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ABSTRACT

The first step in the analysis of high-throughput experiment results is often to identify genes or
proteins with certain characteristics, such as genes being differentially expressed (DE). To gain
more insights into the underlying biology, functional enrichment analysis is then conducted
to provide functional interpretation for the identified genes or proteins. The hypergeometric
P value has been widely used to investigate whether genes from predefined functional terms,
e.g., Reactome, are enriched in the DE genes. The hypergeometric P value has several limita-
tions: (1) computed independently for each term, thus neglecting biological dependence; (2) sub-
ject to a size constraint that leads to the tendency of selecting less-specific terms. In this paper,
a Bayesian approach is proposed to overcome these limitations by incorporating the intercon-
nected dependence structure of biological functions in the Reactome database through a CAR
prior in a Bayesian hierarchical logistic model. The inference on functional enrichment is then
based on posterior probabilities that are immune to the size constraint. This method can detect
moderate but consistent enrichment signals and identify sets of closely related and biologically
meaningful functional terms rather than isolated terms. The performance of the Bayesian method
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is demonstrated via a simulation study and a real data application.

1. Introduction

High-throughput experiments, such as gene expression
microarrays and genome-wide RNAi screening, have
become an indispensable tool in biomedical research.
The first step in the analysis of the experiment results
is often to identify genes with certain characteristics
(e.g., genes that are differentially expressed (DE)). To
gain more insights into the underlying biology, the next
stage is to conduct a so-called functional enrichment
analysis (FEA), which investigates whether gene sets
associated with particular biological functions are sta-
tistically enriched (over-represented) in the identified
group of genes. Compared to the extensive research
in microarray analysis, development in FEA has been
limited. In this paper, we develop a novel statistical
method to utilise the knowledge of the functional char-
acteristics of genes in FEA. Without loss of general-
ity, we describe the proposed approach in the context
of a microarray experiment identifying DE genes, with
the understanding that they are applicable to any high-
throughput screening that identifies lists of genes with
certain expression patterns.

FEA is based on the postulate that genes involved
in the same biological process would be coordinately
expressed. The traditional FEA analyses individual gene
sets separately and does not take into account the inter-
relationship among gene sets which have related biolog-
ical functions. By incorporating the pathway knowledge
in FEA, the proposed method can borrow information

across associated gene sets to strengthen the detection
of enriched signals.

In FEA, there are two typical dependence struc-
tures among biological functions: the hierarchical gene
ontology structure and the interconnected pathway
structure. The first structure is represented by the Gene
Ontology database (http://www.geneontology.org),
which provides an ontology of defined terms represent-
ing gene product properties (Gene Ontology Consor-
tium, 2000). Each gene ontology (GO) term annotates
a set of genes, indicating their known involvement in
biological processes, molecular functions and cellular
components. GO terms are structured in a directed
acyclic graph (DAG) of parent—child relationship,
where a child indicates a more specific biological
classification than its parent(s).

The second structure is represented by Reactome
(http://www.reactome.org), which is an online bioin-
formatics database of human biology described in
molecular terms (Vastrik et al., 2007). It serves as an
online encyclopedia of core human pathways: DNA
replication, transcription, translation, the cell cycle,
metabolism and signalling cascades. The basic unit of
the Reactome database is a reaction which has input
and output slots that describe the reactants (input) and
product (output) of a given reaction. In accomplishing
a biological function, reactions are chained together by
shared physical entities: an output of one reaction may
be an input for another reaction and serves as the cat-
alyst for yet another reaction. Reactome organises a set

CONTACT ling Cao @jcao@smu.edu
© East China Normal University 2017


http://www.tandfonline.com
https://doi.org/10.1080/24754269.2017.1387444
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2017.1387444&domain=pdf
mailto:jcao@smu.edu
http://www.geneontology.org
http://www.reactome.org

186 J.CAO

12 = | 4
™ e S - I
Lo Hi ey

‘{5 rﬁ 1'14&1 i HM | ﬁ

e ‘ 4

ITW ] e | i "r] ; } g
T o TR h]

{ B
4 q“}r'&"”‘k il 1[-: LS
A Y R i x|

Figure 1. Part of a screenshot from the output generated by Reactome Skypainter using a specific list of genes. Each arrow represents
areaction and is coloured by the number of genes involved in that reaction.

of interlinked reactions that perform a certain function
in biological pathways. The ‘reaction map’ in Figure 1
provides part of the screenshot from the Reactome data
mining tool Skypainter (Matthews et al., 2009). Each
reaction is represented as a small arrow. The arrows are
joined end to end to indicate that the output of one reac-
tion serves as the input of the next.

