

where YM̂TD(θα) is obtained from (15). After col-
lecting the (j + 1)th response yj+1, given Fj+1 =
{(x1, y1), . . . , (xj, yj), (xj+1, yj+1)}, the updated overall
MTD can be obtained from (15). Continue in this way
until the results of the last patient, say nth, are avail-
able. Finally, the recommended dose level will be xn+1,
which is the recommended MTD.

4.3. Simulation study

In order to check the operating characteristics of the
normal response model, a simulation study is per-
formed. We suppose that there are six predetermined
and ordered dose levels, d1, d2, . . . , d6. The data are
simulated according to the following distributions,

Y|di ∼ N(β0 + β1di, σ 2), for i = 1, . . . , 6,

where β1 > 0, since we assume that the mean toxicity
response is increasing in dose level, and σ 2 is the com-
monvariance for the toxicity responses at all dose levels.
In this simulation study, we set β0 = 1 and β1 = 2. For
σ 2, we consider three settings, 0.25, 1 and 2.

For the target toxicity tolerance probability in (10),
we set y0 = −2 and y1 = 4, which yields a range of 6
for the toxicity response. It is about 12, 6 and 4 times the
standard deviations of the three settings of σ 2, respec-
tively. For θ1, we consider 0.70, 0.90 and 0.99. For the
power α, we take 0.2, 1 and 5. The parameters used in
the simulation are shown in Table 2.

Table 3 summarises the simulation results of 200
duplications (trials) for various θ0 levels: (0.30, 0.10,
0.01); various σ 2 values: (2, 1, 0.25); and various power
α values: (0.2, 1, 5). Each entry consists of two values
(s, t), where s stands for the frequency of overall MTD
recommendation on each dose level and t the frequency
of exposure for each dose. The cell with the underline
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Table 2. Setting of simulation study for the normal toxicity
response.

Number of cohorts in one trial 10
Number of patients in each cohort 3
Number of patients in one trial 30
Number of simulations 200
Number of dose levels 6
Target toxicity probability y0 = −2

y1 = 4
θ0 = 0.01, 0.10, 0.30
α = 0.2, 1, 5

Model parameter β0 = 1
β1 = 2
σ 2 = 0.25, 1, 2

indicates the highest recommendation percentage, i.e.,
the MTD. In addition, the 6 dose-level values are also
given Table 3, along with the true MTD value obtained
using (11) for each case.

The first observation we have in Table 3 is that the
recommended overall MTD’s are all very close to the
corresponding true MTD values. In addition, Table 3
shows that for fixed θ0 and σ 2 values, as the power
α decreases, both the percentage of the recommended
MTDdose level and the percentage of patient allocation
are drawn toward the lower dose levels. For example, in
the case of θ0 = 0.30 and σ 2 = 2, the most frequently
recommended dose levels are d6, d5 and d2 for the
power α = 0.2, 1 and 5, respectively. This result is con-
sistent with the first claim in Proposition 3.3, which is
the overall MTD is decreasing in α.

Table 3 also shows that, for the fixed θ0 and the power
α, as σ 2 decreases, both the percentage of the recom-
mended MTD dose level and the percentage of patient

allocation are drawn toward the lower dose levels. For
instance, in the case that θ0 = 0.30 and the power α =
1, the most frequently recommended dose levels are
d5, d4 and d2 for σ 2 = 2, 1 and 0.25, respectively. This
result indicates that, for the normal toxicity response,
the more divergence the toxicity response is, the higher
is the MTD dose level recommended.

Furthermore, as the lower limit of the target toxi-
city tolerance probability θ0 decreases, Table 3 shows
that both the percentage of the recommended MTD
dose levels and the percentage of patient allocations are
drawn toward the lower dose levels. This results is con-
sistent with the simulation results shown in the poly-
chotomous toxicity responses in Yang and Ye (2012). In
practice, it is reasonable to allocate the patient at the
lower dose level if the higher toxicity level is considered
more severe, which is indicated here by larger θ1 in the
target toxicity tolerance probability.

