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ABSTRACT
Semiparametric mixed-effects double regressionmodels have been used for analysis of longitu-
dinal data in a variety of applications, as they allow researchers to jointly model the mean and
variance of the mixed-effects as a function of predictors. However, these models are commonly
estimated based on the normality assumption for the errors and the resultsmay thus be sensitive
to outliers and/or heavy-tailed data. Quantile regression is an ideal alternative to deal with these
problems, as it is insensitive to heteroscedasticity and outliers and can make statistical analysis
more robust. In this paper, we consider Bayesian quantile regression analysis for semiparamet-
ric mixed-effects double regression models based on the asymmetric Laplace distribution for
the errors. We construct a Bayesian hierarchical model and then develop an efficient Markov
chain Monte Carlo sampling algorithm to generate posterior samples from the full posterior dis-
tributions to conduct the posterior inference. The performance of the proposed procedure is
evaluated through simulation studies and a real data application.
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1. Introduction

Semiparametricmixed-effects double (SPMED) regres-
sionmodels can be viewed as a useful extension to semi-
parametric mixed-effects models and provide a more
flexible framework for analysis of longitudinal data in
a wide range of disciplines, such as biological studies,
econometrics, fiance, and social sciences. Compared to
that of traditional semiparametric mixed-effects mod-
els, they allow researchers to simultaneously model the
mean and variance of the mixed-effects as a function of
predictors. In many practical applications, we shall be
interested in modeling heteroscedastic data by assum-
ing that both the location and scale parameters depend
on a set of predictors. For example, in Taguchi-type
designed experiments, the researchers are interested
in dealing with the scale structures and modeling the
source of variability in the observed data.

Many estimation methods have recently been devel-
oped for jointly modeling the mean and variance of
semiparametric mixed-effects models from both fre-
quentist and Bayesian perspectives. Examples include
(Aitkin, 1987) for the maximum likelihood (ML) esti-
mation for the mean and variance in normal regression
models, Cepeda and Gamerman (2000) for Bayesian
analysis of modeling of variance heterogeneity in nor-
mal regression models, Lombardia and Sperlich (2007)
for the ML estimation of generalized mixed-effects
models, Chen and Tang (2010) for Bayesian analysis of
semiparametric reproductive dispersion mixed-effects

models, Chen and Ye (2009, 2011) for Bayesian hier-
archical modeling methods on dual response surfaces.
Tang and Duan (2012) for Bayesian analysis of semi-
parametric generalized partial linear mixed models, to
name a just few.We observe that estimation of themean
parameters in these models often depends on the nor-
mality assumption for the errors, which implies that
the results may not be robust when the data exhibit
heavy-tailed behavior and/or contain outliers. To tackle
this issue, we may employ some heavy-tailed distribu-
tions for the errors, which should be less insensitive to
heteroscedasticity and outliers and thus make the sta-
tistical analysis more robust; see, for example, Fonseca
et al. (2008); Kang et al. (2018); Wu et al. (2017).

Alternatively, quantile regression (QR) may be
employed to deal with these problems, as it is insen-
sitive to heteroscedasticity and a number of error
distributions; see, for example, Koenker and Bas-
sett (1978); Koenker et al. (2018). QR can be view as
a type of regression analysis, as it depicts the effects
of the predictors on the conditional quantile function
of the response variable and thus provides information
that the classical mean regression may fail to reflect.
In recent decades, the parameter estimation in QR
has drawn increasingly attention in the literature, such
as the Majorize-Minimization algorithm of Hunter
and Lange (2000), the Expectation–Maximization of
Tian et al. (2014), and Bayesian method of Yu and
Moyeed (2001).
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It is worth noting that due to a close relationship
between the models with the asymmetric Laplace dis-
tribution (ALD) for the errors and theQR analysis (e.g.,
Yu andMoyeed (2001)), Bayesian QR analysis has been
widely studied by specifying the ALD as a working like-
lihood function. Such a specification is based on the
fact that the problem of estimating the regression coef-
ficients in linear QR models is equivalent to that of
maximizing the likelihood function in linear models
with the ALD for the errors. Furthermore, the utiliza-
tion of the ALD couldmake the statistical analysismore
robust than the normal distributed error and itsmixture
representation (Kozumi & Kobayashi, 2011)) allows
researchers to develop a Bayesian hierarchical model
for conducting the posterior inference; see, for exam-
ple, Alhamzawi and Ali (2018); Kotz et al. (2001); Tian
and Song (2020). Yang et al. (2016) discussed the
asymptotic validity of posterior inference of pseudo-
Bayesian quantile regression methods when the ALD is
used as the working likelihood function. Bayesian QR
analysis has also been studied in linear mixed-effects
models. For instance, Waldmann et al. (2013) studied
Bayesian semiparametric additive regression models.
Tian et al. (2016) studied Bayesian joint QR analy-
sis for mixed-effects models with different data fea-
tures. Zhang et al. (2019) investigated Bayesian quantile
regression-based partially linear mixed-effects models
for analysis of longitudinal data.

As seen in many practical applications, the assump-
tions of equal variances and normality for the errors
may not be appropriate for modeling the data that
exhibit heteroscedasticity and have tails heavier than
those of a normal distribution. To avoid these assump-
tions, we may consider semiparametric mixed-effect
models (e.g., Geraci (2019); Geraci and Bottai (2014))
or SPMED models (e.g., Xu et al. (2016)) with flexi-
ble errors. The main difference between the two types
of models is that SPMED models jointly consider the
quantile of the response variable and the variance struc-
tures of random-effects as a function of the predictors.
This framework allows researchers to model various
quantiles and the variance based on the same set of the
predictors through using parametric linear models that
have been extensively studied in the literature. In addi-
tion, it is not only insensitive to heteroscedasticity and
outliers, but also allows researchers to develop an effi-
cient Markov chain Monte Carlo (MCMC) algorithm
for performing the posterior inference. To be best ofmy
knowledge, not much work has been done for conduct-
ing Bayesian QR analysis for the SPMEDmodels under
the ALD for the error. In this paper, we fill this gap
by developing a Bayesian hierarchical SPMED model
based on an assumption that both the quantile and
variance parameters rely on a set of predictors under
consideration, which could depict the effects of a set of
predictors on the complete conditional distribution of
a response variable.

