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Asymptotic properties of a nonparametric conditional density estimator in the
local linear estimation for functional data via a functional single-index model
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aUniversity Oran 1 Ahmed Ben Bella Oran, Oran, Algeria; bLaboratory of Statistics and Stochastic Processes, Djillali Liabes University, Sidi Bel
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ABSTRACT

This paper deals with the conditional density estimator of a real response variable given a
functional random variable (i.e., takes values in an infinite-dimensional space). Specifically, we
focus on the functional index model, this approach represents a good compromise between
nonparametric and parametric models. Then we give under general conditions and when the
variables are independent, the quadratic error and asymptotic normality of estimator by local lin-
ear method, based on the single-index structure. Finally, we complete these theoretical advances
by some simulation studies showing both the practical result of the local linear method and the
good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create

functional pseudo-confidence area.

1. Introduction

The nonparametric estimation of the conditional den-
sity function plays a crucial role in statistical analysis.
This subject can be approached from multiple per-
spectives depending on the complexity of the prob-
lem. Many techniques were studied in the literature to
treat these various situations but all treat only real or
multidimensional explanatory random variables.

Focusing on functional data for the kernel-type,
the first results on the nonparametric estimate of this
model, were got by Ferraty and Vieu (2006). They
have studied the almost complete convergence the esti-
mator of the conditional density and its derivates.
Laksaci (2007) they studied quadratic error of this esti-
mator, we return to Ferraty et al. (2010) established the
uniform almost complete convergence of this model
always.

Now, we show a few results on the local linear
smoothing for functional data, actually this results con-
sidered by many authors recall them, Baillo and Grané
(2009) first proposed a local linear smoothing of the
regression estimator in a Hilbert space, and came after
them Barrientos-Marin et al. (2010) developed this
method of local linear estimation of the regression in
the semi-metric space for independent and identically
distributed, Demongeot et al. (2013, 2014), has used
this method to estimate conditional distribution and
density function, in the case of spatial data (Laksaci
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etal., 2013) they established pointwise almost complete
convergence with rate.

Furthermore, the functional index model plays a
major role in statistics. The interest of this approach
comes from its use to reduce the dimension of the
data by projection in fractal space. The literature on
this topic is closely limited, the first work which was
interested in the single-index model on the nonpara-
metric estimation is Ferraty et al. (2003) they stated for
i.i.d. variables and obtained the almost complete con-
vergence under some conditions. Based on the cross-
validation procedure, Ait Saidi et al. (2008) proposed
an estimator of this parameter, where the functional
single-index is unknown. Recently, Attaoui et al. (2011)
considered the nonparametric estimation of the con-
ditional density in the single functional model. They
established its pointwise and uniform almost complete
convergence (a.co.) rates. In the same topic, Attaoui
and Ling (2016) proved the asymptotic results of a non-
parametric conditional cumulative distribution estima-
tor for time series data. More recently, Tabti and Ait
Saidi (2018) obtained the almost complete convergence
and the uniform almost complete convergence of a
kernel estimator of the hazard function with quasi-
association condition when the observations are linked
with functional single-index structure.

In this paper, we focus on the local linear estimation
with the single-index structure to compute under some
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conditions, the quadratic error of the conditional den-
sity function estimator. In practice, this study has great
importance, because, it permits to construct a predic-
tion method based on the maximum risk estimation
with a single functional index.

In Section 2, We introduce the estimator of our
model in the single functional index. In Section 3,
we introduce assumptions and asymptotic properties
are given. Simulations are given in Section 4. Finally,
Section 5 is devoted to the proofs of the results.

2. The model

Let {(X;,Y;),1 <i < n} be n random variables, inde-
pendent and identically distributed as the random pair
(X,Y) with values in ‘H x R, where H is a separable
real Hilbert space with the norm | . || generated by
an inner product (.,.). We consider the semi-metric
dg associated to the single-index 6 € H defined by
Vxi,xy € H : do(x1, %) :=| {x1 — x2,60) |. Assume that
the explanation of Y given X is done through a fixed
functional index 0 in ‘H. In the sense that, there exists
a 0 in ‘H (unique up to a scale normalization factor)
such that: E[Y|X] = E[Y]|(#, X)]. The conditional den-
sity of Y given X = x denoted by fy(.|x) exists and is
given by Vy € R, fo (y|x) := f(y|(x,0)). In the follow-
ing, we denote by f(0, ., x), the conditional density of
Y given (x,6) and we define the local linear estimator
for single-index structure f (6, ., x) of f(0, ., x) by:

Y i<ijen Wii@,0H(hy ™ (y = Y))

fO,y,x) = I Zlfian W30,
lean K;H;
" e YK
with

Wij(6, ) = By (Xis ) (B (X %) — B (X;,))
K(hi"dg (x, X)) K (hg dy (x, X)),

and QKj =Y, W; with Byp(X;,x) is a known
bi-functional operator from H? into R where K and H
are kernel functions and hg := h, x (resp. hy := h, 1)
is a sequence that decrease to zero as n goes to infinity.