4.4. Choice of the target toxicity tolerance
probability function

One of the important component in the system defined
in Section 2 is the target toxicity tolerance probability
function θ = θ(y) in (6). This function can be viewed as
the desired toxicity tolerance probability curve that we
would like to control. In the concept of the level-yMTD
in Definition 2.2, we want to find the largest dosage
x, such that P(Y ≥ y|x) ≤ θ(y). Consider a situation
that, other than pre-fixed y0 and y1, we define an y∗
such that the target toxicity tolerance probability at y∗

Table 3. Simulation results by generating 200 data sets for each scenario: each cell consists of two values s(t), where s is the per-
centage that the dosage di is recommended as an MTD, and t a percentage that the dosage is used in the experiment to search for
the MTD. For each row, the dosage with largest percentage in MTD selection is boldfaced.

True Dose level

θ0 σ 2 α MTD d1 : −1.47 d2 : −1.10 d3 : −0.69 d4 : −0.42 d5 : 0.00 d6 : 0.42

0.01 0.25 0.02 −0.78 0.5 (11.25) 25.5 (25.00) 67.5 (52.25) 6.5 (11.0) 0.0 (0.5)
1 −0.94 1.0 (11.80) 64.0 (49.40) 35.0 (36.80) 0.0 (2.0)
5 −1.16 12.5 (22.35) 87.5 (74.75) 0.0 (2.90)

1 0.02 −0.19 0.0 (15.00) 1.5 (10.95) 7.5 (14.35) 42.5 (27.65) 43.5 (27.45) 5.0 (4.60)
1 −0.55 0.0 (14.75) 5.0 (13.75) 44.5 (31.75) 47.0 (33.00) 3.5 (7.20) 0.0 (0.15)
5 −1.11 25.0 (38.30) 68.0 (51.65) 7.0 (9.65) 0.0 (0.40)

2 0.02 0.24 2.0 (21.65) 5.5 (13.45) 12.5 (16.40) 30.5 (22.70) 40.0 (20.10) 9.5 (5.70)
1 −0.31 3.5 (22.25) 7.0 (14.50) 23.5 (20.65) 42.0 (26.60) 22.0 (14.25) 2.0 (1.75)
5 −1.26 61.0 (69.15) 37.0 (27.30) 2.0 (3.45) 0.0 (0.10)

0.10 0.25 0.02 −0.77 0.5 (10.65) 21.5 (24.05) 71.5 (52.10) 6.5 (12.55) 0.0 (0.65)
1 −0.93 1.0 (11.20) 62.5 (46.95) 36.5 (39.55) 0.0 (2.30)
5 −1.14 1.0 (19.70) 88.5 (76.40) 0.5 (3.90)

1 0.02 −0.18 0.0 (11.25) 1.5 (11.00) 5.5 (13.55) 38.0 (26.20) 47.5 (30.60) 7.5 (7.40)
1 −0.53 0.0 (11.50) 5.5 (13.15) 37.0 (30.50) 52.5 (35.60) 5.0 (8.95) 0.0 (0.30)
5 −1.05 12.5 (26.45) 71.0 (56.75) 16.0 (15.90) 0.5 (0.90)

2 0.02 0.27 0.0 (14.10) 0.0 (10.00) 0.5 (10.60) 6.5 (13.10) 34.5 (21.85) 58.5 (30.35)
1 −0.27 0.5 (14.45) 1.5 (11.00) 13.5 (16.85) 39.5 (25.95) 39.5 (26.40) 5.5 (5.35)
5 −1.09 35.0 (47.35) 53.5 (41.35) 11.5 (10.20) 0.0 (1.10)

0.30 0.25 0.02 −0.75 0.0 (10.25) 19.0 (22.45) 70.5 (52.10) 10.5 (14.35) 0.0 (0.85)
1 −0.90 1.0 (10.70) 51.0 (41.50) 47.0 (44.20) 1.0 (26.45)
5 −1.10 6.0 (14.90) 92.0 (76.55) 2.0 (8.45) 0.0 (0.10)