The GO annotation terms are connected by parent—
child relationships defined in three categories (biolog-
ical process, molecular function and cellular compo-
nent). However, GO is not designed to cope with rela-
tions structured as pathways and sub-pathways. The
construction of Reactome is focused on establishing a
deep and robust connectivity between biological pro-
cesses. To a researcher interested in a gene or protein,
Reactome provides the summary of all the reactions
and pathways involving the molecule. Thus, FEA using
both the GO hierarchical structure and the Reactome
interconnected structure can be complementary and
valuable.

In FEA, the most commonly used statistical test
is based on the hypergeometric distribution or its
binomial approximation (Al-Shahrour, Diaz-Uriarte,
& Dopazo, 2004; Beissbarth & Speed, 2004; Cho
et al, 2001; Draghici, Khatri, Martins, Ostermeier,
& Krawetz, 2003; Luo et al, 2007). A number of
new methods have been proposed in FEA to deal
with the GO DAG structure (Alexa, Rahnenfiihrer, &
Lengauer, 2006; Cao & Zhang, 2014; Grossmann, Bauer,
Robinson, & Vingron, 2007; Lewin & Grieve, 2006;
Zhang, Cao, Kong, & Scheuermann, 2010). Some other
FEA methods proposed in recent years utilised addi-
tional biological information, such as transcriptional
regulation information (Ma, Jiang, & Jiang, 2015) and
links between individual genes (Signorelli, Vinciotti, &
Wit, 2016). In comparison to these developments of
FEA based on the GO database, there is limited devel-
opment of FEA focusing on the interconnected path-
way structure, like Reactome. The dominant statistical
test is still the hypergeometric test. The Reactome terms

do not function independently. Instead, the terms that
are involved in a pathway are connected through the
input-output relationships, which function together to
accomplish tasks. The major drawback of the hyperge-
ometric approach is that it ignores the interconnected
structure in the Reactome database, which contains a
substantial amount of information regarding the inter-
actions among the Reactome terms.

To overcome the above limitations of the conven-
tional hypergeometric test, we develop a Bayesian hier-
archical model to incorporate the interconnected struc-
ture of the Reactome database in assessing its func-
tional enrichment. The interconnected pathway struc-
ture is introduced by the conditional autoregressive
(CAR) prior to include the correlation among linked
biological reactions. The CAR prior has been used
extensively in spatial modelling to account for corre-
lation among observations from neighbouring areas
(Clayton & Kaldor, 1987; Ghosh, Natarajan, Stroud,
& Carlin, 1998; Waller, Carlin, Xia, & Gelfand, 1997).
It assumes that observations at sites near each other
tend to have similar values. With the incorporation of
the CAR prior in the model, the Bayesian FEA can
take into account the evidence not only from individ-
ual Reactome terms, but also from their related neigh-
bouring terms. The Bayesian framework enables bor-
rowing information across related Reactome terms to
strengthen the detection of enriched signals. As a result,
this method tends to identify sets of closely related
Reactome terms rather than individual unrelated terms.
The utility of the method is demonstrated using a simu-
lation study and a gene expression microarray data-set
from a human B cell stimulation experiment.