3. Assumptions and mains results

All along the paper, we will denote by C, C' and
Co,x some strictly positive generic constants and
by Ki(6,x) := K(hg'dp(x, X)), Vxe H,i=1,...,n,
Hj:=HMhy 'y - Y)),VyeR,j=1,...,n, Po;:=
Bo (Xi, x), Wij(0,x) := Wp,;; and we will use the nota-
tion Bg(x,hg) :={x1€e H: 0<|<x—x,0>|<
hi}, the ball centred at x with radius hg. Moreover,
for find the results in our paper we denote: for any

1
1€ {0,2}1(,y) == %yly)

®i(s) = E[Yn(X, y) = ¥1(x, p)de (x, X) = 5]
In order to study our asymptotic results, we need the
following assumptions:

(H1) P(X € By(x, hg)) =: ¢pox(hx) > 0, and assume
that there exists a function xp(-) such that

. ¢9 x(ShK» hK)
Vse[-1,1] lim ———= = s).
Y e o)
(H2) Forany! € {0, 2}, the quantities ®;(0) and ;' (0)
exist, where @] (resp.®') denotes the first (resp.
the second) derivative of ®;
(H3) The bi-functional By (.,.) satisfies:

Vx' € F, Cirdg(x,x) < |Bo(x,x)]
< Cy dy(x, %), where C; > 0, C; > 0,
SUPyeB(x,r) | Bo (u, x) — dg (x, u)| = o(r)
hk fB(x,hK) Bo (u, x)dP(u)

=0 (fB(x,hK) BE (u, x) dP(u)) )

Where By(x,r) = {x¥' € H/|dg(x,x') <r} and
dP(x) is the cumulative distribution of X.

(H4) The kernel K is a positive, differentiable function
and its derivative K’ exists and is such that there
exist two constants C and C’ with —oc0 < C <
K'(t) <C <0, fort € [—1,1] and K(1) > 0.

(H5) The kernel H is a differentiable function and
bounded, such that:

/H(t)dt: 1, /tzH(t)dt <oo and

/Hz(t)dt < 00.

Where by > 0.
(H6) The bandwidths hy,hy satisfies:
(i) lim hg =0, lim hy =0and lim
n— oo n— oo n—oo

nhydg,x(hg) = oo,
(i) limy,_ s nh?{qig,x(hK) =0 and lim,
nhihpo (i) = 0.

Comments on assumptions: Notice that, (H1) and
(H2) are a simple adaptation of the conditions in Fer-
raty et al. (2007) on the regression operator, when we
replace the semi-metric by some bi-functional dy. The
second part of the condition (H3) is unrestrictive and is
verified, for instance, if dy (-, -) = Bo(:, -), moreover if

Bo(u,x)
dy (x, u)

im 1' =0.
dy (x,u)—0

Assumptions (H4)-(H6) are classical in this context
of quadratic errors and asymptotic normality in func-
tional statistic.



3.1. Mean square convergence

In this part, we are going to show the asymptotic results
of quadratic-mean convergence

Theorem 3.1: Under assumptions (H1)-(H6), we
obtain:

E[f©,5,%) — f©@,5.0]

Vi (0, x,
= B4 (0, %, p)ht, + BE(0,x, )% + Vi, %)

nhuade x(hi)

1
+o(hyp) + olhi) + o (W)

where

2
By (0,x,y) = ;M f H(t)dt,

Bk (0,x,y) = <I>6(0)Ehz<,
and
Vi (6, %,7) = 2f ©.y.) ( / Hz(t)dt)
with
1
:K(l)—/ sK'(s)xgx(s)ds and
0
1
=1<J‘(1)—/ (K9 () xo.x(s)ds forj = 1,2.
0
we set
-~ N6,y %)
0,y,x) = 2"
f0,y,x) 0.0
where
Fo@nx) = :
Ny = B W @]
> W0, x)H(hG (v — 1)),
1<i#j<n
and
~ 1
9, = Wi' 0’ >
fp(6,x) nn_ DEW1 0.0 15:‘27&]‘:5;1 ii(0,x)

The following lemmas will be useful for proof of
Theorem 3.1.