1 0.02 −0.13 0.0 (10.15) 1.5 (10.80) 4.5 (13.35) 32.0 (23.40) 53.0 (32.60) 9.0 (9.70)
1 −0.47 0.0 (10.35) 2.0 (11.70) 31.5 (25.45) 55.0 (38.35) 12.0 (13.45) 0.0 (0.70)
5 −0.92 4.0 (14.35) 50.5 (43.45) 40.0 (38.10) 1.5 (4.05) 0.0 (0.05)

2 0.02 0.34 0.0 (10.45) 0.0 (10.00) 0.5 (10.40) 5.0 (12.15) 26.5 (18.90) 68.0 (38.10)
1 −0.17 0.0 (10.40) 1.0 (11.00) 6.0 (13.50) 34.0 (23.90) 52.5 (31.85) 6.5 (9.35)
5 −0.85 7.5 (19.95) 46.0 (40.05) 39.0 (30.90) 7.0 (8.30) 0.5 (0.80)
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Figure 4. Graph illustrations for the θ(y) functions discussed in Table 4.

Table 4. Choices for the target toxicity tolerance probability
functions by (10).

(y0, y1) θ0 θ∗ y∗ α

(−2, 4) 0.10 0.3 −1 8.2496
(−2, 4) 0.10 0.3 1 2.1699
(−2, 4) 0.10 0.3 3 0.8394
(−2, 4) 0.01 0.3 −1 6.7344
(−2, 4) 0.01 0.3 1 1.7714
(−2, 4) 0.01 0.3 3 0.6853

reaches to a pre-fixed level θ∗ such as a controlled target
level probability for the dichotomous case. Table 4 lists
some values for those scenarios that we consider in the
following simulation by using the function θα in (10).

Here we consider a commonly used target level θ∗ =
0.3. In addition, Figure 4 shows these target toxicity
probability curves.

Notice that, in Figure 4, the trend of θ(y) changes
with different values of θ∗ = θ(y∗) and θ0. When y∗
increases from −1 to 3, θ(y) reaches to θ0 in a slower
pace. This means that the target tolerance probability
curve decreases from 1 to θ0 in a slower rate.

Using the target toxicity tolerance probability curves,
simulation results in obtaining the MTD’s for the same
normal-response model investigated in Section 4.3
are shown in Table 5. In Table 5, the recommended
MTD dosage level increases as y∗ increases. When the

Table 5. Simulation results of the recommended MTD levels, as well as dosage allocation
percentages for different choices of θ∗ and y∗.

Dose level

σ 2 y∗ d1 d2 d3 d4 d5 d6

θ0 = 0.01
0.25 −1 24.5 (33.35) 75.5 (65.65) 0.0 (1.00)

1 2.0 (12.80) 83.0 (64.90) 15.0 (21.60) 0.0 (7.00)
3 0.5 (11.65) 51.0 (41.85) 47.0 (42.75) 1.5 (3.75)

1 −1 49.0 (59.75) 48.0 (37.40) 3.0 (2.75) 0.0 (0.10)
1 1.0 (15.55) 10.5 (17.55) 73.0 (47.55) 15.5 (18.00) 0.0 (1.35)
3 0.0 (14.70) 2.0 (11.75) 33.0 (25.00) 50.5 (35.00) 14.5 (12.75) 0.0 (0.80)

2 −1 83.0 (86.20) 15.5 (12.80) 1.5 (1.00)
1 5.0 (22.90) 18.0 (19.15) 39.0 (29.95) 0.0 (22.70) 4.0 (5.05) 0.0 (0.25)
3 2.0 (21.65) 6.0 (14.15) 18.5 (18.95) 40.0 (25.40) 30.5 (17.35) 0.25 (2.50)

θ0 = 0.10
0.25 −1 31.0 (38.05) 69.0 (61.10) 0.0 (0.85)

1 2.5 (12.10) 86.0 (68.20) 11.5 (19.20) 0.0 (0.50)
3 1.0 (10.90) 53.0 (43.45) 45.0 (42.65) 1.0 (3.00)

1 −1 47.5 (56.80) 51.0 (40.45) 1.5 (2.65) 0.0 (0.10)
1 1.0 (12.50) 17.5 (20.95) 67.0 (49.20) 14.5 (16.25) 0.0 (1.10)
3 0.5 (11.70) 3.5 (11.85) 32.5 (27.00) 55.0 (37.50) 8.5 (11.25) 0.0 (0.70)

