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ABSTRACT
New technological advancements combined with powerful computer hardware and high-speed
network make big data available. The massive sample size of big data introduces unique com-
putational challenges on scalability and storage of statistical methods. In this paper, we focus on
the lack of fit test of parametric regressionmodels under the framework of big data.We develop a
computationally feasible testing approach via integrating the divide-and-conquer algorithm into
a powerful nonparametric test statistic. Our theory results show that under mild conditions, the
asymptotic null distribution of the proposed test is standard normal. Furthermore, the proposed
test benefits from the use of data-driven bandwidth procedure and thus possesses certain adap-
tive property. Simulation studies show that the proposedmethod has satisfactory performances,
and it is illustrated with an analysis of an airline data.

1. Introduction

The advancement and prevalence of computer technol-
ogy in nearly every realm of science and daily life have
enabled the collection of ‘big data’. While access to such
wealth of information opens the door towards new dis-
coveries, it also poses challenges to the current statisti-
cal and computational theory andmethodology. Since it
is usually computationally infeasible to make inference
directly for big data due to the limitation of computing
power and memory space, checking model misspecifi-
cations is not an easy task.

We shall now present onemotivating example. There
is an airline on-time data which consists of flight
arrival and departure details for all commercial flights
from October 1987 to April 2008 in USA. There are
123,534,969 records and 29 variables. And it occu-
pies 11.2GB space. Due to the highly developed trans-
portation system of airplanes, flight delay problem has
become more and more serious. An appropriate model
is critical for predicting the delay probability of a flight.
Suppose that a parametric model is provided accord-
ing to historical experience. Naturally, before fitting
the new data with the proposed model, we want to
make sure whether the proposed model is appropri-
ate or not. However, for such big data, many existing
softwares have failed to handle it. Since the ‘big data’
problem is not only the size of the data but also the
analysis of it takes a significant amount of time and
computer memory. Moreover, since the samples in big
datasets are typically aggregated from multiple sources
(Fan, Han, & Liu, 2014), a computationally feasible and
efficient lack-of-fit test is highly desirable for massive
datasets.

CONTACT Zhaojun Wang zjwang@nankai.edu.cn

Let (Y,X) be a random variable in R × R
p. We

have observations (yi, xi)Ni=1 from the underlyingmodel
E(Y|X = x) = m(x). In a parametric regression model,
m(x) is assumed to belong to a parametric family of
known real functions g(x; θ) on R

p × �, where � ⊂
R

q. We want to test the null hypothesis that the para-
metric model is correct for a dataset, say

H0 : m(x) = g(x, θ0) for some θ0 ∈ �,

against the alternative hypothesis

H1 : m(x) �= g(x, θ) for all θ ∈ �.

A number of nonparametric smoothing-based lack-
of-fit tests for small and moderate sample sizes have
been proposed during the last 20 years (see González-
Manteiga and Crujeiras (2013) for an overview).
Among them, some kernel-based tests, such as Zheng
(1996) and Hardle and Mammen (1993), are easy to
implement when N is not too large. However, the
quadratic time complexity and large memory greatly
hamper their availability to massive data applications.
The main emphasis of this paper is to overcome com-
putational barriers of traditional tests for massive data
by using divide-and-conquer (DC) algorithm.

When the data is too large to access the whole dataset
once in a processor, one strategy is to divide and con-
quer. A DC algorithm works by recursively breaking
down a big dataset into two or more subsets which
are manageable and then analyse these subsets sepa-
rately and combine the sub-solutions as the final one.
Recently, DC strategy has been widely used in analysing
massive data concerning parameters estimation of para-
metric regression (Battey, Fan, Liu, Lu, & Zhu, 2015;
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Chen & Xie, 2014; Lin & Xi, 2011; Schifano, Wu,Wang,
Yan, & Chen, 2016), nonparametric regression curve
estimation (Cheng & Shang, 2015; Zhang, John, &
Martin, 2013; Zhao, Cheng, & Liu, 2016) and bootstrap
issue (Kleiner, Talwalkar, Sarkar, & Jordan, 2015). How-
ever, little attention has been paid to the lack-of-fit test
of parametric regression models for massive data. We
combine theDCmethodwith the test statistic proposed
by Zheng (1996) to solve the computational problem.
We separate the data into K subsets evenly with each
subset having the same sample size, n. Building test
statistic based on each subsample and then averaging
these test statistics to obtain the final one, the computa-
tional complexity of the test statistic is reduced fromN2

toO(Kn2) and the calculation occupiesmuch lessmem-
ory, which is quite useful for big data.