Lemma 3.2: Under the assumptions of Theorem 3.1, we
obtain:

E [N©.7.9] - f6, 3%
= By(9, x,y)hH + Bx(0,x, y)hg + o(h ) + o(hk).
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Lemma 3.3: Under the assumptions of Theorem 3.1, we

obtain:
()
) .
nhy g x(hi)

Lemma 3.4: Under the assumptions of Theorem 3.1, we

get:
( )
}’l(]ﬁ@’x(l’l K ) ’

Lemma 3.5: Under the assumptions of Theorem 3.1, we

get
,x(hK) )

3.2. Asymptotic normality

Vak (0,x,)

Var D?N(Q’)@ x)] = nhy g x(hi)

Cov(fn (0, 3, ), fp (0, %)) =

Var [f;;(@,x)] =

This section contains results on the asymptotic normal-
ity of f f(6,y, x). Before announcing our main results, we
introduce the quantity N(a, b), which will appear in the
bias and variance dominant terms:

1
N(a,b) = K*(1) — / (K (1)) Xx(u) du
-1
foralla > 0and b = 2,4
Then, we have the following theorem:

Theorem 3.6: Under assumptions (HI)-(H6), we
obtain:

vV ”hH¢9,x(hK)(f(9,)’>x) _f(exy) X) - Bn(e,x,)’))
B N(©, Vik (8, %) (1)
where,
M, )
Vik(0,x,y) = —f(0,y,x) (/H (t)dt> (2)
M
and
E(fx (6, y,
Bu(0,x,y) = EGn(0,7.00)) —f0,y,x) (3)

E(fp(6,x))
.. D . T .
with — denoting the convergence in distribution.

Proof of Theorem 3.6: Inspired by the decomposition
given in Masry (2005) , we set.

—f0,y,%x) —B,(0,x,y)

—f(@,y,x)jjib(@,x) — (0, 0B (0, %, y)
fp6,x)

f@.3.%)
_ @y

If we denote by

Qu(0,x,y)

= N0, 3, %) — f(O,y,0fp(6, %)
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— E(fn(6,5,%) — f(6,5 )/, %)
= (6,5,%) — f(6,5,0fp0, %) — Ba(6,x,))  (4)

since
N, 3, %) — £(8, 9, )fp(6, %)
= Qn(e’x’y) + Bn(e,x:)’)

then the proof of this theorem will be completed from
the following expression

76,9, —f©0,y,%) — B0, %)

_ Qu0:%%) = Bu@,x.0) (o6, x) — E(fp(0,2)))
fo(0,%)

(5)

and the following auxiliary results which play a main
role and for which proofs are given in the appendix. W

Lemma 3.7: Under assumptions (H1)-(H5), we have
o6, %) > E{fp0,x) =1
where > denotes the convergence in probability.
So, Lemma 3.7, implies that}‘;) (0,x) — 1. Moreover,
B,(0,x,y) = o(1) as n — oo because of the continuity

of f(6, y, x). Then, we obtain that

70,9,%) = £(6,y,%) — B,(6,x,)
_ Qu0,x9)

= Z)(G,x) (14 0p(1))

Lemma 3.8: Under assumptions (H1)-(H5), we have
D
Vi« (hi) Qu(0, %, y) = N (0, Vi (0, x,y)), (6)
where Vg (0, x, y) is defined by (2).

Remark 3.9: Asmentioned in Demongeotetal. (2013),
the function ¢y () can be empirically estimated by

Hi: ldXix)| < 1)

n

Pox(t) =

where f1(A) denote the cardinality of the set A. So, if
we take advantage of the following assumptions, (H6)

limy— 400 v/ BhEP x (hK)BH(0, x, ¥) = 0, we can cancel

the bias term and obtain the following corollary.

Corollary 3.10: Under the assumptions of Theorem 3.6,
we get

nhy e x(hi)

Vi (6, %, y) (f(©,7.%) = £(0,y,%) = N(O,1)

4. Simulation study

We first construct the simulation of the explanatory
functional variables. In the second part, we focus on the
ability of the nonparametric functional regression to
predict responses variable from functional predictors.
Finally we illustrate the MONTE-CARLO methodol-
ogy and we will appropriate to test the efficiency of
the asymptotic normality results parallel the practical
experiment and we build functional pseudo-confidence
area.

For this purpose, we consider the following process
explanatory functional variables for n = 350:

3
Xi(t) = ) Vijcos((3 +))b) + Wit — )%,
j=1

vt € [0, 100]

where Vj; and W; are n independent real random vari-
ables (r.r.v.) uniformly distributed over [0.3; 2] (resp. [1;
3]), t is assumed that these curves are observed on a
discretization grid of 100 points in the interval. These
functional variables are represented in Figure 1.

For response variables Y;, we consider the following
model foralli=1,...nandj=1,...100:

Y =r({(6r, X)) + €

N _ [loo 1
where r(U;) = |, 00
mal variable and assumed to be independent of (X;);.
Then, we can get the corresponding conditional density,

which is explicitly defined by

dv and € is a centred nor-

[y, x) = o3 O—r((Bx))?

Our goal in this illustration is to show the usefulness
of conditional density in a context of forecasting. Thus
the use of optimal parameters of the conditional density
and without theoretical validity.