2 −1 76.5 (79.35) 23.0 (19.00) 0.5 (1.65)
1 2.0 (16.70) 17.5 (20.45) 45.5 (33.55) 32.0 (23.75) 3.0 (5.40) 0.0 (0.15)
3 0.0 (14.15) 1.0 (10.65) 6.0 (13.90) 36.5 (25.15) 51.0 (28.75) 5.5 (7.40)
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Table 6. Simulation results of the recommended MTD levels, as well as dosage allocation percentages for ‘dichotomous’ cases. Two
decision criteria are employed: criterion I is to choose next dosage level at a nearest dose, and criterion II is to choose next dosage
level at the lower bound.

Dose level

σ 2 d1 d2 d3 d4 d5 d6

Criterion I 0.25 0.0 (10.30) 0.0 (10.00) 0.0 (10.00) 22.5 (21.85) 77.5 (47.70) 0.0 (0.15)
1 0.0 (10.50) 0.0 (10.05) 3.5 (12.45) 56.0 (39.40) 40.0 (25.80) 0.5 (1.80)
2 0.5 (14.50) 3.5 (12.85) 21.0 (21.15) 50.5 (31.90) 24.0 (17.85) 0.5 (1.75)

Criterion II 0.25 0.0 (10.15) 0.0 (10.10) 0.5 (10.45) 91.5 (60.30) 8.0 (8.95) 0.0 (0.05)
1 0.0 (10.10) 0.0 (10.40) 15.0 (18.85) 48.2 (32.20) 8.0 (10.95) 0.0 (0.50)
2 1.5 (15.15) 14.0 (18.75) 26.0 (25.15) 52.0 (31.90) 6.5 (8.05) 0.0 (0.70)

variance of the toxicity response is larger, the recom-
mended MTD levels spread out more than those with
smaller variances.

Finally in this section, we consider a situation that
is similar to a dichotomous case, although the toxicity
response is still set as normal distribution in Section 4.3.
However, the target toxicity probability curve is set as

h(y, y0, y1) =
{
1, if − 2 ≤ y < 1,
0.3, if 1 ≤ y ≤ 4.

In this situation, the level-yMTD can be expressed as

yMTD(h(y, y0, y1)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y − σ	−1(0) − β0

β1
= ∞, if − 2 ≤ y < 1,

y − σ	−1(0.7) − β0

β1

= y − 0.5244σ − β0

β1
, if 2581 ≤ y ≤ 4,

The overall MTD thus can be obtained accordingly. A
simulation study for this model is given in Table 6.

In Table 6, two MTD dosage selection criteria are
used. Criterion I chooses the next level MTD by the
form in (16), where a dose level that has nearest distance
to YM̂TD(θ) is chosen, while Criterion II chooses the
next level MTD by choosing the largest dose level that
is no larger than YM̂TD(θ). The justification of Cri-
terion II is that we choose next dose level in a more
conservative way. In Table 6, we observe that most of
the time, level d4 is chosen, unless when σ = 0.5, Cri-
terion I chooses d5. Since we know the true model in
this case, we can calculate the toxicity probability at
d4 and d5 as P(Y > 1|d4) = (0.28, 0.20, 0.05), for σ 2 =
(2, 1, 0.25), respectively, and P(Y > 1|d5) = 0.5 for all
σ 2. Hence, it is more aggressive, i.e., with more risk, in
using Criterion I for the case of a smaller variance.

5. Conclusions and discussions

In this study, we propose a new framework of determin-
ing the maximum tolerated dose for a single toxicity
response in clinical trial study.We have a newdefinition
as overall MTD, YMTD(θ), which yields a unified
model for the dose finding problem in Phase I clini-
cal trials. The analytic properties of the overall MTD

are examined. We prove the Convergence, Robustness
andReduction theorems of the overallMTD. It is shown
that the traditional definition of MTD in the case of the
dichotomous toxicity responses (see O’Quigley et al.,
1990; Yang et al., 2010) as well as the overall MTD,
MMTD(θ), introduced in the polychotomous toxicity
responses (Yang & Ye, 2012), are special cases of this
more generally defined overall MTD. In other words,
this unified model makes it possible to consider the
dichotomous, polychotomous and continuous toxicity
responses under the same framework.