The choice of smoothing parameter inherent in
smoothing-based test plays an essential role, which
refers to bandwidth parameter in kernel-based tests.
As criteria used for smoothing parameter selection in
nonparametric estimation differ from testing, it is
inappropriate to apply prevalent smoothing parameter
selection approaches for nonparametric estimation in
the context of nonparametric hypothesis testing. There
has been a growing amount of literatures on smooth-
ing parameter selection in testing (e.g., Eubank, Ching-
Shang, & Wang, 2005; Gao & Gijbels, 2008; Guerre
& Lavergne, 2005; Hart, 1997; Horowitz & Spokoiny,
2001; Kulasekera &Wang, 1997; Ledwina, 1993; Zhang,
2003a, 2003b). A popular approach is to combine the
test statistics obtained from using a series of suitable
bandwidth values (Guerre & Lavergne, 2005; Horowitz
& Spokoiny, 2001; Zhang, 2003a), resulting in an adap-
tive test. For instance, Horowitz and Spokoiny (2001)’s
test is amaximum test with respect to a set of bandwidth
values. They obtained critical values of their test statis-
tic by bootstrap, and thus it is rather time-consuming
for big datasets. We suggest to combine the method in
Horowitz and Spokoiny (2001) with the DC method
to construct an adaptive and computationally feasible
nonparametric lack-of-fit test.

The paper is organised as follows. Section 2 describes
the test statistics and bandwidth selection procedure.
Asymptotic properties are discussed. Simulation stud-
ies and a real data analysis are given in Section 3.
Section 4 contains some concluding remarks. Technical
proofs are provided in the Appendix.

2. Methodology

The nonparametric test proposed by Zheng (1996)
combines the kernel method and the conditional
moment test. The key idea is to use a kernel-
based sample estimator of the conditional moment
E{E2(ϑi|xi) f (xi)}, where ϑi = yi − g(xi; θ0) and f(·) is
the density function of xi. The test statistic based on the

whole sample is

ZN = 1
N(N − 1)

N∑
i=1

N∑
j �=i

KhN (xi − x j)eie j,

where K(·) is a p-dimensional kernel function and
Kh(·) = K(·/h)/hp, hN is the bandwidth depending on
N. ei = yi − g(xi, θ̂N ), where θ̂N is an estimator of θ0.
Denote the corresponding test based on ZN as ZH test.
Clearly, ZN is a computation-intensive when N is large,
limiting its usefulness for massive data.

We use theDC strategy to solve the problem by sepa-
rating the data intoK subsets evenly andmake each sub-
set have the same sample size n. Denote the test statistic
based on the kth subset of data as Vk,

Vk = 1
n(n − 1)

n∑
i=1

n∑
j �=i

Khn (xik − x jk)eike jk,

where hn is the bandwidth based on the dataset of size
n. eik = yik − g(xik, θ̂n), where θ̂n is a DC-based estima-
tor of θ0 (Lin & Xi, 2011). The asymptotic null mean
and variance of nhp/2

n Vk are 0 and δ2 according to Zheng
(1996) as hn → 0 and nhp

n → ∞, where

δ2 = 2
∫

K2(u)du
∫

{σ 2(x)}2 f 2(x)dx, σ 2(x)

= E(ε2i |x), εi = yi − m(xi).

A consistent estimator of δ2 using the kth subset data is

δ̂2k = 2
n(n − 1)

n∑
i=1

n∑
j �=i

hp
nK2

hn (xik − x jk)e2ike
2
jk.

Since this test is sensitive to the bandwidth selec-
tion, a robust test is desired. Following the selection
approach proposed in Horowitz and Spokoiny (2001)
and Zhang (2003a), for each normalisedVk, we take the
maximum of the normalised statistic with respect to a
candidate set of hn which is defined as Hm. The max-
imum and minimum elements in Hm are denoted as
hmax and hmin, respectively. Suppose there are m ele-
ments inHm andm is finite. This procedure is intended
to reduce the dependency of the proposed test on indi-
vidual h. It makes the test suitable for a broader class
of alternatives compared with the original test depend-
ing on one h, leading to an adaptive test. Our final test
statistic based on K subsets data is

DN = 1
K

K∑
k=1

max
h∈Hm

nhp/2Vkδ̂
−1
k .