Now, we precise the different parameters of our esti-
mators. Indeed, first of all, it is clear that the shape of
the curves allows us to use

d(X1, XZ)

1
= \// (x1(8) — x2())%;
0

Vx1,x, € H where H is a semi-metric space

We choose particularly the quadratic kernels defined by
3 2
5(1 —x9)1-1y and K(1) >0

In this illustration, we select the functional index 6
on the set of eigenvectors of the empirical covariance



STATISTICAL THEORY AND RELATED FIELDS . 5

12

10

T T T
0 20 40

Figure 1. The curves X;,i = 1,. .. 200.

operator.
1 200
r,X)=— X; — X)'((X; — X)).
(X) 200;( ) (( )

Indeed, We recall that the ideas of Ait Saidi et al. (2008)
can be adapted to find a method of practical selection
for 6. However, this adaptation in the case of the condi-
tional density requires tools and additional preliminary
results (See the discussion Attaoui et al. (2011) and
Attaoui (2014)).

For this purpose, we divide our observations on
two packets learning sample (Xj, Y;)i=1,.200 and test
sample (Xj, Yi)i=201,..250. For the choice of smoothing
parameters hx and hyy, we will adopt the selection cri-
terion used by Ferraty et al. (2006) in the case of the
kernel method for which hx and hy are obtained. by

minimizing the next criterion
LS [7 d
;;wl( D [ Fork oy Xis Y W2 () dy
=

2
== > T Ko YOWI XD W2(Yi) (7
i=1

where

Y kzijor WX H(hy' (v — Yi)
hi 30—y Wii(Xe)

Sk
f(hK,hH) (Xk>)’) =

A first way of assessing the quality of prediction is to

compare predicted functional responses (f(6,y,x) for

any X in the testing sample) versus the true of condi-

tional density operator (i.e., f(0, y, x)) as in Figure 2.
For the next simulation algorithm, we used:

Figure 2. Predicted functional responses (solid lines); observed functional responses (dashed lines).
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Figure 4. Functional pseudo-confidence areas.

Simulate a sample of size n.
Calculate the smoothing parameters hx and hy that
are varied over an interval [0,1] and which mini-

mizes by (7).

e We compute for k = 1, 2, 3, 4 the quantities

(nhiide,) "> (F 0k 3, %) — F Ok y, %)

where ?(Gk, ¥,x) is the functional kernel estimator
from the sample (Xj, Y;)i=1,..200, and k = 1,2,3,4.
e compute a standard density estimator by local linear

method.

e compare the estimated ?(Gk, y,x) with the corre-

sponding estimated f (6, y, x)).

The obtained results are shown in Figure 3. It can
be seen that, both densities are very well approximated

and have good behaviours with respect to the standard
normal distribution.

An application of results of Theorem 3.6 is to build
the functional pseudo-confidence areas. To this aim, let
us set for any component k, (k =1,2,...,K) and nx =
n/K with n € [0, 1], confidence intervals EZ]‘ such that

K
P(\n(U) e E) =1—n
k=1

where U = (X,0;) with 0y,...,0k is a data-driven
orthonormal basis the K eigenfunctions associated to
the K largest eigenvalues of I".

The results from the asymptotic normality of the
conditional density is expressed in Corollary 3.10 and
we can approximate (1 —#) confidence interval of



f(0,y,x) by:

nhy o x(hg)

where t,/, denotes the /2 quantile of the standard
normal N(0, 1).

Figure 4 represents a functional pseudo-confidence
zone for 9 different fixed curves with n = 0.05
and K = 4. We can remark that r({x,0;)) and its
K-dimensional projection onto /9\1,...,9} are very
close. This conclusion shows the good performance of
our asymptotic normality, indeed when one replaces
the data-driven basis with the eigenfunctions of I', one
gets very similar functional pseudo-confidence areas.

_ 1/2
- V 9) >
F0,y,%) £ 1,2 x <M) ]

5. Conclusion

In this paper, we are mainly interested in the nonpara-
metric estimation of the conditional density function
by the local linear method for a variable explanatory
functionally conditioned to an actual response variable
via a functional single-index model. We show that the
estimator provides good predictions under this model.
One of the main contributions of this work is the choice
of semi-metric. Indeed, it is well known that, in non-
parametric functional statistics, the semi-metric of the
projection type is very important for increasing the
concentration property. The functional index model is
a special case of this family of semi-metrics because it is
based on the projection on a functional direction which
is important for the implementation of our method in
practice. Therefore, we can draw zones of functional
pseudo-confidence, which is a very interesting tool for
assessing the quality of the prediction.
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Appendix

Proof of Theorem 3.1: We know the theorem is a conse-
quence of a separate computes two quantities (bias and vari-
ance) of f (6, y,x), we have

E[@.3%) - [0.3.9]

= [E(©.5.%) - fO,3, 0] + Var [[6,7.%)]
By classical calculations, we obtain
F©.3.2) = f(6.3.%)

= (N (0,7,%) — £(6,7.%)

— (n(®.3,% — E[fn(6,y.0]) (o6, — 1)

—E[fn .50 (fo0,2) — 1)

+ (fo (0, x) — 1) 70,7, %).

which implies that:
E[f(6,y,0] - f©.5,%)

= (E[fn (0,7, 0] — £(6,7,))
— Cov (f (8,3, ),Jp(6, )
+E [@(e,x) - E[ﬁ;(@,x)])zf(e,y,x)] .