In order to find the overall MTD, the target toxic-
ity tolerance probability θ(y), that corresponds to the
level-y severe toxicity Ty, for y ∈ Y, needs to be pre-
specified. In the cases of dichotomous and polychoto-
mous toxicity responses, the determination of θ(y), y ∈
Y, is relatively straightforward (see for instance, Yang
&Ye, 2012). In the case of continuous toxicity response,
one needs to interact with the physicians to obtain an
acceptable target toxicity tolerance probability curve
θ(y). In general, the higher the toxicity tolerance level,
the lower the chance that the patient exposes to the tox-
icity is allowed, i.e., the target toxicity tolerance prob-
ability θ(y) is decreasing in y, where y ∈ Y. For all
y ∈ Y, θ0 ≤ θ(y) ≤ 1. A lower bound θ0 > 0 is neces-
sary for the continuous toxicity response. Otherwise, if
infy∈Y{θ(y)} = 0, YMTD(θ) = −∞ according to (7).
This will be impractical.

As an example for the continuous case, the nor-
mal toxicity response with linear mean in dosage is
studied in this research. According to Corollary 2.1
and Proposition 3.3, the normal toxicity system could
reduce to the dichotomous probit system described in
Yang et al. (2010), as the power α in target toxicity toler-
ance probability (10) goes to infinity. This indicates that
the proposed framework is closed under the normal
distribution. In addition,wemay also use a different tar-
get toxicity tolerance probability curve for the normal-
response model to reach similar dichotomous response
result, such as shown in Section 4.4. Furthermore, we
perform several simulation studies and it is shown that
the unified model works well for the normal-toxicity
responses.

In practice, other continuous toxicity models, such
as logistic, beta if the toxicity is represented in percent-
age or other suitable models, can be utilised under the
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same framework. Prior elicitation is also an important
issue. In this study, we provide full conditional distribu-
tions for the parameters for various priors. When more
complex models or hard-to-deal-with priors are used,
complex full conditional distributions may be encoun-
tered, and the difficulties of simulation may arise.
However, many simulation methods can be applied to
handle those difficulties, such as acceptance-rejection
algorithms or Metropolis-Hastings algorithm.
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Appendix

Proof of Lemma 2.1.: Since, for all y ∈ Y, infy∈Y{g(y) −
g0(y)} ≤ g(y) − g0(y) ≤ supy∈Y

{g(y) − g0(y)}, we have
infy∈Y{g(y) − g0(y)} + g0(y) ≤ g(y) − g0(y) + g0(y) ≤
supy∈Y

{g(y) − g0(y)} + g0(y). Therefore,

inf
y∈Y

{g(y) − g0(y)} + inf
y∈Y

{g0(y)} ≤ inf
y∈Y

{g(y)}

≤ sup
y∈Y

{g(y) − g0(y)} + inf
y∈Y

{g0(y)}.

Consequently, the fact is proved by subtracting infy∈Y{g0(y)}
on each side of both inequalities because infy∈Y{g0(y)} < ∞
since |g0(y)| < ∞. �

Proof of Theorem 2.1.: For all y ∈ Y, denote hy(x) � P(Y<

y|x). According to the regularity condition, hy(x) is contin-
uous and strictly decreasing in x. Hence h−1

y (x) is also con-
tinuous and strictly decreasing in x, where h−1

y is the inverse
function of hy. Therefore, according to (2.2), the level-yMTD
for toxicity system (Y, F, θn) is

yMTD(θn(y)) = sup{x|P(Y < y|x) ≥ 1 − θn(y)}
= sup{x|hy(x) ≥ 1 − θn(y)}
= sup{x|x ≥ h−1

y (1 − θn(y))}
= h−1

y (1 − θn(y)),

where n = 0, 1, 2, . . .. Since h−1
y is continuous, one has, for

any ε > 0, there exists a δ > 0, such that if |θn(y) − θ0(y)| <

δ, then

|yMTD(θn(y)) − yMTD(θ0(y))|
= |h−1

y (θn(y)) − h−1
y (θ0(y))| < ε.

