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ABSTRACT
As a classical problem, covariance estimation has drawnmuch attention from the statistical com-
munity for decades. Much work has been done under the frequentist and Bayesian frameworks.
Aiming to quantify the uncertainty of the estimators without having to choose a prior, we have
developed a fiducial approach to the estimation of covariance matrix. Built upon the Fiducial
Berstein–von Mises Theorem, we show that the fiducial distribution of the covariate matrix is
consistent under our framework. Consequently, the samples generated from this fiducial distri-
bution are good estimators to the true covariancematrix, which enable us to define ameaningful
confidence region for the covariance matrix. Lastly, we also show that the fiducial approach can
be a powerful tool for identifying clique structures in covariance matrices.
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1. Introduction

Estimating covariance matrices has historically been
a challenging problem. Many regression-based meth-
ods have emerged in the last few decades, especially
in the concept of ‘large p small n’. Among the notable
methods, there are the graphical LASSO algorithms
(Friedman et al., 2008, 2010; Rothman, 2012). Pourah-
madi provided a detailed overview on the progress of
covariance estimation (Pourahmadi, 2011). The Pos-
itive Definite Sparse Covariance Estimators (PDSCE)
method (Rothman, 2012) has grained great popular-
ity due to its performance comparing to other current
methods, although it only produces a point estimator.

Aiming to have a distribution of good covariance
estimators, we propose a generalised fiducial approach.
The ideas underpinning fiducial inference were intro-
duced by Fisher (1922,1930,1933,1935), whose inten-
tion was to overcome the need for priors and other
issues with Bayesian methods perceived at the time.
The procedure of fiducial inference allows to obtain a
measure on the parameter space without requiring pri-
ors and defines approximate pivots for parameters of
interest. It is ideal when a priori information about the
parameters is unavailable. The key recipe of the fiducial
argument is the data generating equation. Roughly, the
generalised fiducial likelihood is defined as the distri-
bution of the functional inverse of the data generating
mechanism.

One great advantage of the fiducial approach to
covariancematrix estimation is that, without specifying
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Hill, NC 27599, USA .
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a prior, it produces a family of matrices that are close to
the true covariance with a probabilistic characterisation
using the fiducial likelihood function. This attractive
property enables a meaningful definition for matrix
confidence regions.

We are particularly interested in a high-dimensional
multivariate linear model setting with possibly an atyp-
ical sparsity constraint. Instead of classical sparsity
assumptions on the covariance matrix, we consider a
type of experimental design that enforces sparsity on
the covariate matrix. This phenomenon often arises
in the studies of metabolomics and proteomics. One
example of this setup is modelling the relationship
between a set of gene expression levels and a list of
metabolomic data. The expression levels of the genes
serve as the predictor variables while the response vari-
ables are a variety of metabolite levels, such as sugar
and triglycerides. It is known that only a small subset
of genes contribute to each metabolite level, and each
gene can be responsible for just a few metabolite levels.

Under the sparse covariate setting, we derive the
generalised fiducial likelihood of the covariate matrix
based on given observations and prove its asymp-
totic consistency as the sample size increases. For the
covariance with community structures (cliques), we
prove the necessary conditions for achieving accurate
clique structure estimation. Samples from the fiducial
distribution of a covariate matrix can be generated
using Monte Carlo methods. In the general case, a
reversible jumpMarkov chainMonteCarlo (RJMCMC)
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algorithm may be needed. Similar to the classic like-
lihood functions, fiducial distributions favour models
with more parameters. Therefore, in the case where
the exact sparsity structure of the covariate is unclear,
a penalty term needs to be added. To obtain a fam-
ily of covariance estimators in the general case, we
adapt a zeroth-order method and develop an efficient
RJMCMC algorithm that samples from the penalised
fiducial distribution.