The remainder of this paper is organized as follows.
In Section 2, we briefly overview SPMED regression
models and discuss the specification of the ALD as a
working likelihood for the errors. In Section 3, we dis-
cuss prior distributions of the model parameters and
develop an efficient MCMC-based sampling algorithm
for drawing the posterior inference of all unknown
parameters. In Section 4, we conduct simulation studies
to investigate the performance of the proposed meth-
ods. In Section 5, a real-data application is provided
for illustrative purposes, and finally, some concluding
remarks are given in Section 6 with the Metropolis-
Hastings algorithm provided in the Appendix.

2. Quantile semiparametric mixed-effects
double regressionmodels

In this section, we introduce quantile SPMED regres-
sionmodels in Section 2.1 and discuss Bayesian analysis
of quantile SPMED regression models under the ALD
error in Section 2.2.

2.1. Quantile SPMED regressionmodels

Consider the semiparametric mixed-effects model of
the form

yij = xTijβ + g(tij)+ vi + εij, i = 1, 2, . . . , n,

j = 1, 2, . . . ,mi, (1)

where yij is the response variable of the ith subject on
the jth measurement, xij = (xij1, . . . , xijp)T is a p× 1
vector of predictor variables, β is a p× 1 vector of
unknown regression coefficients, g(tij) is an unknown
smooth function associated with a univariate observed
covariate at time tij, vi is a random-effect of the ith
subject with vi ∼ N(0, σ 2

i ) while σ 2
i being the hetero-

geneity variance, and εij is the error term. Here, the
superscript T represents the transpose of a matrix or a
vector. To avoid the need of an intercept, it is assumed
that the response y = (y11, . . . ymnn)

T is zero centered.
In practical applications, there often exists the variabil-
ity related to predictors. This motivates us to assume
the existence of variance heterogeneity for each sub-
ject, in which σ 2

i is related to a set of predictors zi =
(zi1, . . . , ziq)T, such that σ 2

i = h(zi, γ ), where h(·, ·) is a
known function and γ = (γ1, . . . , γq)T is a q× 1 vec-
tor of regression coefficients. There are several known
forms for h(zi, γ ), such as the log-linear model or the
power product model (e.g., Xu et al. (2016)).

Numerous techniques such as the smoothing splines
and the kernel methods can be adopted to handle the
nonparametric function g(·) in (1); see, for example,
Fan and Gijbels (1996); Kai et al. (2011), among others.
In this paper, we consider the B-spline approximation
to convert g(·) into a linear function, which consists
of a set of basis functions. Without loss of generality,
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we assume that tij ∈ [0, 1] can be partitioned as 0 =
s0 < s1 < · · · < skn < skn+1 = 1, where si is an inter-
nal knot. There are K = kn +M normalized B-spline
basis functions {πk(tij)} of order M that form a basis
for the linear spline space, where πk(·) is the kth basis
function for k = 1, 2, . . . ,K. By following the idea ofHe
et al. (2005), we may set the number of knots to be the
integer part of N1/5 with N =∑n

i=1mi. The model (1)
can then be simply linearized as

yij = xTijβ + bTijα + vi + εij, i = 1, 2, . . . , n,

j = 1, 2, . . . ,mi, (2)

where bij = (π1(tij), . . . ,πK(tij))T is a K × 1 vector of
basis functions and α is aK × 1 vector of the regression
coefficients for the basis functions.

We observe fromKozumi and Kobayashi (2011) that
if the distribution function of the error εij in (2) is
restricted to have the τ th quantile equal to zero, such
that

∫ 0
−∞ fτ (εij) dεij = τ , where fτ (·) is the probability

density function (pdf) of the error, then the τ th quan-
tile regression estimator for βτ and ατ can be obtained
by minimizing the following objective loss function

(β̂τ , α̂τ )

= arg min
βτ ,ατ

n∑
i=1

mi∑
j=1

ρτ

(
yij − xTijβτ − bTijατ − vi

)
,

(3)

where τ ∈ (0, 1) is a given quantile level, and the check
loss function ρτ (·) is defined as

ρτ (u) = u{τ − I(u < 0)},
where I(·)denotes the indicator function. Since the esti-
mators cannot be directly obtained by differentiating
the objective function in (3), wemay employ numerical
methods to calculate these quantile regression estima-
tors; see, for example, Koenker and Park (1996).

2.2. Bayesian quantile SPMED regressionmodels

Within a Bayesian QR framework, we need to specify a
density function fτ (·) for the error in (2). Owing to an
equivalence between the minimization problem in (3)
and the maximization of the likelihood function with
the ALD for the errors (e.g., Yu and Moyeed (2001)),
we may assume the error in (2) to be the ALD, denoted
by ε ∼ ALD(μ, θ , τ), whose pdf is given by

fτ (ε |μ, θ , τ) = τ(1− τ)

θ
exp

{
−ρτ

(
ε − μ

θ

)}
,

where μ is the location, θ is the scale, and τ ∈
(0, 1) stands for the skewness. Analogous to Kozumi
and Kobayashi (2011), we can represent the ALD
as a normal-exponential mixture summarized in the
following proposition.