Since θn uniformly converges to θ0, for the δ > 0, there exists
anN > 0, such that for all n>N and y ∈ Y, |θn(y) − θ0(y)| <

δ.
Consequently, for any ε > 0, there exists aN > 0, such that

for all n>N and y ∈ Y,

−ε < yMTD(θn(y)) − yMTD(θ0(y)) < ε.

Furthermore, according to Lemma 2.1, we have

−ε < inf
y∈Y

{yMTD(θn(y))} − inf
y∈Y

{yMTD(θ0(y))} < ε,

or,

−ε < YMTD(θn) − YMTD(θ0) < ε,
which implies that limn→∞ YMTD(θn) = YMTD(θ0). �

Proof of Theorem 2.3.: Let YMTD(θ) and Y
∗
MTD∗(θ∗)

denote the overall MTD of toxicity systems (Y, F, θ) and
(Y∗, F∗, θ∗), respectively. Since θ(y) ≥ θ(y1) for all y1 ≤ y <
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y2, using Propositions 2.1 and 2.2, we have,

y1MTD(θ(y1)) ≤ yMTD(θ(y1)) ≤y MTD(θ(y)),

for all y1 ≤ y < y2,

where yMTD(θ(y)) is the level-y MTD associated with sys-
tem (Y, F, θ). Hence,

YMTD(θ) = inf{yMTD(θ(y))|y ∈ Y}
= inf{yMTD(θ(y))|y ∈ Y∗}. (A1)

Using (4) and θ∗ = θ(y), y ∈ Y∗, we have

{x ∈ X|F∗(y|x) ≥ 1 − θ∗(y)}
= {x ∈ X|F(y|x) ≥ 1 − θ(y)}, for all y ∈ Y∗.

Hence, according to (2.2), yMTD∗(θ∗(y)) = yMTD(θ(y)),
for all y ∈ Y∗, where yMTD∗(θ∗(y)) is the level-y MTD
associated with system (Y∗, F∗, θ∗). Finally, using (A1),

YMTD(θ) = inf{yMTD(θ(y))|y ∈ Y∗}
= inf{yMTD∗(θ∗(y))|y ∈ Y∗}
= Y

∗
MTD∗(θ∗)

which implies that system (Y, F, θ) is equivalent to system
(Y∗, F∗, θ∗) in the sense of finding the overall MTD. �

Proof of Proposition 3.3.: Since [(y1 − y)/(y1 − y0)]α is
decreasing in α, for any y ∈ (y0, y1), it is easy to show that
the overall MTD in (11) is decreasing in α.

Since 	−1[(1 − θ0)(1 − [ y1−y
y1−y0 ]

α)] is continuously
increasing in α, we have

lim
α→∞ 	−1

[
(1 − θ0)

(
1 −

[
y1 − y
y1 − y0

]α)]
= 	−1(1 − θ0),

for any y ∈ (y0, y1), which implies that for any ε > 0, there
exists a real number A, such that for any α > A,

−β1ε

σ
<	−1

[
(1−θ0)

(
1−
[
y1 − y
y1 − y0

]α)]
−	−1(θ1) < 0,

for any y ∈ (y0, y1). Hence, for any ε > 0, there exists a real
number A, such that for any α > A,

0 < inf
y∈(y0,y1)

⎧⎪⎪⎨
⎪⎪⎩
y − σ	−1

[
(1 − θ0)

(
1 −

[
y1 − y
y1 − y0

]α)]
− β0

β1

⎫⎪⎪⎬
⎪⎪⎭

− y0 − σ	−1(1 − θ0) − β0

β1

= inf
y∈(y0,y1)

⎧⎪⎪⎨
⎪⎪⎩

(y − y0) − σ

(
	−1

[
(1 − θ0)(

1 −
[
y1 − y
y1 − y0

]α)]
− 	−1(1 − θ0) )

⎫⎪⎪⎬
⎪⎪⎭β−1

1

< inf
y∈(y0,y1)

{
y − y0

β1

}
+ ε = ε,

which implies (12). �
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