Under the assumption (H5), we can bound }‘\(9, ¥,x) by a
constant C > 0 where f (6, y,x) < C/hy. Hence:

E[f©.7.%)] - f©.y.%)
= (E[fv (0., )] —£(6,5.%))
— Cov G";\](@,y,x),?p(&x))
+ Var [fp(6,x)] O(hi).

Now, by similar technics as those Sarda and Vieu (2000) and
by Bosq and Lecoutre (1987), the variance term is

Var [f(6,y.0)]
= Var [fn(6,5,%)]
— 2E[fx (0, 3, )1Cov (fn (6, 3, %), fp (6, x))
+ (Efn (0, y,0)1)* Var (7o (0, x))

1
_ ). |
° <"hH¢0,x(hK)>

Proof of Lemma 3.2: We have:

E(fn(6,y,%)]

— ]E 1
~ | an — DhgE[W12(6,%)]

> WO, 0H Mg (v - Y;))}
1<i#j<n
1

= —— K| Wy RE[H2|X3]].
h B Wora] [Wo,12E[H,|X]]

By using a Taylor’s expansion and under assumption (H5),
we have

E[H:1Xz] = f(6,5,X2)

h%{ 2 32f(9’7>X2) 2
+ < / t H(t)dt) o T o(hip).

Now, we can re-written as:

E[H:|X2] = ¥o(X2,y)

h2
+ = 5 (/t H(t) dt) Y2(X2, ) +0(h ).
Thus, we obtain

E [fv(0.7.0)]

= m (E [We,mﬁz(Xz,y)]

+ (/ tzH(t)dt) E [Wo,1292(X2, )] + O(h%{)) :

Accordingly to Ferraty et al. (2007), for I € {0, 2}, we show
that

E[Wg,1291(X2, )]
= Y1(x, ) E[Wo,12] + E[Wo,12(¥1(X2, ) —
= 1%, ) E[Wo,12]
+ E[Wo,2E[Y1(X2, y) — ¥i(x, y)|dp (X2, x)]]
= Yi1(x, ) E[Wo,12] + E[Wp,12D;(dg (X2, x))].
Since ®;(0) = 0, we obtain
E[Wg,12®1(dg (X2, x))]
= ®)(0)E[dy (X2, %) W 12] + o(E [do (X2, X) Wy 12]).
Then,

Yi(x, )]

2
=f0,y,x )+h—78 /. y’x)/tH(t)dt

+o (h%_IE [de (XZ) x)W9,12]>

E[Ws,12]

E [fn (6,5, %)]

E [do (X2, %) W,12]

+ ®0(0) E[Wo,12]
. E [dg (X2, ) W12
E[Ws,12] '

Therefore, it remains to determine the quantities E[dp (X2, x)
Wo,12] and E[Wp,12]. According to the definition of Wy 12,
the two quantities E[dp (X2, x) Wy 12] and E[Wpy 2] are based
on the evaluation asymptotic of E[Kfﬂ{7 1. To do that, we treat
firstly, the case b = 1. For this case, we use the assumptions
(H3) and (H4) to get

heE[K o] = o ( f B, x)dP(u))
B(X,h]()

= o(hx$o,x(hx)).
So, we obtain that,
E[K7Bo,1] = o(hx g x(hK))- (A1)

Moreover, for all b > 1, and after simplifications of the expres-
sions, permits to write that

E[K?BY ] = EIKEdS (x, )] + o(hY o, (hi)).-
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Concerning the first term, we write

hPRIKEdS)

- / VKA (v)dPK X (y)

1 . }

= / |:K’1(1) _/ ((ShK“(s))/) du:| dPhK dg(x,X)(v)
1

) (K(l)%’mm _/ (SbK“@))(%@,x(shK,hK)ds)
-1

1 «(shg, h
= ox(h) <K(1> - / l(sbK“(S))’Mds).