2. Method

2.1. The hypergeometric test

In this section, we first use a toy example to intro-
duce the hypergeometric test and demonstrate its
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Figure 2. Comparison of the P value and the B value in the simulation study. The full list of genes (F) are denoted as lower case letters;
the genesin the DE set D are (a, b, ¢, g, h, j, k, n, g, t, u). The rectangles contain the subset of genes annotated by each node, where
the hypergeometric P values are listed under each rectangle, followed by the B values (The online version has a color figure).

limitations in the context of Reactome annotations. In a
high-throughput experiment, let 1 denote the number
of genes annotated to a certain Reactome term, and let f
and d denote the total numbers of genes studied and DE
genes detected, respectively. The number of DE genes
annotated to this Reactome term, denoted by #, indi-
cates the representation of the Reactome term in the list
of identified DE genes. The null hypothesis of the test
is that the biological process denoted by the Reactome
term is irrelevant to the experiment, which means that
a gene being annotated by the Reactome term and this
gene being classified as DE are two independent events.
Theoretically, given (m,f, d), we can model #n by a hyper-
geometric distribution under the null hypothesis, and
the P value measuring the significance of enrichment
is the tail probability of observing n or more DE genes
annotated to the Reactome term,

MR (1) (1)

P — value = Z k

d—k

T

k=n (d)
We use an artificial interconnected structure
(Figure 2) to illustrate the limitations of the hyper-
geometric P value. It depicts the interconnected
structure of 24 terms {R;,j = 1,..., 24}, mimicking
a small region of Reactome. We use F = {g, b, ..., 2}

to denote the full list of genes, and among them the
set of 11 DE genes, denoted by D, are marked in red

(1)

(i.e., f = 26 and d = 11). The DE genes are chosen
such that there are three regions in Figure 2: the first
one covers terms R1-R9, representing a region with
enriched signals; the second one covers terms R11-R18,
representing a region with random signals; the third
one covers terms R19-R24, representing a region with
little signals. We have designed this example to examine
whether the different levels of signals can be identified
by the hypergeometric test and the proposed method.
Note that the rectangles contain the subset of genes
annotated by each Reactome term, where the hyper-
geometric P values based on Equation (1) are marked
in black under each rectangle. Taking R; for example,
it annotates m; = 7 genes and n; = 5 of them are DE.
The hypergeometric P value is 0.085.

The statistical inference based on the hypergeomet-
ric test has the following limitations. First, it cannot
distinguish Reactome terms with the same (), n;). In
Figure 2, two terms R; and R; have the same P value
because they have identical (m;, n;) = (3, 2). By exam-
ining the whole graph, we consider that R; is more likely
than R,; to be linked with the DE genes because of
the stronger evidence of enriched signal in R;’s neigh-
bouring terms (i.e., related biological functions). This
limitation stems from the hypergeometric test in treat-
ing the Reactome terms as isolated entities and ignor-
ing the interconnected structure. Second, the hyperge-
ometric P value has a size constraint. For a term of size
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m;, the smallest possible P value is attained when all
the annotated genes are DE (i.e., nj = m;). The lower
bound of the P value is reversely associated with m;.
For example, with (f = 26, d = 11), the hypergeomet-
ric P value is 0.022 when m; = n; = 4 and 0.063 when
m; = n; = 3. Thus, if we set the significance level at 0.05,
any Reactome term with a size less than 4 will be auto-
matically excluded from the inference. From a biolo-
gist’s point of view, detecting more specific functional
terms, which usually have a smaller size (), might
be more desirable because they provide more detailed
information on the biological mechanism. However, the
hypergeometric test tends to identify less specific terms
because of the constraint. In Figure 2, the most signifi-
cant term selected by the P value is R;, the largest term.
The more specific terms, such as R; and Rg, are consid-
ered less significant compared to R;.

2.2. A Bayesian model

The proposed method is called Reactome-Bayes:
Reactome-based FEA using a Bayesian approach. In
the model, each Reactome term has an enrichment
parameter measuring its enrichment level with selected
DE genes. The novelty of the model is that the complex
interconnected structure in Reactome is incorporated
via the CAR prior on the enrichment parameters. We
will show that this feature of the model will overcome
the above limitations of the conventional hypergeomet-
ric test,

Suppose a DE gene set D (with cardinality d) is iden-
tified out of a full list of f genes in a microarray study.
Let R={R;, j=1,...,]} (with cardinality {m;}) be
the set of reactions in Reactome that include genes in
the full list (i.e,, m; > 0,forj=1,...,]). Weuse g; € R;
to indicate that gene i is known to be involved in R;. We
define w;; = 1 to denote that reactions R; and R are
linked together (the output of one reaction is the input
or catalyst of the other), and w;; = 0 otherwise. Thus,
rj= Z{<=1 wj is the total number of reactions that are
directly linked with reaction R;. In the following, we
use directly linked reactions or immediate neighbours
exchangeably.