The rest of the paper is arranged as follows. In
Section 2, we will provide a brief background and
development on fiducial inference. Then we will intro-
duce the fiducial model for covariance estimation and
derive the Generalised Fiducial Distribution (GFD) for
the covariate and covariance matrices and examine
the asymptotic property of the GFD of the covariance
matrix underminor assumptions in Section 3. Some toy
examples on sampling from GFD will also be shown.
Section 4 focuses on the clique model, where we show
some theoretical results for the clique model and how
the fiducial approach can be applied to uncover clique
structures. Finally, Section 5 concludes the paper with a
summary and a short discussion on the relationship of
our approach to Bayesian methods.

2. Generalised fiducial inference

2.1. Brief background

Fiducial inference was first proposed by Fisher (1930)
when he introduced the concept of a fiducial distri-
bution of a parameter. In the case of a single param-
eter family of distributions, Fisher gave the following
definition for a fiducial density f (θ | x) of the parame-
ter based on a single observation x for the case where
the cumulative distribution function F(x | θ) is amono-
tonic decreasing function of θ :

f (θ | x) ∝ −∂F(x | θ)

∂θ
. (1)

A fiducial distribution can be viewed as a Bayesian
posterior distribution without hand picking priors. In
many single parameter distribution families, Fisher’s
fiducial intervals coincide with classical confidence
interval. For families of distributions with multiple
parameters, the fiducial approach leads to confidence
set. The definition of fiducial inference has been gen-
eralised in the past decades. Hannig et al. (2016) pro-
vide a detailed review on the philosophy and current
development on the subject.

The generalised fiducial approach has been applied
to a variety of models, both parametric and nonpara-
metric, both continuous and discrete. These applica-
tions include bioequivalence (Hannig et al., 2006), vari-
ance components (Cisewski & Hannig, 2012; Lidong
et al., 2008; Li et al., 2018), problems of metrology
(Hannig et al., 2007,2003; Wang et al., 2012; Wang

& Iyer, 2005, 2006a, 2006b), inter laboratory experi-
ments and international key comparison experiments
(Hannig et al., 2018; Iyer et al., 2004), maximum mean
of a multivariate normal distribution (Wandler & Han-
nig, 2011), multiple comparisons (Wandler & Han-
nig, 2012), extreme value estimation (Wandler & Han-
nig, 2012), mixture of normal and Cauchy distri-
butions (Glagovskiy, 2006), wavelet regression (Han-
nig & Lee, 2009), high-dimensional regression (Lai
et al., 2015; Williams & Hannig, 2018), item response
models (Liu & Hannig, 2016,2017), non-parametric
survival function estimation with censoring (Cui
& Hannig, 2019), Other related approaches include
Martin and Liu (2015); Schweder and Hjort (2016); Xie
and Singh (2013).

2.2. Generalised fiducial distribution

The idea underlying generalised fiducial inference is
built upon a data generating algorithmG(·, ·) expressing
the relationship between the data X and the parameters
θ :

X = G(U, θ), (2)

where U is the random component of this data gen-
erating algorithm whose distribution is known. The
data X are assumed to be created by generating a ran-
dom variableU and plugging it into the data generating
algorithm above.

The GFD inverts Equation (2). Assume that x ∈ Rn

is continuous, and the parameter θ ∈ Rp. Under the
conditions provided in Hannig et al. (2016), fiducial
distribution is shown to have density

r(θ | x) = f (x, θ)J(x, θ)∫
�

f (x, θ ′)J(x, θ ′) dθ ′
, (3)

where f (x, θ) is the likelihood, and

J(x, θ) = D
(∇θG(u, θ)|u=G−1(x,θ)

)
. (4)

Here ∇θG(u, θ) is the n × p Jacobian matrix. The exact
form of D(·) depends on the choices made in the pro-
cess of inverting (2). In this manuscript, we concentrate
on what Hannig et al. (2016) calls the �2-norm choice:

D(M) =
√
det(MTM/n), (5)

where MT denotes the matrix transpose of M. Other
choices, in particular the �∞-norm that was often used
in the past, leads to similar results is studied in detail in
Shi (2015).