¢0,x (hK )
Finally, under assumptions (H1), we get

1
E[K¢BE,] = hb o (k) <K(1) - / 1<sb1<”<u))’><9,x(s)ds)

+ o(h o (hi)). (A2)
So,
Eldp (X2, x) Wa,12]
E[Wp,12]
K1) — [ (sK(s)) x9.2(s)d
_ hK< (1) f_11<s () x6,x(s) s) ot
K(1) — 1, (K" () xp,(s)ds
Hence,
E [fa(0,,%)]
2
= f(0,y,%) + —M / PH(t)dt + o(h)
(K(l) - f,l(sK(s»’xa,x(s)ds)
+ hg @ (0) 1
(K = [}, K©) x0.(5)ds)
+ o(hg). |

Proof of Lemma 3.3.: We know
Var (fu(9,.%))

1 Var Z Wy iiH
= 0,iiH;
(nn— DI EWe2D) S

1
B (n(n — 1)hH(]E[W9,12]))2
x [n(n — DE[W ,(Hj]

+ n(n — DE[Wy,12 Wy 21 H2Hi |

+ n(n — 1)(n — 2)E[Wpy,1We,13H, Hs]

+ n(n — 1)(n — 2)E[ Wy 12 Wy 23H, H3]

+ n(n — 1)(n — 2)E[Wp,12We,31H2 Hi]

+n(n = 1)(n — 2)E[Wp,12Wo52H3]

— n(n = 1)(dn — OE(We,12Hy)* . (A3)
By direct calculations, we get

E[Wg 12H2] O(h4 hH¢9’x(hK))>
= O(hLh2 195+ (hK)),
E[Wa,12Wy,13H2H3] = E[Wp,10 Wy 31 H2Hi]
= E[Wo,12Wo 23HaH3] = O(hich, 7 (hio)),
E[Wp,12Wo,32H;] = E? [ﬂle]IE[Ksz]
+o(hihue; . (hk)).

E[Wg,12 Wy 21 HoHi |
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Clearly, the latter term in the last cases is the leading one, and
can be evaluated in (A3) by using
(n—-2)

= DB T B KIEKTH)

by the same arguments used in Lemma 3.2 proofs, we obtain

E[K?H?] . ( 1 )
~ n(hyE[K])? nhugox(hg) )
(A4)

Var G"}q(@,y,x)) =

Observe that

E(K?H}] = E[KIE(H]")?((6,X1))]

=E [Kf / H*(hi' (v — z))f(@,z,Xl)dz] :
Thus, by the change of variables t = hﬁl (y — z), we get

E[K}H?] = hyE [Kf / H*(H)f 0,y — th,Xl)dt] :

By using Taylor’s expansion of order 1 of (6, -, y) we get
fO,y — hut, X1) = f(6,y,X1) + O(hn)
=f(6,y.X1) + o(1).
Then
E[K?H?] = hy ( / Hz(t)dt) E[Kif(6,y.X1)]

+ o(hyE[K7)).
Also, by the same steps in proof of Lemma 3.2, we obtain
E[Kif(0,y.X1)] = f(0,y.0)E[K{] + o(E[K7])
which give that:

EIK}H} = hf 0,y 0EIK}] [ H2(0de + o(huBIK).

(A5)
Finally, we obtain from (A2), (A4) and (A5), that

Var @\](9 ,X))
SOy, x)

= H?*(H)d
= o (he) (/ & t)

(K2 = [1, (K2 xox(9)ds)
2
(K = [ (K6 x0x(9d5)

X

1
? (ﬂhH¢9 () )

_ _MfOyn) (/ Hz(t)dt>
 M?nhydex(hy)

_— ||
o (ﬂhH¢e,x(hK) )

Proof of Lemma 3.4: The proof of this Lemma is similar to
Lemma 3.3 proof, it permits to write

Cov (fu (8,5, %), fp (6, %))
1
(n(n — 1)hH]E[W9,12])2

xCov( Z Wo,iiHj, Z WQJ’J")

1<i#j<n 1<i'#j'<n




10 e F. BENAISSA ET AL.

1
B (n(n — l)hHE[WG,IZ])Z [ﬂ(” ~ DEWeiaHl
+ n(n — DE[Wy 12 Wo 21 H;]
+n(n — 1)(n — 2)E[Wy,12Wy,13Hs]
+n(n— 1)(n — 2)E[Wy,12 Wg 23Hs]
+n(n—1)(n — 2)E[Wy,12We 31 H2]
+n(n—1)(n — 2)E[Wy 12 Wo 32H]

— (= 1)(4n — 6)(E[Wp,.HoJE[Wo,12] |
By direct calculations, we get

E[W; 1,H,] = E[Wp,12Wo 21H,] = O(hichuey  (hi)),
E[Wo,12 Wy 13Hz] = E[Wy 12 Wo 31 Hz]

= O(hihu¢y . (hx)),
E[Wp,12Wo23Hz| = E[Wy,10 Wy 3.H,]

= O(hyhu; . (hk)).