Proposition 2.1: Let e ∼ E(θ−1) and r ∼ N(0, 1) be
two independent random variables, where E(ϑ) repre-
sents an exponential distribution with mean ϑ . If ε ∼
ALD(μ, θ , τ), then it can be represented by

ε = μ+ k1e+ r
√
k2θe,

where k1 = 1−2τ
τ(1−τ)

and k2 = 2
τ(1−τ)

.

According to Proposition 2.1, themodel in (2) under
the ALD for the errors can be rewritten as

yij = xTijβ + bTijα + vi + k1eij + rij
√
k2θeij,

i = 1, 2, . . . , n, j = 1, 2, . . . ,mi, (4)

where eij ∼ E(θ−1) and rij ∼ N(0, 1) are independent
of each other.

Let y = (yT1 , . . . , y
T
n )T be the vector of all response

observations with yi = (yi1, . . . , yimi)
T, t = (tT1 , . . . ,

tTn )T be the time sequence vector with ti = (ti1, . . . ,
timi)

T, X = (XT
1 , . . . ,X

T
n )T be the design matrix with

Xi = (xi1, . . . , ximi)
T, B = (BT

1 , . . . ,B
T
n )T with Bi =

(bi1, . . . , bimi)
T, e = (eT1 , . . . , e

T
n)T with ei = (ei1, . . . ,

eimi)
T, and r = (rT1 , . . . , r

T
n )T with ri = (ri1, . . . , rimi)

T.
Denote ṽ = (vT1 , . . . , v

T
n )T with vi = vi ⊗ 1mi , where⊗

is the Kronecker product and 1mi is a vector consisting
of mi 1s. Then the model in (4) can be rewritten as a
matrix form

y = Xβ + Bα + ṽ + k1e+ r ◦
√
k2θe, (5)

where the symbol ‘◦’ is the Hadamard product that
takes two matrices of the same dimensions to multi-
ply element by element. The likelihood function of all
model parameters is given by

L(α,β , γ , θ , v, e | y,X,Z, t)
∝ |�|− 1

2 |E|− 1
2

× exp
{
−1
2
(y − μ)TE−1(y − μ)− 1

2
vT�−1v

}
,

(6)

where � = diag(σ 2
1 , . . . , σ

2
n ) with σ 2

i = h(zi, γ ) for
i = 1, . . . , n, h(·, ·) is a known function and diag(·)
is the matrix with its argument on the diagonal,
γ = (γ1, . . . , γq)T is a q× 1 vector of the regres-
sion coefficients, E = k2θdiag(eT), μ = Xβ + Bα +
ṽ + k1e, v = (v1, . . . , vn)T, and Z = (z1, . . . , zn)T with
zi = (zi1, . . . , ziq)T.

3. Posterior inference

Bayesian analysis begins with prior specifications
for the unknown parameters (α,β , γ , θ) in (6). We
assume that (α,β , γ ) are independently distributed as
multivariate normal distributions, such that α |φ2 ∼
NK(α0,φ2IK), β | θ ∼ Np(β0, θBβ), and γ ∼ Nq(γ 0,
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Bγ ), respectively, where α0, β0, γ 0, Bβ , and Bγ are
the prespecified hyperparameters and IK is the identity
matrix, and φ2 follows an inverse Gamma distribu-
tion, denoted by φ2 ∼ Inv − Gamma(aφ2 , bφ2), where
the shape parameter aφ2 and the scale parameter bφ2

are known positive constants. We assume that θ ∼
Inv − Gamma(aθ , bθ ), where aθ and bθ are known pos-
itive constants. The resulting joint posterior distribu-
tion of the unknown parameters � = (α,β , γ , θ) is
given by

p(�, e, v | y,X,Z, t)
∝ L(α,β , γ , θ , v, e | y,X,Z, t)p(e | θ)p(α |φ2)

× p(β | θ)p(γ )p(φ2)p(θ), (7)

which is indirectly tractable for performing the poste-
rior inference. To tackle this issue, we first derive the
full conditional distributions of the unknown param-
eters and then construct the Gibbs sampler with the
Metropolis–Hastings sampling algorithms to generate
posterior samples from their full conditional distribu-
tions as follows.

• Full conditional distribution of α:
Since α |φ2 ∼ NK(α0,φ2IK), we have

p(α |β , γ , θ , v, e, y,X,Z, t)
∝ L(α | θ ,β , γ , v, e, y,X,Z, t)p(α |φ2)

∝ exp
{
−1
2
(α − α�

0)
TB�−1

α (α − α�
0)

}
, (8)

where α�
0 = B�

α((φ2)−1α0 + BTE−1(y − Xβ − ṽ −
k1e)) and B�

α = (BTE−1B+ (φ2)−1IK)−1.
• Full conditional distribution of β :

Since β | θ ∼ Np(β0, θBβ), we have

p(β |α, γ , θ , v, e, y,X,Z, t)
∝ L(β | θ ,α, γ , v, e, y,X,Z, t)p(β | θ)

∝ exp
{
−1
2
(β − β�

0)
TB�−1

β (β − β�
0)

}
, (9)

where β�
0 = B�

β(θ−1B−1β β0 + XTE−1(y − ṽ − Bα

− k1e)) and B�
β = (XTE−1X+ θ−1B−1β )−1.