3. A fiducial approach to covariance
estimation

In this section, we will derive the GFD for the covari-
ance matrix of a multivariate normal random vari-
able. For this problem, various regularised estimators
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were proposed under the assumption that the true
covariance matrix is sparse (Avella-Medina et al., 2018;
Bickel & Levina, 2008a, 2008b; Cai & Liu, 2011; Fur-
rer & Bengtsson, 2007; Huang & Lee, 2016; Huang
et al., 2006; Lam & Fan, 2009; Levina et al., 2008;
Rothman et al., 2009, 2010; Wu & Pourahmadi, 2003).
While many of these estimators have been shown to
enjoy excellent rates of convergence, so far little work
has been done to quantify the uncertainties of their
corresponding estimates.

Let QT denote the transpose of a matrix/vector Q.
Denote a collection of n observed p dimensional objects
Y = {Yi : i = 1, . . . , n}. For the rest of the paper, we
assume p is fixed, unless stated otherwise. Consider the
following data generating equation:

Yi = AZi, i = 1, . . . , n; (6)

where A is a p × p matrix of full rank; Z = {Zi =
(zi1, . . . , zip)T, i = 1, . . . , n} are independent and iden-
tically distributed (i.i.d) p × 1 random vectors follow-
ing multivariate normal distribution N(0, I). Hence,
Yi’s are i.i.d random vectors centred at 0 with covari-
ance matrix AAT,

i.e.Yi
i.i.d∼ N(0,�), where � = AAT. (7)

Consequently, we have the likelihood for observations
y:

f (y,A) = (2π)−
np
2 |det(A)|−n

× exp
[
−1
2
tr{nSn(AAT)−1}

]
, (8)

where Sn = 1
n

∑n
i=1 yiy

T
i is the corresponding sample

covariance matrix and tr{·} is the trace operator.
We propose to estimate the covariance matrix �

through the GFD of covariate matrix A:

r(A | y) ∝ J(y,A)f (y,A). (9)

Define the stacked observation vector w=(yT1 , . . ., y
T
n )T

= (w1, . . . ,wnp)
T. Denote u = (u1, . . . , un), such that

yi = G(ui,A), ∀i. Let aij be the (i, j)-th entry of matrix
A, i.e., A = [aij]1≤i,j≤p. The corresponding Jacobian
J(y,A) derived from (4) is then

J(y,A) = D
(
∇Aw|u=G−1(y,A)

)
, (10)

where ∇Aw is an np × p2 matrix

∇Aw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂w1

∂a11
∂w1

∂a12
· · · ∂w1

∂app
∂w2

∂a11
∂w2

∂a12
· · · ∂w2

∂app
...

...
. . .

...
∂wnp

∂a11

∂wnp

∂a12
· · · ∂wnp

∂app

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and D(·) is given by (5).

Often some akl are known to be zero; a common
example is the lower triangular matrix A for which
akl = 0 for l> k. Additionally, sparsity on the covari-
ate model can be introduced by having most of the akl
known to be zero as a part of the model. Note that
if akl is known to be zero, as implied by model, then
the corresponding (k, l)th column is dropped. There-
fore, depending on the sparsity model, the dimension
of ∇Aw varies.

Recall, that there is a one-to-one mapping between
positive definitematrices� and lower triangularmatri-
ces A with positive entries on the main diagonal. While
we are not assuming A is lower triangular, in order to
alleviate some identifiability issues we will assume that
all diagonal entries of A are positive, i.e., akk > 0, k =
1, . . . , p.

3.1. Jacobian for full models

Suppose that none of the entries of A is fixed at zero,
namely, the parameter space � for A is Rp×p. We will
refer this to a full model. Under a full model,∇Aw con-
sists of p blocks, each of dimension np × p. Every row
of ∇Aw has non-zero entries in only one block.