Since E[Wp 15] = O(h2 ¢9x(h1<)) we obtain

N 1
Cov GN(Q’}”")JD(@”C)) =0 <m> . "

Proof of Lemma 3.5: We have that

1
(n(n — DE[Wy12]) ( Z Wo l])

1<i#j<n

Var(fp (6, x)) =

Similarly to Lemma 3.3 proofs, we get

_ BRI ( 1 )
-~ n(E[K])? ngox(hg) )

E[K}] —> Mj,j = 1,2 (see Fer-
raty et al., 2007) then, we can write finally

Mo x(h) ( 1 )
n(Mi o« (hk))* negx (hi)

1
=0 ———). n
(”¢€,x(hK)>

Proof of Lemma 3.8: We have

Vhr o (h)Qu(0, %, )
_ oo (ZQK(H e, >)

Var (fp(6, x))

1
Wehaveasn —> 00 N (T]

Var @(G,x)) =

ﬂE(QlKl)

-E (Z QiK;(H; — (6, y, x)))

j=1
then, combined with (4) implies that
\Y nhH¢9,x(hK)Qn(9; X))’)
v/ nhudg «(hg) E(BiK1)

E(Q1K1)

nE(ﬂfK ) “ Zﬂ’

x ZK,(H,- —f(6,y.%)

=1

1 Zﬂ o ¥ (OEBIK)

"~ nE(BiK;) 4 E(21K;)

x Y BiKj(H; — f(0,,%))

=1

B (uE(ﬂ%Ko 2_piK

x ZI@(Hj—f<e,y,x>>)

j=1

Y nhydg x(h)E(BEK1)

E(€:K1)

E(€K1)

1 nhuex(h) E(B1K1)
E 1 l
* (nIE(ﬁlKo 2Pk

x Y BiK;(H; —f(e,y,x)))

j=1

Denote by

Si= nE(,st ) 4 Z,s i
5 = Vhrgo x(h)E(BIKy)

E(Q1K)

ZKJ(H] f@.y.%)

1
3= —— E ;K; and
PSRRI &P

e hOEBIKD
= E(Q:K) ; BiKj(H;j — f (6, y, x))

It remains to show that,
v nhr o x(hk) Qn (9, X, y)
= 8182 — 8384 — E(85152 — S384)
= (5152 — E(5152)) — (8384 — E(S354))
Hence by Slutsky’s theorem, to show (A3), it suffices to prove
the following two claims:

815 — E($18) B N(O, Vi (6 5,9)  (A6)

8384 — E(S384) - 0, (A7)
Proof of (A6) We can write that
8182 — E(8152)
=8 —E(S2) + (51 — DS — E((S1 — DS).

by Slutsky’s theorem, we get the following intermediate
results:

(S1 = 1S, — E((S1 — 1)S2) = 0 (A8)
and
8y — E(S2) 2 N0, Vi (6, %, ) (A9)

Concerning the proof of (A8), by applying the Bienaymé-
Tchebychv’s inequality, we obtain for all € > 0

P((S1 — DS —E((S1 — DS2)| > €)
- E(S — DS, —E(S: — 1)Sz)|)'

€

Then, the Cauchy-Schwarz inequality implies that
E(S1 = DS — E((S1 = DS2)D
< 2E(I(S1 — DS < 2VE((S1 = DI)VE((S2)?)




On one side, by using (A1) and (A2), we obtain

E((S1 — 1)?) = Var($)) = nVar(B7K1)

1

n?E2(BK)
1

<—————E(BIK})
nO(h*? (hx)) '

= (s

B nhudox(hx) )

and on the other side, we obtain

nhrgo . (h) E*(BEK1)
E2(©,K1)

2
xE (Z K;(H; —f(e,y,x»)

j=1

E(($)?%) =

n
= O(¢g x(h
(n = D20 () 0P i)

+ n(n — Do(¢j . (hi)))
= 0(1) + o(ngj , (hx))
Thus
E(|(S1 = DS —E((S1 — DS

< 2VE((S1 — D)VE((S2)?)

1
< 2\/0 (m) (O(1) + o(nh o x(hx)))

= o(1),

which implies that (S; — 1)S — E(S; — 1)S3) = 0,(1). Then,
as n — 00, we get

P((S1 = DS = E(S1 = DS)D) > €)

_ E((S1 — DS —E(S1 — DS2)D
= —>
€

0.

Concerning the proof of (A9)

Pn = SZ - E(sz)
hio «(hO)EBTKL) <
_ ml)(ﬁl D) > " Ki(H; — £(6,9,%))
j=1

— E(Kj(H;j — f(0,7.%)))

hiido(hOE(BTKL) -
_ VhidoROBGIKD) 5

E(€,K1)

j=1
where
Wnj(x, y) = Kj(Hj — f(0,,x)) — E(K;j(Hj — f(6,,%)))
By the fact that 11, (x, y) are i.i.d., it follows that
n Py« (hi) E* (BFK1)
[E2(Q21 K1)

Py (h)E*(BTK1)
B E2(21K1)

var(Py(x,y)) = var(in1 (%))

E(u, (x,))
Thus

var(Pp(x,y))

o (h)E*(BIK))
B E2(Q:K1)

— (E(Ky(Hy — £(8,y,0)%).