Lety; (i=1,...,I) be the observed expression status
of gene i, y; = 1 if gene i is in the DE gene set D and
yi = 0 otherwise. The binary y; is assumed to follow a
Bernoulli distribution, y;|p; ~ Bernoulli(p;), where p;
is the probability that gene i belongs to D. Under the
assumption that if R; is associated with D, the genes
annotated by R; have a higher chance of being grouped
in D, we construct the following logistic model:

J
log (%) = bo + Zl(g, S Rj)ﬁj + e,

1 ]:1
fori=1,...,1. (2)

In Model (2), by = log[po/(1 — po)] with py = dIf,
where py is the background probability that gene i is
grouped in the DE gene set D by chance. The random
error e; is assumed to have a normal distribution with

mean 0 and variance 0%, denoted by e; S N(0, 62). We
assume a vague inverse gamma prior for o%. Parame-
ter B; characterises the enrichment level of reaction R;
with the DE gene set D. Specifically, the odds of gene i
being DE is modified by a factor of exp (8;) if gi € R;.
A positive (negative) value of 8; indicates over(under)-
representation. We model the dependence among reac-
tions through a CAR prior on g;. The CAR prior can be
specified as the conditional distribution of §; given its
immediate neighbours,

] 52

p .

/3j|ﬂ(j)NN(7§ ok Br r—é),forj=1,~--,],
]k=1 J

()

where B(_ j) = {Br k # j}, (Sé is the variance parameter
and p € (0, 1) is a correlation parameter that controls
the extent of borrowing strength among neighbouring
reactions. For example, the conditional distribution of
B; is centred at the average of the enrichment parame-
ters from the immediate neighbours when p = 1, and
centred at zero when p = 0. We assume a uniform prior
for p, p ~ U(0, 1), and a vague inverse gamma prior
for 83.

A Markov Chain Monte Carlo (MCMC) sampling
algorithm is employed to simulate random samples
from the joint posterior distribution. Specifically, the
variance components o* and 8?, both have a closed-
form posterior distribution. The enrichment parameter
B; is log-concave, so the adaptive rejection method is
implemented to sample from its posterior distribution
(Gilks & Wild, 1992). The Metropolis-Hasting algo-
rithm is used to draw MCMC samples for parameter
0. We run a total of 11,000 MCMC iterations, with the
first 1000 as the burn-in cycle. We have also examined
the convergence by using different starting values and
monitoring the ‘shrink factor’ (Gelman & Rubin, 1992).
The inference is made based on B; = P(8; > 0|data),
denoted as the B value, which is the posterior proba-
bility of reaction R; being enriched in the DE gene set
D. Making inferences based on posterior probabilities
is a common practice in Bayesian analysis of microar-
ray data (Do, Muller, & Tang, 2005; Newton, Noueiry,
Sarkar, & Ahlquist, 2004). Note that a reaction with a
larger B value indicates stronger enrichment.

We adopt the CAR prior based on two consider-
ations. First, the direction in which the reactions are
linked (i.e., the output of one reaction is the input of
another reaction) is relatively trivial in FEA. The reason
is that FEA is not based on sequential measurements
over a single realisation of a process, but based on cross-
sectional measurements (gene expressions) over many
realisations involving different biological reactions or



processes. Second, the CAR prior has shown its utility in
various spatial data analyses. Introducing it to FEA may
inspire new collaborations between the two research
areas, bioinformatics and spatial statistics. More impor-
tantly, efficient sampling algorithms have been devel-
oped for Bayesian models with CAR priors (Knorr-Held
& Rue, 2002; Rue, 2001; Steinsland, 2007). This is of par-
ticular importance in FEA due to the high dimension of
high-throughput data.