By swapping rows in the matrix ∇Aw and plugging
u = G−1(y,A), we obtain the np × p2 matrix P:

P =

⎛
⎜⎝
U

. . .
U

⎞
⎟⎠ , (11)

where U = (A−1y1, · · · ,A−1yn)T = V(A−1)T,V =
(y1; · · · ; yn)T. Notice that P breaks into p blocks,

B1, . . . ,Bp, where Bi =
( O(ni−n)×p

U
O(np−ni)×p

)
, Oa×b denotes a

zero matrix with dimension a × b.
Since as a consequence of Cauchy–Binnet formula

(see also Hannig et al. (2016)), swapping rows do not
change the value of the Jacobian function (10). There-
fore J(y,A) can be expressed using matrix P:

J(y,A) = D (P) = |det(Sn)|
p
2 |det(A)|−p, (12)

where Sn = n−1 ∑n
i=1 yiy

T
i is the MLE estimator of the

covariance matrix.
By (9), the GFD is proportional to

r(A | y) ∝ |det(Sn)|
p
2 (2π)−

np
2 |det(A)|−(n+p)

× exp
[
−1
2
tr{nSn(AAT)−1}

]
. (13)

By transforming the GFD of A, we conclude that the
GFD of � = AAT has the inverse Wishart distribution
with n degrees of freedom and parameter nSn.

3.2. Jacobian for the general case

While having a closed form for the GFD of � for the
full model, the covariance estimation requires sufficient
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number of observations (roughly at least n > 15(p +
1)) to maintain reasonable power. In the cases where n
is small, we reduce the parameter space by introducing
a sparse structureM, which determines which entries
ofA are known to be zero. Recall, that we only consider
A with positive diagonal entries.

Now assume the general case with a sparse model
M, where some entries of A are known to be zero.
Denote the (i, j)th entry of A as Aij. Define the zero
index set for the ith row as

Si = {j : Aij ≡ 0, j = 1, . . . , p}, i = 1, . . . , p. (14)

The set Si indicates which entries ofA in the ith row are
fixed at zero.

Then Equation (10) becomes

J(y,A) = D
(
P̃
)
, (15)

where P̃ = (B̃1, . . . , B̃p) is thematrixPwith correct cor-
responding columns dropped, i.e., block B̃i is obtained
from block Bi with Si columns removed.

Let pi be the number of nonzero entries in the ith row
of A, and Ui be the sub-matrix of U excluding columns
in Si, i.e., Ui = U[:,−Si]. Consequently, Equation (15)
becomes

J(y,A) =
√√√√ p∏

i
det(UT

i Ui/n). (16)

3.3. Consistency of fiducial distribution

In general, there is no one-to-one correspondence
between the covariance matrix � and the covariate
matrix A. However, if A is sparse enough, e.g., a
lower triangular matrix with positive diagonal entries,
the identifiability problem vanishes. In this section,
we will show that, if there is one-to-one correspon-
dence between � and A, then the GFD of the covari-
ate matrix achieves a fiducial Bernstein–von Mises
Theorem (Theorem 3.1), which provides theoretical
guarantees of asymptotic normality and asymptotic effi-
ciency for the GFD (Hannig et al., 2016).

The results here are derived based on FM-distance
(Förstner & Moonen, 1999). For two symmetric pos-
itive definite matrices M and N, with the eigenval-
ues λi(M,N) from det(λM − N) = 0, the FM-distance
between the two matricesM and N is

d(M,N) =
√√√√ n∑

i=1
log2 λi(M,N). (17)

This distance measure is a metric and invariant with
respect to both affine transformations of the coordi-
nate system and an inversion of the matrices (Förstner
& Moonen, 1999).

The Bernstein–von Mises Theorem provides condi-
tions under which the Bayesian posterior distribution
is asymptotically normal (van der Vaart, 1998; Ghosh

& Ramamoorthi, 2003). The fiducial Bernstein–von
Mises Theorem is an extension that includes a list of
conditions under which the GFD is asymptotically nor-
mal (Sonderegger & Hannig, 2012). Those conditions
can be divided into three parts to ensure each of the
following:

(a) the Maximum Likelihood Estimator (MLE) is
asymptotically normal;

(b) the Bayesian posterior distribution becomes close
to that of the MLE;

(c) the fiducial distribution is close to the Bayesian
posterior.

It is clear that the MLE of � is asymptotically nor-
mal. Under our model, the conditions for (b) hold due
to Proposition A.1 and the construction of the Jacobian
formula; the conditions for (c) are satisfied by Propo-
sitions A.2, 3.1. Statements and proofs of the proposi-
tions are included in Appendix A.1. Here we state only
Proposition 3.1 that contains notation needed in the
statement of the main Theorem.