For the sake of simplifying notations, we denote
nhp/2Vkδ̂

−1
k as Dk(h) and the test based on DN as DM

test. {max1≤s≤mDk(hs)}Kk=1 can be treated as K indepen-
dent identically distributed random variables. On the
basis of the above discussion and somemild conditions,
we can establish the limiting behaviour of DN. The fol-
lowing are some assumptions needed in our theories.
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Assumption 2.1: The density function f (x) of X is
bounded away from 0 and has bounded first-order
derivatives.

Assumption 2.2: g( ·, ·) is uniformly bounded in x and
θ and is twice continuously differentiable with respect
to θ, with first- and second-order derivatives uniformly
bounded in x and θ ∈ �.

Assumption 2.3: K(u) is a bounded and symmetric
density function.

Assumption 2.4: The random variables εi are inde-
pendent with E(εi|xi) = 0. We assume that σ 2(xi),
E(ε4i |xi) = σ 4(xi) are uniformly bounded in i and have
uniformly bounded first-order derivatives for all i.

Assumption 2.5: Let θ∗= argminθ∈� E{m(x) −
g(x; θ)}2 for anym(·). For anym(·), θ∗ is unique and θ̂n

is the estimator of θ∗ such that
√
N(θ̂n − θ∗) = Op(1).

Under H0, θ∗ = θ0.

The first theorem is similar to Theorem 1 in Zhang
(2003a). For notational convenience, we write the index
maxh∈HmDk(h) as max1≤s≤mDk(hs).

Theorem2.1: Suppose Assumptions 2.1–2.5 hold. Under
the null hypothesis, for a finite integer m � 1, as hmax →
0, nhp

min → ∞, we have

max
1≤s≤m

Dk(hs)
d−→ max

1≤s≤m
Us,

where (U1,… , Um)T is a mean-zero normal random vec-
tor with a covariancematrix� = (γ st)1�s,t�m, with γst =
γts = δ2st/δ

2,

δ2st = 2l p/2st

∫
K(u)K(ulst )du

∫
[σ 2(x)]2p2(x)dx

and lst = hs/ht for 1 � s, t � m.
δ2 can be consistently estimated by (δ̂2k (hs) +

δ̂2k (ht ))/2 and δ2st can be consistently estimated by
δ̂2st ,

δ̂2st = 2
n(n − 1)

n∑
i=1

n∑
j �=i

(hsht )p/2Khs (xik − x jk)

× Kht (xik − x jk)e2ike
2
jk.

The mean of max1≤s≤mUs can be obtained by Afonja
(1972). Then, we use it to approximate the mean of
max1≤s≤mDk(hs) based on Theorem 2.1 and DasGupta
(2008, Theorem6.2). Therefore, the asymptotic null dis-
tribution of DN can be easily got through Lindeberg–
Levy central limit theorem and Slutsky’s theorem.

Theorem 2.2 (Null hypothesis): Given Assumptions 1–
5, under H0, as K→ �, nhp → �, h→ 0, we have that

√
K(DN − μ)/

√
s2 d−→ N(0, 1)

with

μ = (2π)−1/2
m∑
s=1

∑
t �=s

(1 − γst )√
2 − 2γst


m−2(0;Rst )

where Rst = {rs,vw,t}, rs,vw,t is the partial correlation
between (Us −Uv) and (Us −Uw) given (Us −Ut).
(x)
denotes the cumulative distribution functions of the stan-
dard normal distribution. s2 is the sample variance com-
puted on {max1≤s≤mDk(hs)}Kk=1.

Theorem 2.2 reveals that the asymptotic null
distribution of our test is normal under some mild
conditions. Based on this theorem, we can calculate
the critical value for our test. Another appealing result
is that the convergence rate of DN is K−1/2 which can
be faster than the nonparametric convergence rate
(Nhp/2

N )−1 of ZH test provided that K is large enough.
The proposed test can detect against a broad class of
alternatives via the above bandwidth selection proce-
dure, and hence it is an adaptive test. And it can also
accelerate the calculation of ZH test and effectively
reduce the demand for memory.