We may use the B value as a screening tool to
rank Reactome terms to help researchers select the
ones for further investigation. To answer questions such
as ‘what should be the cutoff value for B-values, the
Bayesian false discovery rate (FDR) (Do, Muller, &
Tang, 2005; Newton et al., 2004; Storey, 2002) has been
widely used to account for multiplicity in the Bayesian
paradigm: E(FDR|data) = W, where N = 2;y;
is the number of selected Reactome terms, indicator y;
= 1 if the jth term is identified as enriched (its B value
ranks among the top N terms), and y; = 0 otherwise.
E(FDR|data) is the posterior portion of false discoveries
in the N terms which have been identified as enriched
terms. For further details on Bayesian FDR, readers can
refer to Muller, Parmigiani, and Rice (2006).

3. Simulation study

The proposed method is compared to the hypergeo-
metric test in the simulation study (Figure 2), where
the B values are listed in blue under each term. Recall
that contrary to the P value, a larger B value indicates
stronger enrichment of a Reactome term. There are sev-
eral advantages of the B value over the traditional hyper-
geometric P value. First, the B value can distinguish
Reactome terms with the same (m;, n;). The two terms
R7 and R;;, both with (m;, nj) = (3, 2), which could not
be distinguished by the P value, are clearly differentiated
by the B values (B; = 0.762 and B;; = 0.209). Given
the intrinsic noise in the high-throughput data collec-
tion and processing procedures, there can be errors in
the detection of DE genes. Such errors affect the accu-
racy in the determination of n; and in turn the accuracy
of the hypergeometric P value to detect enriched Reac-
tome terms. On the other hand, neighbouring terms in
Reactome represent closely related biological functions.
Thus, enriched signal detected in a neighbourhood of
Reactome terms is more reliable than that detected in a
single term. In the example, the larger B value for R; is
attributed to the stronger evidence of enrichment from
its neighbours. In contrast, the neighbouring terms of
Ry; are mostly under-represented in the DE gene list,
leading to a much smaller B value. Second, the proposed
method can mitigate the undue influence of Reactome
term size. Based on the hypergeometric P value, the
most enriched term is R;. Note that 71% of its anno-
tated genes are DE (n;/m; = 5/7 = 0.71), which is not
the highest level among all the terms. However, because
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it is one of the largest terms (m; = 7) in Figure 2, it has
the smallest P value of 0.085, even though one of its two
neighbouring terms, R;, does not have any DE genes
(n, = 0). By comparison, the Bayesian method incor-
porates not only the enrichment evidence of an individ-
ual term but also that of the neighbouring terms. Thus,
in this simulation study, the B value has identified the
term Rg being the most enriched term, where 100% of
its annotated genes are DE (ng/mg = 2/2 = 1.00). More
importantly, all of Rg’s neighbouring terms contribute
supporting evidence, which is not the case for R;.

In summary, the B value tends to identify neighbour-
hoods of related terms where moderate but consistent
signals are considered more trustworthy than strong
signals from isolated terms. In addition, sharing infor-
mation among neighbours can help mitigate the impact
of mis-classified genes on the inference of individual
terms.

4, Application

4.1. Data-set

We use a gene expression microarray data-set to
demonstrate the proposed Bayesian method. In this
microarray experiment, researchers evaluate the effect
of three stimulus on a B cell lymphoma cell line
(Ramos): the B cell antigen receptor (BCR), CD40 and
a combination of the two (Basso et al., 2005). In this
paper, for the demonstration purpose, we only consider
the DE genes under one stimulus BCR. The expres-
sion data was processed using the significance analysis
of microarrays (SAM) approach (Tusher, Tibshirani, &
Chu, 2001). After the first step of the analysis, the full list
contains f = 1647 genes and a cluster of d =333 genes
was identified. Genes in this cluster were all upregulated
in response to the BCR signalling. These treatment con-
ditions mimic important biological responses of imma-
ture B cells (Hsueh & Scheuermann, 2000), where B
cells need to respond by productive proliferation and
differentiation into immune effector cells.