Proposition 3.1: The Jacobian function J(y,A)
a.s.−→

π�0(A) uniformly on compacts in A, where π�0(A) is a
function of A, independent of the sample size and obser-
vations, but depending on the true�0. Moreover π�0(A)

is continuous.

Closely following Sonderegger Hannig (2012), we
arrive at Theorem 3.1.

Theorem 3.1 (Asymptotic Normality): Let RA be
an vectorized observation from the fiducial distribution
r(A | y) and denote the density of B = √

n(RA − Ân) by
π∗(B, y), where Ân is the vectorized version of a maxi-
mum likelihood estimator. Let I(A) be the Fisher infor-
mation matrix of the vectorized version of matrix (A).
If the sparsity structure is such, that there is one-to-one
correspondence between the true covariance matrix �0
and the covariate matrix A0, I(A0) is positive definite,
π�0(A0) > 0, then∫

Rp2

∣∣∣∣π∗(B, y) −
√
det|I(A0)|
(2π)p

× exp{−BTI(A0)B/2}
∣∣∣ dB PA0−−→ 0. (18)

See Appendix A.2 for the proof.

Remark 3.1: Since we assume that the diagonal entries
of A are positive, the assumption of one-to-one corre-
spondence between �0 and A0 is satisfied if rows and
columns of A can be permuted so that the resulting
matrix is lower triangular matrix with positive entries
on diagonal.

There are other highly sparse matrices for which
there might be a finite number of different A0,r so that
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�0 = A0,rAT
0,r. Of course in this case we cannot dis-

tinguish between these A0,r based on data. However,
Theorem3.1will still be true if we restrict the domain of
A to a small enough Euclidean neighbourhood of any of
the A0,r. Each of these neighbourhoods being selected
with a chance proportional to π�0(A0,r).

3.4. Sampling in the general case

Given the true model M0, standard Markov chain
Monte Carlo (MCMC) methods can be utilised for the
estimation of the covariance matrix. Under the full
model and cliquemodel, theGFDof� follows either an
inverse Wishart distribution or a composite of inverse
Wishart distributions (see Section 3). Sampling from
the GFD becomes straight forward and it can be done
through one of the inverse Wishart random genera-
tion functions, e.g., InvWishart (MCMCpack, R) or
iwishrnd (Matlab).

When p is small and n is large, the estimation of
� can always be done through this setting, regardless
if there are zero entries in A. The concept of having
entries of A fixed at zero is to impose sparsity structure
and allow estimation under a high dimensional setting
without requiring large number of observations. As in
practice the true sparse structure is often unobserved,
we will focus on the cases whereM0 is not given.

For the general case, if the sparse model is
unknown, we propose to utilise a reversible jump

MCMC (RJMCMC) method to efficiently sample from
Equation (20) and simultaneously updateM.

RJMCMC is an extension of standard Markov chain
Monte Carlo methods that allows simulation of the
target distribution on spaces of varying dimensions
(Green, 1995). The ‘jumps’ refers to moves between
models with possibly different parameter spaces. More
details on RJMCMC can be found in Shi (2015). Since
M is unknown, namely the number and the locations
of fixed zeros in thematrixA are unknown, the property
of jumping between parameter spaces with different
dimension is desired for estimating� = AAT. Because
the search space for RJMCMC is both within param-
eter space and between spaces, it is known for slower
convergence. To improve efficiency of the algorithm,we
adapt the zeroth-ordermethod (Brooks et al., 2003) and
impose additional sparse constrains.

Assuming that there are fixed zeros in A, then for
a p × p matrix A, the number needed to be estimated
is less than p2. If there are many fixed zeros, then this
number is much smaller, hence the estimation is fea-
sible even if the number of observations n is less than
p. In other words, the sparsity assumption on A allows
estimations under a large p small n setting. Suppose
the zero entry locations of A are known. The rest of A
can be obtain via standard MCMC techniques, such as
Metropolis–Hastings.