For the convenience of the presentation of the next
result, we denote the variance ofmax1≤s≤mDk(hs) under
the null hypothesis as ν2. The next result considers the
asymptotic behaviour of DN under the local alternative
m(x) = g(x; θ∗) + K−1/4l(x).

Theorem2.3 (Local alternative): Suppose Assumptions
1–5 hold. Assume K → �, nhp → �, h → 0, under the
local alternative,

√
K(DN − μ)/

√
s2 d−→ N

(
El2(X) f (X)

δν
, 1

)
.

Theorem 2.3 guarantees that theDN test has nontriv-
ial power against contiguous alternative of order K−1/4.
Together with Theorem 2.2, Theorem 2.3 reveals that
the DN cannot distinguish alternatives of order smaller
than K−1/4 from the null.

3. Numerical analysis

3.1. Simulation studies

In this section, we conduct a sample simulation to
check the finite samples performance of the proposed
DM test based on the size and power. We aim to
show the advantages of our test from three perspectives
which are computability, time saving and adaptiveness
in terms ofmassive data. And the comparisons aremade
between ZH test, DM test and GL test, where GL test
is an adaptive and asymptotic normal test proposed by
Guerre and Lavergne (2005). The data is generated as
in Zheng (1996). z1 and z2 are generated from the stan-
dard normal distribution. The regressors are given by
x1 = z1, x2 = (z1 + z2)/

√
2. Two cases of error term

ε are considered following the standard normal and a
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Table . Empirical size, normal errors.

DM GL ZH

K c
N α  ()  .  h h h

. . . . . . . .
, (, ) . . . . . . . .

. . . . . . . .
. . . . . . . .

, (, ) . . . . . . . .
. . . . . . . .

Percentages of rejection at %, %, % nominal levels.

standardised Student with five degrees of freedom dis-
tribution. The simulation is based on models which are
considered in Zheng (1996) and Fan and Li (2000).

Model 0: Y = 1 + X1 + X2 + ε;
Model 1: Y = 1 + X1 + X2 + bX1X2 + ε, b � [0, 1];
Model 2: Y = 1 + X1 + X2 + 2sin (bX1)sin (bX2) +

ε, b � [0, 40].

We treat model 0 as our null hypothesis, which
assumes that the real regressionmodel is linear.Model 1
corresponding a fixed alternative is designed to see the
power of the test against high-order terms. To investi-
gate the power of the test against a high(low) frequency
fixed alternative, we consider model 2. In model 2,
small(large) value of b represents low(high) frequency
alternative. The kernel function is chosen to be the
bivariate standard normal density function

K(u1, u2) = 1
2π

exp
(

−u21 + u22
2

)
.

We choose m = 3 for multiple bandwidths and set
Hm = {0.5h, h, 2h}. The bandwidth h is chosen to be
c0n−1/6 for DM test, where c0 = 0.25 is a constant
in order to control the size of the test. h is set to be
0.25N−1/6 for ZH and GL test as these test statistics
are constructed based on sample size N. Denote h1 =
0.125N−1/6, h2 = 0.25N−1/6, h3 = 0.5N−1/6. The penalty
sequence for GL test is chosen as c

√
2 lnm, where

c = 1, 1.5, 2. The critical values for the three tests are
based on the standard normal. For DM test when m =
3, μ = (2

√
2π)−1(a12 + a13 + a23), a2st = γss + γtt −

2γst , 1 ≤ s < t ≤ 3. We approximate μ via estimating
δ2 and δ2st by (δ̂2k (hs) + δ̂2k (ht ))/2 and δ̂2st , respectively.

These three tests are compared under the same time
budget as time is an important evaluation criterion for
massive data analysis. For DM test, we consider two set-
tings of (N, K), which are (20,000, 40), (40,000, 100).
Under the same time budget, we choose correspond-
ing N = 7400, 9500 for ZH test, N = 4800, 6200 for
GL test. This illustrates the advantage of our test in
time. Under the null hypothesis, each experiment is
based on 10,000 replications and 1000 under the alter-
natives. What we can conclude from Tables 1 and 2 is
that both ZH and DM test can control type-I error. For
DM test, the approximation is more acceptable when
N =40,000, K =100 than N =20,000, K = 40. For
GL test, there is another tuning parameter c needed
to be chosen. c plays a critical role in the approxima-
tion under null hypothesis. According to the simulation
results, we set c = 2 in the following power comparison
experiments.