(EKT(Hy — £(0,9,%))%)

(A10)
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Concerning the second term on the right-hand side of (A10),
we have

(E(K\(Hy = f(6,,%)))°
= (EEK, (H; — f(6,y,%)|X1))?
= (B E(H, X)) — £(6,,0)))%
where
E((H1|X1) = f(6,5,x)) > 0 asn— o0  (All)

Now let us return to the first term of the right hand of (A10).
We have

n? o (hi)E? (BFK1)
E2(€2:K1)

_ o (h)E*(BIK))
- E2(Q1Ky)

Py (h)E*(BEKY)
B E2(Q:K7)

n g x(hi) B2 (BZK7)
E2(€,Ky)
x (EE(H:|1X1) — f6,y,x))H)KT)

(E(KF(Hy — (0,9, %))%)

EE(H, — 0,5, x)*X1)KT)

E(var(H;|X1)K})

By using (A9), that allows to have, as n — oo

n*po . (h)E2(B7K1)
E2(Q:K)

EE((H; X)) — f(0,y,%)))K?) — 0
Combining (5) and (6), we obtain as n — 0o

E(var(H|X1)K?) — E(KH)f (0, y,x) ( / Hz(t)dt)

= Mf(8,y,x) (/ Hz(f)df> ¢o.x(h).
Therefore, by using (5) and (6), Equation (A10) becomes

Var(Py(x, y))

_ "o (hi) (N1, 2) i (i)
((n = DN(1, 2) My hg ¢« (hi))?

x ( / Hzmdt) do.x (i)

M
N miﬁf ©,5.%) ( / H%t)dt)
1

M
- M%f(@,y,x) (f Hz(t)dt>

= VHK(O:x’y)

Myf (6, y,x)

asn — o0

Now, in order to end the proof of (A6), we focus on the central
limit theorem. So, the proof of (13) is completed if Lindberg’s
condition is verified. In fact, Lindberg’s condition holds since,
foranyn > 0

D B Gugisn) = PR L 1=)
j=1
= E((V11tn) L) i > i)

as

M
E((Vnpm)?) = nE(uy) — ﬁiﬂe, %) ( / H%t)dt) :
1
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Proofs of (A7). To use the same arguments as those invoked
to prove (A6), let us write

S35 — E(S384)
=84 — E(Sy) + (S3 — 1)S4 — E(S3 — 1)Sy)).

By applying Bienaymé-Tchebychv’s inequality, we obtain for
alle > 0

E(]S384 — E(S384)1)
€

P(1S384 — E(S384)]) > €) <
and the Cauchy-Schwarz inequality implies that
E((S3 = DSy — E((S3 — DS

< 2E(I(S3 — DS < 2VE((S; — DOHVE((S4)?)
Taking into account hypothesis (5) and (6), we get

E((S3 — 1)* = Var(S3) = var(B1Ky)

"
n?E2(B1K1)

412
= oGl (T

1
= O —_— .
< nhydg x(hi) )
On the other hand

nhrgo . (h)E*(B1K1)
E2(2,K1)

2
xE (Z BiK;(H; —f(e,y,x»)

=1

E((S4)%) =

_ nhird «(hi) O(hy ¢ . (hi))
(n — 1)20(hx 5 (hx))

x (nE(BLK1(Hy — £(8, 9, %))))>
+ n(n — DE*(B1K1 (Hy — (6, ,%)))
= 0(1) + o(nhyg x(hk))

It remains to show
E((S3 — 1)S4 — E((S3 — DSy
< 2VE((S; — DOVE(S)?) = o(1)
which implies that
E(|(S3 — DSs — E((S3 — DSa)]) = 0p(1)
Therefore,
P(1S384 — E(S384)]) > €)

- E(S384 — E(S384)])
- €

— 0 asn— oo.

So, to prove (A6), it suffices to show Sy — [E(S4) = 0o(1), while
E(Ss — E(S4))?
= Var(S4)

_ o (hi)E*(B1K1)
- EX(QiKy)

We arrive finally at
Var(B1K1(Hy — f(6,y,x)))

= f(0,,%) < f Hz(t)dt> E(B7K})

This last result together with (5) and (6) lead directly to
E(Ss — E(S4))?

var(B1K1(Hy — f(0,,x)))

_ n2¢6,x(hK)E2(/31Kl) 2 2.2
= E2 (K 10y, x) (/H (t)df> E(BIKY)
=f(0,y,%) </ Hz(t)dt) o(1),

which allows to finish the proof of Theorem. |
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