• Full conditional distribution of γ :
Since γ ∼ Nq(γ 0,Bγ ), we have

p(γ |α,β , θ , v, e, y,X,Z, t)
∝ L(γ | θ ,β ,α, v, e, y,X,Z, t)p(γ )

∝ |�|− 1
2 exp

{
−1
2
vT�−1v

− 1
2
(γ − γ 0)

TB−1γ (γ − γ 0)

}
. (10)

• Full conditional distribution of θ :

Since eij | θ ∼ E(θ−1),β | θ ∼ Np(β0, θBβ), and
θ ∼ Inv − Gamma(aθ , bθ ), it can be easily shown
that

p(θ |α,β , γ , v, e, y,X,Z, t)
∝ L(θ |β ,α, γ , v, e, y,X,Z, t)p(e | θ)p(β | θ)p(θ)

∝ θ−a
�
θ−1 exp

(
−b

�
θ

θ

)
, (11)

where a�
θ = 3N+p

2 + aθ and b�
θ = 1

2 (y
− μ)TE−10 (y − μ)+ 1

2 (β − β0)
TB−1β (β − β0)+

eT1N + bθ with E0 = k2diag(eT).
• Full conditional distribution of φ2:

Since α |φ2 ∼ NK(α0,φ2IK) and φ2 ∼ Inv−
Gamma(aφ2 , bφ2), we have

p(φ2 |α) ∝ p(α |φ2)p(φ2)

∝ (φ2)
−a�

φ2
−1

exp

(
−
b�
φ2

φ2

)
, (12)

where a�
φ2 = K

2 + aφ2 and b�
φ2 = 1

2 (α − α0)
T(α −

α0)+bφ2 .
• Full conditional distribution of e:

Since eij | θ ∼ E(θ), the full conditional distribu-
tion of each eij is given by

p(eij |α,β , γ , θ , v, y,X,Z, t)
∝ L(eij | θ ,β ,α, γ , v, y,X,Z, t)p(eij | θ)

∝ e−
1
2

ij exp

{
−
a�
eeij + b�

eij/eij
2

}
, (13)

where a�
e = k21+2k2

k2θ and b�
eij =

(yij−xTijβ−bTijα−vi)2
k2θ .

• Full conditional distribution of v:
The conditional posterior v is given by

p(v |α,β , γ , θ , e, y,X,Z, t)

∝ exp
{
−1
2
(ṽTE−1ṽ

− 2(y − Xβ − Bα − k1e)TE−1ṽ + vT�−1v)
}

∝ exp
{
−1
2
(v − v�

0)
TB�−1

v (v − v�
0)

}
, (14)

where v�
0 = B�

vw and B�
v = (A+�−1)−1 with A =

(k2θ)−1diag(
∑m1

j=1 e
−1
1j , . . . ,

∑mn
j=1 e

−1
nj ) and w =

(w1, . . . ,wn)
T with wi = (k2θ)−1

∑mj
j=1{(yij − xTijβ

− bTijα − k1eij)e−1ij }.

According to the conditional posteriors from (8)
to (14), we an construct an efficient MCMC-based
sampling algorithm for generating posterior samples
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Algorithm 1: An MCMC-based sampling algorithm for � = (α,β , γ , θ).

Input: Set up initial values �(0) = (α(0),β(0), γ (0), θ(0)), φ2(0), e(0), and v(0), and the number of iterations
of the sampling algorithm J.

Result: A sequence of posterior samples (�(1), · · · ,�(J)).
for k← 1 to J do

1. Update ṽ(k−1) = ((v(k−1)
1 )T, · · · , (v(k−1)

n )T)T with v(k−1)
i = v(k−1)

i ⊗ 1mi ;
�(k−1) = diag

(
(σ 2

1 )(k−1), · · · , (σ 2
n )(k−1)

)
and E(k−1) = k2θ(k−1)diag(e(k−1));

2. Sample α(k) | β(k−1), θ(k−1),φ2(k−1), e(k−1), v(k−1), y,X,Z, t from NK(α�
0,B

�
α) in (8);

3. Sample β(k) | α(k), θ(k−1), e(k), v(k−1), y,X,Z, t from Np(β
�
0,B

�
β) in (9);

4. Sample γ (k) | α(k),β(k), θ(k−1), e(k−1), v(k−1), y,X,Z, t from (10) based on the Metropolis Hastings
algorithm provided in the Appendix;

5. Sample θ(k) | α(k),β(k), e(k−1), v(k−1), y,X,Z, t from Inv − Gamma(a�
θ , b

�
θ ) in (11);

6. Sample φ2(k) | α(k) from Inv − Gamma(a�
φ2 , b�

φ2) in (12);

7. Sample e(k)ij | α(k),β(k), θ(k), v(k−1), y,X,Z, t from the generalized inverse Gaussian distribution
in (13), denoted by GIG( 12 , a

�
e , b�

eij);
8. Sample v(k) | α(k),β(k), θ(k), e(k), y,X,Z, t from Nn(v�

0,B
�
v) in (14);

9. Save �(k) = (α(k),β(k), γ (k), θ(k)).
end

from the full conditional distributions of the unknown
parameters summarized in Algorithm 1.

It is worth noting that except the conditional dis-
tribution of γ in Step 4, the sampling schedules for
other parameters are based on known distributions
and can thus be easily implemented. After the burn-
in period, we may assume that the posterior samplers
from Algorithm 1 have converged to the joint poste-
rior distribution in (7). Then we collect a total number
ofMMCMC samples �(k) = (θ(k),α(k),β(k), γ (k)), for
k = 1, . . . ,M with M< J. The posterior means of the
parameters (α̃, β̃ , γ̃ , θ̃ ) can be estimated as follows

α̃ = 1
M

M∑
k=1

α(k), β̃ = 1
M

M∑
k=1

β(k),

γ̃ = 1
M

M∑
k=1

γ (k), and θ̃ = 1
M

M∑
k=1

θ(k),

respectively.