The simulation reveals that the performance of ZH
test for different models varies with h. ZH(h3) behaves
the best under Model 1 and low frequency of Model 2.
But it has poor performance for high-frequency model.
However, ZH(h1) leads to the opposite results. ZH(h2)
is the most robust. It has good performance for both of
the proposed alternativemodels. It is difficult to find out
this robust h in practical applications, while our test is
capable of robustness. Figures 1 and 2 show that DM
test has power closer to GL test, and ZH(h2) for model
1 and low-frequency case of model 2. Figure 3 explains
that DM test has power closer to the best case of ZH
test, which is obtained via the smaller h1 under high-
frequency case of model 2. DM test displays the same
adaptive property as GL test. However, it requires less

Table . Empirical size, Student errors.

DM GL ZH

K c
N α  ()  .  h h h

. . . . . . . .
, (, ) . . . . . . . .

. . . . . . . .
. . . . . . . .

, (, ) . . . . . . . .
. . . . . . . .

Percentages of rejection at %, %, % nominal levels.



STATISTICAL THEORY AND RELATED FIELDS 63

0.00

0.25

0.50

0.75

1.00

0.1 0.15 0.2 0.25 0.3
b

po
w

er

N=20,000(4800,7400) normal error

0.00

0.25

0.50

0.75

1.00

0.1 0.15 0.2 0.25 0.3
b

po
w

er Method
DM(K=40)
GL(c=2)
ZH(h1)
ZH(h2)
ZH(h3)

N=20,000(4800,7400) Student error

0.00

0.25

0.50

0.75

1.00

0.1 0.15 0.2 0.25 0.3
b

po
w

er

N=40,000(6200,9500) normal error

0.00

0.25

0.50

0.75

1.00

0.1 0.15 0.2 0.25 0.3
b

po
w

er Method
DM(K=100)
GL(c=2)
ZH(h1)
ZH(h2)
ZH(h3)

N=40,000(6200,9500) Student error

Figure . Comparison of power curves under model  of two different error terms at significant level α = .. We set (N, K) =
(,, ), (,, ) for DM test. N= ,  for GL test. N= ,  for ZH test.

memory than GL test and ZH test under the same time
budget. GL test and ZH test are either time-consuming
or memory hungry which hinder the scalability to mas-
sive datasets.

Moreover, we compare DM test with ZH test based
on the whole dataset to study the effect of K on the
power performance. K is chosen to be {20, 40, 50} and
N = 20, 000. The results under model 1 are reported in
Tables 3 and 4. Model 2 follows the same trend and thus

is not included. The tables show that the power loss gets
more as K gets larger for DM test compared with ZH
test.

3.2. Real data analysis

In this section, we will revisit the airline on-time data
for illustrating the proposed test. A flight is considered
delayed when it arrived 15 or more minutes later than
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Figure . Comparison of power curves under low frequency of model  based on two different error terms at significant level
α = ..
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Figure . Comparison of power curves under high frequency of model  based on two different error terms at significant level
α = ..

Table . Empirical power of DM test and ZH test based on the
whole dataset when the error distribution is normal.

DM ZH

K h
b    h h h

. . . . . . 
. . . . .  
.      
.      
.      

Percentages of rejection at % nominal levels.

Table . Empirical power of DM test and ZH test based on the
whole dataset when the error distribution is Student.

DM ZH

K h
b    h h h

. . . . . . .
. . . . .  
. . . .   
.   .   
.      

Percentages of rejection at % nominal levels.

the schedule. Many researchers use logistic regression
to model the probability of late arrival (binary; 1 if late
by more than 15 minutes, 0 otherwise; denote as y) as a
function of variablesmay lead to flight delay.We use the
logistic regression model to investigate the relationship
of scheduled departure time (continuous, x1), sched-
uled arrival time (continuous, x2), distance (continu-
ous, in thousands ofmiles, x3) with late arrival. SinceGL
and ZH tests cannot handle such big data, only the pro-
posed test is implemented to check the goodness of fit of
this model. We getN= 120, 748, 239 observations after

removing the missing values. K is chosen to be 10,000.
The bandwidth set is

Hm = {
h1 = 2−1/2n1/7, h2 = n1/7, h3 = 21/2n1/7

}
.