4.2. Result

The full list of 1647 genes are annotated by a total of
J = 3193 Reactome terms. Suppose about 1% of all the
terms can be further examined, so we compare the top
30 Reactome terms selected by the P value (denoted as
the P-list) and the top 30 Reactome terms selected by
the B value (denoted as the B-list).

First, we examine which method tends to identify
sets of closely related GO terms instead of isolated
ones. Define a Reactome-set to be a group of Reac-
tome terms that are connected with each other through
the input/output links. For example, in Figure 2, if we
set the threshold of B value at 0.75, then four terms
are above this threshold (R, Ry, Rg, Ry), which form
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Figure 3. The largest Reactome-set identified by both the P-list and the B-list. The rectangles denote the Reactome terms, where
(m, n;) are listed under each term, under which the P value and the B value are listed respectively, followed by the rank of the term by
the P value and the rank by the B value (The online version has a color figure).

one Reactome-set. It is desirable for an approach in
the enrichment analysis to identify larger Reactome-
sets instead of isolated single Reactome terms because
the former contains more reliable enrichment signals.
Table 1 compares the Reactome-sets identified by the
P-list and the B-list. Compared to the P value, the B
value tends to identify larger Reactome-sets. Specifi-
cally, six Reactome terms in the P-list are isolated sin-
gle terms, while there are no such isolated terms in
the B-list. In addition, there are only three none-single
Reactome-sets (i.e., the set contains more than one
Reactome term) in the P-list. By comparison, the B-list
has identified five non-single Reactome-sets.

The largest Reactome-set identified by both the P-
list and the B-list contains the same biological func-
tional units in Reactome; see Figure 3. This indicates
that when the enrichment signals are strong, the P value
and the B value will produce similar results in FEA.

Note that in Figure 3, there is one Reactome term
#72231(Formation of the Cleavage and Polyadenylation
Complex), which is marked in red. Different from the
other terms in the figure which have similar ranks in
the P-list and the B-list, its rank by the P value is 2002,
and its rank by the B value is 23, which puts it in the
top 30 B-list. The rank by the P value is low due to the
fact that the term has n; = 0 (i.e., none of its annotated
genes are DE). By comparison, with its neighbouring
terms showing very strong signals of enrichment, the
proposed Bayesian considers the observation of n; = 0
as a result of random error from experiment and assign
a relatively higher ranking by B value.

Table 1. Number of Reactome-sets identified in the P-
list and the B-list.

Size of Reactome-sets 1 2 3 4 5

P-list 6 0 2 0 O 1 0
B-list 0o 0 2 1 1 0 1

Upon literature review, we have found substan-
tial evidence that Reactome term #72231 is likely to
be involved in regulating the proliferative state of B
cells. For example, Elkon, Ugalde, and Agami (2013)
hypothesised that when human B cells and mono-
cytes were stimulated, enhanced alternative cleavage
and polyadenylation is linked to the proliferative state
of cells. It was demonstrated that this regulated poly(A)
selection is controlled during B cell maturation in
part by the concentration of the polyadenylation fac-
tor cleavage stimulation factor subunit 2 (CSTF2): low
CSTF2 concentrations in early stages of B cell devel-
opment favour cleavage at the canonical and stronger
immunoglobulin M (IgM) poly(A) site, whereas high
CSTF2 levels in activated B cells induce cleavage at
the weaker proximal site (Takagaki & Manley, 1998;
Takagaki, Seipelt, Peterson, & Manley, 1996). Further-
more, Reactome #72231 is the preceding event of
#72130 (Formation of an intermediate Spliceosomal
C complex), which is ranked 9 both by the P value
and the B value. It is unlikely that Reactome #72130
is involved in the experiment without the participa-
tion of #72231. Taken together, these findings suggest
that the identification of Reactome term #72231 by
Reactome-Bayes is biologically reasonable and it pro-
vides an example that the proposed approach was able
to mitigate the impact of experimental error or ran-
dom noises arising from microarray data generation or
processing.