4. Simulation study

In this section, we conduct simulation studies to evalu-
ate the performance of the proposed Bayesian proce-
dure with respect to different choices of prior infor-
mation in Section 4.1 and several types of errors in
Section 4.2. We here adopt the cubic spline approxi-
mation (i.e., M = 4) for the nonparametric function
in (1). Since the cubic B-spline has two continuous
derivatives and a piecewise polynomial of degree three
behaves numerically well, it should be sufficient to
lead to smooth approximations. All the results were
based on 10,000 iterations after discarding the first
2,000 as the burn-in period. There is no evidence of
lack of convergence in MCMC simulations according
to the run length control diagnostic due to Raftery
and Lewis (1992) and the convergence diagnostic test
statistic (at a significance level of 5%) proposed by
Geweke (1992).

Figure 1. The true sine curve versus its estimated onewhen n = 80 and τ = 0.5. Type I (left panel), Type II (middle panel), and Type
III (right panel).
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4.1. Quantile regressionmodelswith the ALD error

In the simulation study, we consider the model (1) of
the form

yij = xTijβ + g(tij)+ vi + k1eij + rij
√
k2θeij,

i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (15)

where we set g(tij) = sin(2π tij) and m = 4. We gen-
erate tij’s from a uniform distribution on (0, 1), xij
is a 3× 1 vector, whose elements are independently
sampled from N(0, 1), and β = (1,−0.8, 1)T. For the
random effect vi, we consider a log-linear structure,

such that log(σ 2
i ) = zTi γ with γ = (1,−0.5)T and zi =

(zi1, zi2)T, where zi1 and zi2 are independently sam-
pled from N(0, 1). Then vi is generated from N(0, σ 2

i ).
Since rij ∼ N(0, 1), we have rij

√
k2θeij ∼ N(0, k2θeij)

with eij ∼ E(1). We can generate yij from N(μij, k2θeij)
with μij = xTijβ + g(tij)+ vi + k1eij.

We conduct the sensitivity analysis of the proposed
method with respect to three different choices of the
hyperparameters for β0 and γ 0 as follows:

• Type I: Accurate prior information with β0 =
(1,−0.8, 1)T and γ 0 = (1,−0.5)T.

Figure 2. The true sine curve versus the estimated curve when n = 160 and τ = 0.25. Type I (left panel), Type II (middle panel), and
Type III (right panel).

Table 1. Bias and MSE (in parenthesis) of the Bayesian estimates under ALD error distributions.

n = 30 n = 80 n = 160

Type Par τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

I θ −0.0120 −0.0052 0.0070 −0.0066 −0.0058 0.0047 −0.0027 0.0014 −0.0060
(0.1009) (0.0954) (0.0997) (0.0681) (0.0554) (0.0584) (0.0406) (0.0469) (0.0388)

β1 −0.0292 0.0389 −0.0033 0.0186 0.0005 0.0055 −0.0110 −0.0097 −0.0110
(0.0670) (0.0509) (0.0671) (0.0671) (0.0196) (0.0267) (0.0126) (0.0081) (0.0155)

β2 −0.0264 −0.0182 −0.0261 0.0157 −0.0177 0.0090 −0.0034 −0.0038 −0.0009
(0.0926) (0.0493) (0.0850) (0.0182) (0.0182) (0.0267) (0.0122) (0.0075) (0.0146)

β3 0.0442 0.0383 −0.0158 0.0139 0.0201 −0.0154 0.0139 0.0152 0.0177
(0.0631) (0.0479) (0.0610) (0.0269) (0.0244) (0.0324) (0.0119) (0.0092) (0.0122)

γ1 −0.0893 −0.0942 −0.0900 −0.0364 −0.0408 −0.1162 −0.0644 −0.0065 −0.0213
(0.1575) (0.1454) (0.1915) (0.1024) (0.0749) (0.1284) (0.0559) (0.0339) (0.0499)

γ2 0.0015 0.0313 0.0981 0.0207 0.0226 0.0358 0.0593 0.0254 0.0139
(0.1468) (0.1433) (0.1753) (0.0839) (0.0688) (0.1168) (0.0772) (0.0520) (0.0589)

II θ −0.0087 −0.0030 0.0059 −0.0038 −0.0026 −0.0024 0.0026 −0.0049 −0.0065
(0.0840) (0.1052) (0.0897) (0.0611) (0.0629) (0.0546) (0.0400) (0.0425) (0.0433)

β1 0.0265 0.4839 0.0432 −0.0080 0.0228 −0.0007 −0.0113 0.0187 −0.0015
(0.0635) (0.0505) (0.0570) (0.0312) (0.0201) (0.0176) (0.0129) (0.0113) (0.0123)

β2 −0.0411 0.4839 0.0040 −0.0012 −0.0085 −0.0123 0.0159 −0.0079 −0.0195
(0.0693) (0.0693) (0.0655) (0.0287) (0.0199) (0.0282) (0.0159) (0.0080) (0.0148)

β3 0.0406 0.0220 0.0307 −0.0085 0.0036 0.0291 0.0025 0.0005 0.0188
(0.0841) (0.0507) (0.0676) (0.0206) (0.0181) (0.0293) (0.0134) (0.0089) (0.0089)

γ1 0.0621 0.0383 0.0893 0.0396 −0.0371 −0.0476 −0.0756 0.0191 −0.0602
(0.1373) (0.1458) (0.1301) (0.1004) (0.1096) (0.0876) (0.0733) (0.0438) (0.0565)

γ2 −0.0817 0.0101 −0.0500 0.0275 −0.0073 0.0253 0.0254 0.0124 0.0015
(0.1657) (0.1585) (0.1790) (0.1043) (0.0946) (0.1285) (0.0546) (0.0513) (0.0646)