The p-value of the proposed test is estimated as 0 which
indicates that this model is inadequate to illustrate the
late arrival probability. This does not come as a surprise
to us, because the weather conditions and mechanical
problems are also the causes of flight delay which are
not included in the model.

4. Concluding remarks

In this article, we give a test aim to solve the scalabil-
ity of the traditional nonparametric smoothing-based
lack-of-fit test to massive datasets. We focus on two
issues which are computability and smoothing param-
eter selection. The proposed test combines the DC
procedure and a simple bandwidth selection method.
Theoretically, our test has a manageable asymptotic
null distribution. Under the null hypothesis, we use the
mean of max1≤s≤mUs to approximate max1≤s≤mDk(hs)’s
mean in each subset, where (U1,… , Um)T is a multi-
variate normal distribution. To ensure the accuracy of
approximation, we need to make sure that the sample
size of each subset is large enough. This condition is
easy to achieve for massive data. In addition, our test is
advantageous to save computational time and memory
space. Simulation studies verified the above theoretical
properties as well as the adaptiveness.
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Appendix

In the proofs, without loss of generality, we assume
q = 1.

LemmaA.1: Given Assumptions 2.1–2.5. Under the null
hypothesis,

(δ̂2k (h1) + δ̂2k (h2))/2
p−→ 2

∫
K2(u)du

∫
{σ 2(x)}2 f 2(x)dx;

δ̂212
p−→ 2l p/212

∫
K(u)K(ul12)du

∫
{σ 2(x)}2p2(x)dx.

as h ∈ Hm, nhp → ∞, h → 0.

Proof: Similar to the proof of Lemma 3.3e of Zheng
(1996), we can easily get the result of the first part. The
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second part is as follows:

δ̂212 = 2
n(n − 1)

n∑
i=1

n∑
j �=i

1
(h1h2)p/2

K
(
xik − x jk

h1

)

× K
(
xik − x jk

h2

)
ε2ikε

2
jk + op(1)

= 2Sn + op(1)

Sn is a standard U-statistic with

Hn(zik, z jk) = 1
(h1h2)p/2

K
(
xik − x jk

h1

)

× K
(
xik − x jk

h2

)
ε2ikε

2
jk

We just need to show that E(‖Hn‖2) = o(n),

E(‖Hn‖2)
= E

{
1

(h1h2)p
K2

(
xik − x jk

h1

)
K2

(
xik − x jk

h2

)
ε4ikε

4
jk

}

=
∫

1
(h1h2)p

K2
(
xik − x jk

h1

)
K2

(
xik − x jk

h2

)
× σ 4(xik)σ 4(x jk) f (xik) f (x jk)dxikdx jk

=
∫

1
hp
2
K2(u)K2(ul12)

× σ 4(x jk + uh1)σ 4(x jk) f (x jk + uh1) f (x jk)dudx jk

= 1
hp
2

∫
K2(u)K2(ul12){σ 4(x)}2 f 2(x)dudx + o(1)

= O(h−p
2 ) = O(n(nhp

2 )
−1) = o(n)

Therefore, by Lemma 3.1 of Powell, Stock, and Stoker
(1989), we have proved the conclusion. �

Proof of Theorem 2.1

Proof: Under the null hypothesis, as

eik = yik − g(xik; θ̂n), εik = yik − g(xik; θ0),

uik = g(xik; θ̂n) − g(xik; θ0),

so we denote Vk = V1k − 2V2k + V3k, where

V1k = 1
n(n − 1)

n∑
i=1

n∑
j �=i

1
hp
n
K

(
xik − x jk

hn

)
εikε jk;

V2k = 1
n(n − 1)

n∑
i=1

n∑
j �=i

1
hp
n
K

(
xik − x jk

hn

)
εiku jk;

V3k = 1
n(n − 1)

n∑
i=1

n∑
j �=i

1
hp
n
K

(
xik − x jk

hn

)
uiku jk;

Then,

max
1≤s≤m

Dk(hs) = max
1≤s≤m

nhp/2
s Vkδ̂

−1
k

= max
1≤s≤m

nhp/2
s V1kδ̂

−1
k − 2 max

1≤s≤m
nhp/2

s V2kδ̂
−1
k

+ max
1≤s≤m

nhp/2
s V3kδ̂

−1
k

= max
1≤s≤m

D1k(hs) + max
1≤s≤m

D2k(hs)

+ max
1≤s≤m

D3k(hs)

Since δ̂k
p−→ δ based on Lemma A.1, we denote

D∗(hs) = nhp/2
s V1kδ

−1. We just need to show

(a) (D∗(h1), . . . ,D∗(hm))T
d−→ Nm(0, �), where �

= (γ st)1 � s, t � m;
(b) max

1≤s≤m
D2k(hs) = op(1); max

1≤s≤m
D3k(hs) = op(1).