Figure 1 considers a case with p = 15, n = 30. It
shows the confidence curve plot per Markov chain for
each statistic of interest. In addition to D2Sig, LogD

Figure 1. All the chains show good estimation of covariance matrix. The estimators are better than both the sample covariance
matrix and the PDSCE estimator.
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and Eigvec angle as before, we have GFD (log(rp(A | y))
without the normalising constant). The initial states
for the four Markov chains are SnPa (Sn restricted to
maxC (see Section 3.6), in blue), dcho (diagonal matrix
of Cholesky decomposition, in cyan), diag (diagonal
matrix of Sn, in yellow) and oracle (true A, in green).
In addition, we include the statistics for �, Sn, and
the PDSCE estimator in comparison with the confi-
dence curves. They are shown as vertical lines as in the
previous example.

The fiducial estimators have confidence curves peak
around the truth in Panels GFD and LogD. In the
right two panels, the (majority of) fiducial estimators
lie on the left of the dotted-dashed lines, indicating that
the estimators are closer to the truth than the sam-
ple covariance. The PDSCE estimator falls on the right
edge of the Panel D2Sig shows that it is not as close
to the truth. As before, the PDSCE estimator overes-
timates the covariance determinant. Here, burn in =
5000, window = 10,000.

3.5. Model selection for the general case

Often time in practice, to obtain enough statisti-
cal power or simply for feasibility, sparse covari-
ates/covariances assumptions are imposed. The exact
sparse structure is usually unknown, model selection is
required to determine the appropriate parameter space.

Since GFD behaves like the likelihood function, in
order to avoid over-fitting, a penalty termon the param-
eter space needs to be included in the model selection
process (Hannig et al., 2016).

For the general case, we propose the following
penalty function that is based on the Minimum
Description Length (MDL)Rissanen (1978) for amodel
M:

qM(n) = exp

{
−

p∑
i=1

[
1
2
pi log(np) + log

(
p
pi

)]}
,

(19)

where M corresponds to a p × p matrix with pi many
non-fixed-zero elements in its ith row, and n is the
number of observations.

The penalised GFD of A is therefore

rp(A |M, y) ∝ r(A |M, y)

× exp

{
−

p∑
i=1

[
1
2
pi log(np) + log

(
p
pi

)]}
. (20)

3.6. Sampling in the general case with sparse
locations unknown

In the general case with sparse locations unknown, we
further assume that there is a maximum number of
nonzeros per column allowed, denoted as maxC. This
additional constraint can be viewed as each predic-
tor only contribute to few tuples of the multivariate
response. This assumption has been implemented to
reduce the search space for RJMCMC. The starting
states include MaxC (S0.5n , restricted to maxC, in blue)
along with chol (in cyan), dcho (in artichoke), diag (in
yellow) and true (in green) as before. We will revisit the
example discussed in Section 3.4.

Figure 2. Similar to Figure 1, the fiducial estimators are better than both the sample covariance matrix and the PDSCE estimator in
this case.
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(See Figure 2). In the left two panels, the fiducial esti-
mators peak at the true fiducial likelihood and covari-
ance determinant. The distance comparison plot (top
right) show that the estimators are closer to the truth
than both the sample covariancematrix and the PDSCE
estimator. Bottom right panel shows that the leading
eigenvector of the estimators are as close to the truth as
for sample covariance and the PDSCE estimator as in
Figure 1. Here, burn in = 50,000, window = 10,000.

Additional simulations are included in the supple-
mentary document.

4. Cliquemodel

4.1. Jacobian for the cliquemodel

Assume that the coordinates of y are broken into
cliques, i.e., coordinates i and j are correlated if i, j
belong to the same clique and independent otherwise.
By simply swapping rows and columns of the covariate
matrix, we can arrive at a block diagonal form. With-
out loss of generality, suppose that A is a block diago-
nal matrix with block sizes g1, . . . , gk. Then its model
M defines the parameter space ⊗k

i=1R
gi×gi . GivenM,

as an extension of the full model, the GFD function
in this case becomes a composite of inverse Wishart
distributions:

r(� | y,M) =
k∏

i=1

|nSin|
n
2

2
ngi
2 	gi

(n
2

) |�i|− n+gi+1
2

× exp
{
−1
2
tr

(
nSin(�

i)−1)} , (21)

where Sin and �i are the sample covariance and covari-
ance component of the ith clique, and 	gi(·) is the gi
dimensional multivariate gamma function.