III θ 0.0133 0.0054 0.0052 0.0066 −0.0017 0.0070 0.0082 −0.0029 0.0008
(0.0902) (0.0954) (0.0875) (0.0615) (0.0555) (0.0589) (0.0385) (0.0423) (0.0438)

β1 −0.0534 −0.0554 −0.1049 −0.0060 −0.0137 −0.0254 −0.0077 −0.0179 −0.0129
(0.0661) (0.0460) (0.0911) (0.0209) (0.0224) (0.0256) (0.0131) (0.0087) (0.0107)

β2 0.0289 0.0295 0.0555 0.0096 0.0385 0.0148 0.0118 0.0079 0.0185
(0.0600) (0.0457) (0.0641) (0.0295) (0.0196) (0.0175) (0.0116) (0.0103) (0.0107)

β3 −0.0658 −0.0488 −0.1025 −0.0290 −0.0215 −0.0144 −0.0238 −0.0240 −0.0113
(0.0620) (0.0662) (0.0936) (0.0342) (0.0233) (0.0251) (0.0156) (0.0112) (0.0107)

γ1 −0.3904 −0.3864 −0.4605 −0.2155 −0.1535 −0.1697 −0.0769 −0.0903 −0.1054
(0.3888) (0.3222) (0.4177) (0.1666) (0.1105) (0.1436) (0.0640) (0.0470) (0.0619)

γ2 0.2749 0.2181 0.2131 0.0822 0.0510 0.0975 0.0309 0.0627 0.0771
(0.0619) (0.2544) (0.2342) (0.1289) (0.0997) (0.1173) (0.0548) (0.0548) (0.0651)
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• Type II: Inaccurate prior information with β0 =
1.5× (1,−0.8, 1)T and γ 0 = 1.5× (1,−0.5)T.

• Type III: No prior information with β0 = (0, 0, 0)T
and γ 0 = (0, 0)T.

Other hyperparameters are set as σ 2
γ = 4, aθ =

bθ = 1, aφ2 = bφ2 = 1,Bβ = I3, andBγ = I2 to reflect
weak prior information. It deserves mentioning that
we can easily incorporate available prior information
into the proposed Bayesian procedure by specifying
different values of the hyperparameters. In each type,
we consider n = {30, 80, 160} and quantile levels τ =
{0.25, 0.5, 0.75}.We generate 100 replications from each
combination under consideration.

Figures 1 and 2 depict the true sine curve against
its estimated one based on the cubic B-spline approx-
imation. We observe that all estimated curves are close
to the true ones, indicating that the cubic B-spline
approximation performswell for estimating g(·) in (15).
Table 1 provides the simulation results for θ , β1,β2,β3,
γ1, and γ2, including the estimated bias and the mean
squared error (MSE) under different quantile levels,
sample sizes, and the three types of prior information.
Several conclusions from this table can be summarized
as follows:

(i) As one expects, the bias and MSE of all the
parameters decrease significantly at each quantile

level as the sample size increases. For instance,
there is no significant difference between n = 80
and n = 160. This illustrates that the proposed
method could provide accurate estimates even
when the sample size is moderate (e.g.,
n = 80).

(ii) We observe that Bayesian estimates are quite
robust for the prior specifications for the unknown
parameters. The bias and MSE of the parame-
ters do not have distinct difference across three
types of considered prior information. We also
observe that initial values of parameters and the
prior inputs do not affect the performance of the
proposed Bayesian method.

(iii) It is worth noting that Bayesian estimates of γ

have relatively large bias and MSE compared to
the ones for other parameters. This is mainly
because the parameter γ is related to the vari-
ance of the random-effects. Of particulate note is
that Bayesian estimates of θ usually have a small
bias regardless of different sample sizes and prior
information.

(iv) The results of bias and MSE of all the parame-
ters clearly show that the performance of the pro-
posed Bayesian method is quite satisfactory for
any specific combination of sample size and prior
information among different quantiles under
consideration.

Table 2. Bias and MSE (in parenthesis) of the Bayesian estimates under non-AL error distributions.

Distr. n = 30 n = 80 n = 160

Type Par τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

A β1 −0.0207 −0.0271 −0.0327 −0.0361 −0.0098 −0.0328 −0.0115 0.0019 −0.0274
(0.0388) (0.0464) (0.0469) (0.0190) (0.0154) (0.0181) (0.0092) (0.0071) (0.0109)

β2 0.0314 0.0334 0.0319 0.0124 0.0136 0.0274 0.0012 0.0024 0.0105
(0.0481) (0.0333) (0.0537) (0.0139) (0.0157) (0.0176) (0.0117) (0.0083) (0.0083)

β3 −0.0390 −0.1331 −0.0460 −0.0201 −0.0200 −0.0246 −0.0074 −0.0181 −0.0111
(0.0462) (0.0549) (0.0619) (0.0184) (0.0159) (0.0142) (0.0096) (0.0084) (0.0115)

γ1 −0.3511 −0.3409 −0.3111 −0.1329 −0.1749 −0.1490 −0.1109 −0.0847 −0.0570
(0.3303) (0.3538) (0.3077) (0.1027) (0.0985) (0.0859) (0.0496) (0.0409) (0.0528)

γ2 0.1616 0.1717 0.1973 0.1402 0.0446 0.0677 0.0557 0.0144 −0.0239
(0.2122) (0.1398) (0.2131) (0.0819) (0.0736) (0.0672) (0.0587) (0.0386) (0.0573)