Then, the main results of Theorem 2.1 can be
obtained directly via Slutsky’s theorem and Continuous
Mapping theorem.

(a) Choose m = 2 as an illustration, for every c =
(c1, c2)T ∈ R

2, we have

c1h
p/2
1 V1k(h1) + c2h

p/2
2 V1k(h2)

= 1
n(n − 1)

n∑
i=1

n∑
j �=i

{
c1
hp/2
1

K
(
xik − x jk

h1

)

+ c2
hp/2
2

K
(
xik − x jk

h2

)}
εikε jk

c1h
p/2
1 V1k(h1) + c2h

p/2
2 V1k(h2) is a U-

statistic with kernel Hn = Hn1 + Hn2,
where Hn1 = c1h

−p/2
1 K(

xik−x jk

h1
)εikε jk, Hn2 =

c2h
−p/2
2 K(

xik−x jk

h2
)εikε jk.

By checking the conditions in Theorem 1 of Hall
(1984) via the same way with Zheng (1996), we
have

nc1h
p/2
1 V1k(h1) + nc2h

p/2
2 V1k(h2)√

2E(H2
n )

d−→ N(0, 1).

So there is a � = [ γ11 γ12
γ21 γ22

], where (U1,U2)
T ∼

N2(0, �) such that cT [D∗(h1),D∗(h2)]T
d−→

cT (U1,U2)
T for every c = (c1, c2)T ∈

R
2. By Cramer–Wold device, we have

[D∗(h1),D∗(h2)]T
d−→ N2(0, �).

Next, we determine the entries of covariance
matrix �. Denote (x1 − x2)/h1 = u, l12 = h1/h2,
we have

EH2
n1 = c21δ

2/2 + o(1), EH2
n2 = c22δ

2/2 + o(1).
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and

EHn1Hn2

= c1c2E

{
1

hp/2
1 hp/2

2

K
(
x1 − x2

h1

)

× K
(
x1 − x2

h2

)
ε21ε

2
2

}

= c1c2
hp/2
1 hp/2

2

E
{
K

(
x1 − x2

h1

)
K

(
x1 − x2

h2

)

× E(ε21|x1)E(ε22|x2)
}

= c1c2
hp/2
1 hp/2

2

∫
K

(
x1 − x2

h1

)
K

(
x1 − x2

h2

)

× σ 2(x1)σ 2(x2) f (x1) f (x2)dx1dx2

= c1c2
hp/2
1 hp/2

2

∫
K(u)K

(
uh1
h2

)
σ 2(x2 + uh1)

× σ 2(x2) f (x2 + uh1) f (x2)dudx2 · hp
1

= l p/212 c1c2
∫

K(u)K(ul12)du

×
∫

(σ 2(x))2 f 2(x)dx + o(1)

= c1c2δ12/2 + o(1).

Then, EH2
n = EH2

n1 + EH2
n2 + 2EHn1Hn2 =

c21δ2/2 + c22δ2/2 + c1c2δ12 + o(1). So,

lim
n→∞Var(nc1h

p/2
1 V1k(h1) + nc2h

p/2
2 V1k(h2))

= c21δ
2 + c22δ

2 + 2c1c2δ12.

Obviously,

lim
n→∞Var(c1D∗(h1) + c2D∗(h2))

= c21 + c22 + 2c1c2δ12/δ2

Then, we obtain that

γ11 = γ22 = 1,

γ12 = γ21 = δ12

δ2

= l p/212
∫ K(u)K(ul12)du

∫
[σ 2(x)]2p2(x)dx∫ K2(u)du

∫
[σ 2(x)]2p2(x)dx

Similar result can be derived form> 2 with lst =
hs/ht,

γst = γts = δst

δ2

= l p/2st
∫ K(u)K(ulst )du

∫
[σ 2(x)]2p2(x)dx∫ K2(u)du

∫
[σ 2(x)]2p2(x)dx

So, by continuous mapping theorem, we have

max
1≤s≤m

D∗(hs)
d−→ max

1≤s≤m
Us.