The identification of #72231 by Reactome-Bayes
presents an example where a single Reactome term
is missed by the traditional hypergeometric method
but is identified by the Bayesian method. In Figure 4,
we have another example that a non-single Reactome-
set (including #68917, #68918, #68919) is missed by
P value, but identified by B-value. The Reactome-
set contains three terms Reactome #68917 (Cdc45
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Figure 4. The neighbourhood of Reactome terms 68917, 68918 and 68919. The rectangles denote the Reactome terms, where (m; n;)
are listed under each term, under which the P value and the B value are listed respectively, followed by the rank of the term by the P
value and the rank by the B value (The online version has a color figure).

associates with the pre-replicative complex at the ori-
gin), #68918 (cyclin-dependent kinases (CDK) and
Dbf4-dependent kinase (DDK) associate with the
Mcm10: pre-replicative complex), and #68919 (Mcm10
associates with the pre-replicative complex, stabilising
Mcm?2-7). Figure 4 plots the neighbourhood of this
Reactome-set. It is noteworthy that the enrichment sig-
nal is moderate in each of the individual terms (ranked
at 117, 55, 73 with P value), but they are consistent in
the neighbourhood. The identification of such Reac-
tome terms usually is more reliable because the enrich-
ment signal is less likely to arise from random vari-
ability or error. Through literature review, we also find
convincing evidence that this Reactome-set is likely to
be involved in the experiment. A pre-replicative com-
plex containing the origin recognition complex, Cdc6,
Cdtl and six mobil crystalline material (MCM) pro-
teins (Mcm2-7), is assembled prior to the initiation of
replication. It has been shown that Cdc7 and Cdk2
(cyclin dependent kinase 2) act in a sequential man-
ner to load Cdc45 at the origin (Walter, 2000). Fur-
thermore, binding of Cdc45 and then replication pro-
tein A (RPA) results in origin unwinding and binding of
the primase DNA polymerase, which begins replication
(Walter & Newport, 2000). These activities are closely
related to the differentiation and proliferation of B-cell.
Srinivasan, Dominguez-Sola, Wang, Hyrien, and Gau-
tier (2013) also showed that Cdc45 is a critical effector
of Myc-dependent DNA replication stress, where Myc
deregulation promotes the development of immature B
cell neoplasias (Kovalchuk et al., 2000). Based on the
experiment evidence, this Reactome-set does appear to
be biologically associated with the DE gene set.

5. Discussion

We have proposed a Bayesian approach to conduct
FEA based on the Reactome annotation database, where
the functional terms are connected in a input-output
relationship. The novelty of the proposed method
is that the model encourages sharing of evidence
among related biological functions by incorporating the
interconnected dependence structure of Reactome

through a CAR prior. Functional enrichment of Reac-
tome terms are measured by the B value, which can
be conveniently interpreted as the posterior probability
of a Reactome term being enriched given the observed
data. The mechanism induced by the Bayesian model
to share information among related functional terms
strengthens the detection of moderate but consistent
enrichment signals which can help researchers to iden-
tify sets of related terms rather than individual isolated
terms. We have provided detailed comparison between
the proposed approach and the conventional hypergeo-
metric test. Our analysis using an artificial data-set and
a real microarray data-set suggests that the Bayesian
approach can produce more biologically meaningful
results than the hypergeometric test.

Current annotation databases like Reactome are
imperfect and still evolving, which means that mis-
takes in its annotations might adversely affect FEA. This
is a challenge faced by all enrichment analysis meth-
ods. Many studies have demonstrated that although
imperfect, incorporating annotation information may
help researchers achieve more meaningful results. B val-
ues, like other enrichment scores or P values, should
be treated as a scoring system that plays an advisory
role such as ranking and suggesting possible relevant
annotation terms, as opposed to an absolute, decision-
making role.

The conventional hypergeometric P value only
requires information on individual functional terms,
and has a closed form. Reactome-Bayes, on the other
hand, requires additional information on the intercon-
nected structure of biological functions, and thus it does
not have a closed form. We have developed a program in
FORTRAN to implement the Bayesian FEA approach.
It is in our future research plan to further develop it into
a webtool.
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