B β1 −0.0546 −0.0319 −0.0635 −0.0144 −0.0002 −0.0141 −0.0196 −0.0136 −0.0075
(0.0792) (0.0580) (0.0706) (0.0216) (0.0208) (0.0309) (0.0153) (0.0097) (0.0125)

β2 0.0478 0.0264 0.0322 0.0373 0.0178 −0.0082 0.0071 0.0136 0.0273
(0.0874) (0.0447) (0.0715) (0.0231) (0.0154) (0.0281) (0.0154) (0.0090) (0.0135)

β3 −0.0814 −0.0965 −0.1166 −0.0289 0.0005 −0.0160 −0.0097 −0.0058 −0.0091
(0.0781) (0.0876) (0.1116) (0.0206) (0.0186) (0.0259) (0.0141) (0.0125) (0.0131)

γ1 −0.4020 −0.3837 −0.4462 −0.1167 −0.1514 −0.1454 −0.1393 −0.0552 −0.0896
(0.4017) (0.3499) (0.3815) (0.1201) (0.1158) (0.1099) (0.1122) (0.0441) (0.0789)

γ2 0.2355 0.1080 0.1945 0.1040 0.1044 0.0913 0.0970 0.0391 0.0006
(0.2878) (0.1769) (0.3284) (0.1139) (0.0915) (0.1163) (0.1020) (0.0619) (0.0716)

C β1 −0.0438 −0.0344 −0.0562 −0.0066 −0.0194 −0.0144 −0.0165 −0.0110 −0.0108
(0.0308) (0.0253) (0.0270) (0.0080) (0.0066) (0.0081) (0.0053) (0.0053) (0.0038)

β2 0.0260 0.0415 0.0357 0.0226 0.0010 0.0100 0.0047 −0.0041 −0.0071
(0.0223) (0.0279) (0.0312) (0.0087) (0.0083) (0.0094) (0.0055) (0.0037) (0.0047)

β3 −0.0767 −0.0432 −0.0615 −0.0045 0.0040 −0.0126 −0.0019 −0.0031 −0.0152
(0.0309) (0.0233) (0.0245) (0.0072) (0.0064) (0.0092) (0.0066) (0.0046) (0.0054)

γ1 −0.1808 −0.2185 −0.1716 −0.0950 −0.0337 −0.1084 −0.0825 −0.0366 −0.0885
(0.1779) (0.1750) (0.2245) (0.0603) (0.0497) (0.0641) (0.0344) (0.0285) (0.0383)

γ2 0.0914 0.0746 0.0587 0.0182 0.0400 0.0670 0.0260 0.0380 0.0475
(0.1283) (0.1305) (0.1276) (0.0420) (0.0402) (0.0534) (0.0295) (0.0326) (0.0333)
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4.2. Quantile regressionmodels with the non-ALD
errors

To further illustrate the performance of the proposed
Bayesian method, we consider the following three dis-
tributions for the errors

• Type A: εij ∼ N(μ, 4), where μ is chosen such that
the τ th quantile is 0.

• Type B: εij ∼ Laplace(μ, 2), where μ is chosen such
that the τ th quantile is 0.

• Type C: εij ∼ 0.3N(μ+ 1, 1)+ 0.7N(μ, 4), whereμ

is chosen such that the τ th quantile is 0.

Other simulation settings and the choices of the
hyperparameters keep the same as the ones in Section
4.1. We consider n = 80 and τ = {0.25, 0.5, 0.75}.
We consider noninformative priors by setting β0 =
(0, 0, 0)T and γ 0 = (0, 0)T. Numerical results are pro-
vided in Table 2. It can be seen that under Type C,
the MSEs of Bayesian estimates are smaller for all
the parameters, especially for τ = {0.25, 0.75} and that

Bayesian estimates are quite accurate regardless of the
errors under consideration.

5. Real data application: themultiCenter AIDS
cohort study

In this section, we consider the MultiCenter AIDS
Cohort Study (MACS) data, which is available in the
‘timereg’ package (Scheike & Zhang, 2011). The MACS
data set consists of 283 human immunodeficiency virus
(HIV) status of homosexual men. This data set has
been widely used to study the mean CD4 percentage
depletion over time and the effects of other physi-
cal status, including age of the patient at the start of
the trial, smoking status, and the post-infection CD4
percentage; see, for example, Fan and Li (2004); Xu
et al. (2016); Zhao and Xue (2010). Owing to the differ-
ence of the trend of CD4 depletion between high CD4
percentage and low CD4 percentage patients, this data
set is of specific interest to us for the implementation of
the proposed Bayesian quantile SPMED models.

Figure 3. The trace plot and density plot of 5,000 posterior samples of (θ , γ1, γ2) when τ = 0.5.
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Let yij be the observation of CD4 percentage at
the current visit, xij1 be the smoking status (0 for
non-smoker and 1 for smoker), xij2 be the age of the
patient at the start of the trial, and xij3 be the post-
infection CD4 percentage. To avoid the need of an
intercept, it is assume that the response y is zero cen-
tered. We also assume that the variance of the ran-
dom effect vi has a linear relationship with two pre-
dictors zi1 = 1

mi

∑mi
j=1 xij1 and zi2 = 1

mi

∑mi
j=1 xij3. The

Bayesian quantile SPMED regression model can be
written as

yij = xTijβ + g(tij)+ vi + k1eij + rij
√
k2θeij,

where xij = (xij1, xij2, xij3)T, β = (β1,β2,β3)
T, k1 =

1−2τ
τ(1−τ)

, and k2 = 2
τ(1−τ)

. Here, eij ∼ E(θ−1), rij ∼
N(0, 1), and vi ∼ N(0, σ 2

i ) with σ 2
i = γ1zi1 + γ2zi2 for

i = 1, 2, . . . , 283, j = 1, 2, . . . ,mi.
We are interested in investigating the relationship

between the mean CD4 percentage g(tij) and time tij at
different quantile levels τ = {0.05, 0.25, 0.5, 0.75, 0.95}.