(b) Since m is finite, from Lemma 3.3d in Zheng
(1996) and Bonferroni inequality, we have the
results of (b).

�

Proof of Theorem 2.2

Proof: Since

DN = 1
K

K∑
k=1

max
h∈Hm

nhp/2Vkδ̂
−1
k

= 1
K

K∑
k=1

max
1≤s≤m

D1k(hs) + 1
K

K∑
k=1

max
1≤s≤m

D2k(hs)

+ 1
K

K∑
k=1

max
1≤s≤m

D3k(hs)

= D1N + 1
K

K∑
k=1

max
1≤s≤m

D2k(hs)

+ 1
K

K∑
k=1

max
1≤s≤m

D3k(hs)

As K−1/2 ∑K
k=1 max1≤s≤m D2k(hs) =

op(1), K−1/2 ∑K
k=1 max1≤s≤m D3k(hs) = op(1), then

the results of Theorem 2.2 follows
√
K(D1N −

μ)/
√
s2 d−→ N(0, 1).

We elucidate the proof based on Lindeberg–Levy
central limit theorem. First, we approximate the mean
E(max1≤s≤m D1k(hs)) by asymptotic. Afonja (1972)
presents a method for finding the mean of maximum
of correlated normal variates. By using their Corollary
2, we can get the mean of max1≤s≤mUs is

E( max
1≤s≤m

Us)

= (2π)−1/2
m∑
s=1

∑
t �=s

(1 − γst )√
2 − 2γst


m−2(0;Rst )

with

Rst = {rs,vw,t}; v, w = 1, . . . ,m; v, w �= s

and rs, v; w, t is the partial correlation between (Us − Uv)
and (Us −Uw) given (Us −Ut).
(x) denotes the cumu-
lative distribution functions of the standard normal dis-
tribution.

For s2 is a consistent estimator of variance of
max1≤s≤m Dk(hs), the theorem results directly follows
Lindeberg–Levy central limit theorem and Slutsky’s
theorem as K → �. �
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Proof of Theorem 2.3

Proof: Under the local alternative, denote

V1k = 1
n(n − 1)

n∑
i=1

n∑
j �=i

1
hp
n
K

(
xik − x jk

hn

)
εikε jk;

V2k = 1
n(n − 1)

n∑
i=1

n∑
j �=i

1
hp
n
K

(
xik − x jk

hn

)
εiku jk;

V3k = 1
n(n − 1)

n∑
i=1

n∑
j �=i

1
hp
n
K

(
xik − x jk

hn

)
uiku jk;

V4k = 1
n(n − 1)

n∑
i=1

n∑
j �=i

1
hp
n
K

(
xik − x jk

hn

)

× (εik − uik)l(x jk);

V5k = 1
n(n − 1)

n∑
i=1

n∑
j �=i

1
hp
n
K

(
xik − x jk

hn

)
l(xik)l(x jk);

We proceed with a decomposition of

DN = 1
K

K∑
k=1

max
h∈Hm

nhp/2Vkδ̂
−1
k

= 1
K

K∑
k=1

max
1≤s≤m

nhp/2
s V1kδ̂

−1
k

− 2
1
K

K∑
k=1

max
1≤s≤m

nhp/2
s V2kδ̂

−1
k

+ 1
K

K∑
k=1

max
1≤s≤m

nhp/2
s V3kδ̂

−1
k

+ 2K−1/4 1
K

K∑
k=1

max
1≤s≤m

nhp/2
s V4kδ̂

−1
k

+ K−1/2 1
K

K∑
k=1

max
1≤s≤m

nhp/2
s V5kδ̂

−1
k

= D1N + D2N + D3N + K−1/4D4N + K−1/2D5N

Through tedious calculation we have, under local
alternative, s2

p−→ ν2 and
√
K(DN − μ)/

√
s2

= √
K(D1N − μ)/

√
s2 + D5N/

√
s2 + op(1)

As nhp → �, h → 0, we have D5N
p−→ El2(X) f (X)

δ
.

Together with Theorem 2.2, we can get the results of
Theorem 2.3. �
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