Due to a lack of prior knowledge, we set all the hyper-
parameters to be small and let initial values of all the
unknown parameters be 0. For the implementation of
the Metropolis-Hastings algorithm for sampling γ , we
set σ 2

γ = 4 to achieve approximate acceptance rates of
about 35% (Gelman & Gilks, 1996). For each quan-
tile level, we run the proposed MCMC-based sampling
algorithm 55,000 iterations, discard the first 5,000 as
the burn-in period, and then perform a thinning fac-
tor of 10, leading to a total number of 5,000 samples for
conducting the posterior inference.

Figures 3 and 4 depict the trace and density plots
of 5,000 posterior samples of the model parameters. It
can be seen from these figures that the MCMC chains
of all the parameters rapidly converge to their station-
ary distributions. Furthermore, we present the auto-
correlation function (ACF) plot to in Figure 5 check
the autocorrelations between the posterior samples of
all the parameters, which shows that the autocorrela-
tions between posterior samples decline to zero at a

Figure 4. The trace plot and density plot of 5,000 posterior samples of (β1,β2,β3) when τ = 0.5.
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Figure 5. The ACF plot of 5,000 posterior samples of the unknown parameters when τ = 0.5.

very fast rate. Similar results are also observed with
respect to other quantiles and are not shown here for
simplicity.We also conduct the run length control diag-
nostic of Raftery and Lewis (1992) and the conver-
gence diagnostic test statistic of Geweke (1992) at a
significance level of 5%, which reconfirm that there is
no evidence of lack of convergence of all the MCMC
chains.

Table 3 summarizes Bayesian estimates (EST) of the
unknown parameters (θ ,φ2,β , γ ) and their standard
deviation estimates (SD). Figure 6 depicts the estimated
CD4 depletion trends under five different quantile lev-
els. As one expects, the CD4 depletion trends are quite

distinct among diverse groups of patients. For instance,
for the patients who have a high CD4 level around 50,
their CD4 percentages almost get back to their origi-
nal level after 6 years. Other patients’ CD4 percentages
could decrease quickly after an infection, whereas they
would increase at the end. This observation indicates
drug usage can be distributed according to the patients’
starting CD4 percentages. It deserves mentioning that
our results at τ = 0.5 are in good agreement with the
ones by fitting the local linear fitting method of Fan
and Li (2004) and by using the semiparametric varying-
coefficient partially linear models of Zhao and Xue
(2011).

Table 3. The Bayesian estimates of the unknown parameters in the MACS data.

τ = 0.05 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.95

Parameter EST SD EST SD EST SD EST SD EST SD

θ 13.2042 0.4753 4.4680 0.1191 4.1952 0.0996 4.5017 0.1186 13.2282 0.4892
β1 2.0707 1.6743 −0.7671 0.6996 0.2107 0.7003 1.5214 0.6853 −0.7996 1.7156
β2 0.0381 0.1144 −0.1395 0.0469 −0.1970 0.0505 −0.1148 0.0434 0.0131 0.1080
β3 0.1565 0.1067 0.4235 0.0458 0.4644 0.0467 0.4884 0.0390 0.4195 0.0984
γ1 −0.0441 0.9475 −11.8450 0.3887 −12.1508 0.3350 −11.3275 0.3900 −0.2008 0.9355
γ2 0.0068 0.1041 0.0267 0.0168 0.0160 0.0141 0.0081 0.0159 −0.0525 0.0997
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Figure 6. The mean CD4 percentage g(tij) vs time tij at the 5 different quantile levels.

6. Concluding remarks

In this paper, we developed Bayesian methods for
parameter estimation in quantile semiparametric
mixed-effects double regression models by modeling
the variance of the mixed-effects as a function of pre-
dictors. A Bayesian hierarchical model was developed
and an efficient MCMC-based sampling algorithm was
proposed for performing the full posterior inference.
Numerical results from both simulation studies and a
real data application showed that the proposed proce-
dures perform well in general settings and can accu-
rately estimate the parameters of interest under dif-
ferent scenarios. It is known that variable selection
is as important as parameter estimation in modeling
the longitudinal data, and for future work, we conduct
Bayesian variable selection in quantile semiparametric
mixed-effects double regression models.
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Appendix

The Metropolis–Hastings algorithm for sampling γ in
Algorithm 1 is summarized as follows. We choose the com-
monly used multivariate normal distribution as the pro-
posal distribution (Chib & Greenberg, 1994), denoted by
Nq(m(k), σ 2

γV(k)) with

m(k) = argmax log p(γ | v(k), y,X,Z, t),

V(k) = {(−H)−1}γ=m, H = ∂2p(γ | v(k), y,X,Z, t)
∂γ ∂γ T ,

where H is the Hessian matrix and σ 2
γ is chosen such that

the average acceptance rate is between 0.25 and 0.45 (Gelman
& Gilks, 1996). For the (k+ 1)th iteration, we sample γ (k) by
the following two steps:

I Generate a new candidate γ � from the proposal distribu-
tion Nq(m(k), σ 2

γV(k)).
II Let

γ (k) =
{

γ �, if Unif (0, 1) ≤ ω(γ �, γ (k)),
γ (k), otherwise,

,

where ω(γ �, γ (k)) is the acceptance ratio given by

ω(γ �, γ (k)) = min

{
1,

p(γ � | v(k), y,X,Z, t)
p(γ (k) | v(k), y,X,Z, t)

}
.
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