4.2. Theoretic results for the cliquemodels

Recall that under the full model,

r(A | y) ∝ |det(Sn)|
p
2 (2π)−

np
2 |det(A)|−(n+p)

× exp
[
−1
2
tr{nSn(AAT)−1}

]
.

For clique model selection, we need to evaluate the
normalising constant.

∫
J(y,A)f (y |A) dA =

π(p2−np)/2|det(Sn)|
p
2 	p

(n
2

)
|det(nSn)|n/2	p

(p
2

) .

(22)

The detailed derivation is provided in Appendix A.3.
Let us denote byM a clique model; a collection of k

cliques – sets of indexes that are related to each other.
The coordinates are assumed independent if they are

not in the same cliques. For any positive-definite sym-
metric matrix S, whose dimension is compatible with
M, we denote SM as thematrix obtained from S by set-
ting the off-diagonal entries that corresponds to pairs of
indexes not in the same clique withinM to zero. Note
that SM is a block diagonal (after possible permuta-
tions of rows and columns) positive-definite symmetric
matrix.

The classical Fischer–Hadamard inequality (Fis-
cher, 1908) implies that for any positive definite
symmetric matrix S and any clique model det(S) ≤
det(SM). Ipsen Lee (2011) provides a useful lower
bound. Letρ be the spectral radius andλ be the smallest
eigenvalue of (SM)−1(S − SM),

e−
pρ2
1+λ det(SM) ≤ det(S) ≤ det(SM). (23)

Assume the clique sizes are g1, . . . , gk. Then the GFD of
the model is

r(M | y) ∝ π

∑k
i=1 g

2
i

2

|detSMn | n2
k∏

i=1
CM,i(y)

	gi

(n
2

)
	gi

(gi
2

) , (24)

where CM,i(y) denotes the Jacobian constant term
|det(Sn,i)|

gi
2 computed only using the observations in

the ith clique.
In the remaining part of this section, we consider the

dimension of y as a fixed number p and the sample size
n → ∞. Similar arguments could be extended to p →
∞ with p/

√
n → 0.

Given two clique models M1 and M2. We write
M1 ⊂ M2 if cliques in M2 are obtained by merging
cliques in M1. Consequently, M2 has fewer cliques
and these cliques are larger than M1. Let M0,�0 be
the ‘true’ clique model and covariance matrix used to
generate the observed data. We will call all the clique
models M satisfying �M

0 = �0 compatible with the
true covariance matrix. We assume thatM0 ⊂ M for
all clique models compatible with �0.

The following theorem provides some guidelines for
choosing penalty function qM(n). Its proof is included
in the appendix. Define the penalisedGFDof themodel
as rp(M | y) = r(M | y)qM(n).

Theorem 4.1: For any clique modelM that is not com-
patible with �0, assume det(�0) < det(�M

0 ) and the
penalty e−anqM(n)/qM0(n) → 0 for all a>0 as n →
∞.

For any clique modelM compatible with �0 assume
that qM(n)/qM0(n) is bounded.

Then as n → ∞ with p held fixed rp(M0|Y)
P−→ 1.

The exact form of the penalty function depends on
the norm choice for the Jacobian. Under the �2-norm,
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the following penalty function works well.

qM(n) = exp

{
−

k∑
i=1

[
1
4
g2i log(n) − 1

2
g2i log(gi)

]}
.

(25)

It is easy to check that Equation (25) satisfiesTheorem4.1.

4.3. Sampling from a cliquemodel

The estimation of cliques is closely related to appli-
cations in network analysis, such as communities of
people in social networks and gene regulatory network.
Recall the penalised clique model GFD introduced in
Section 4.2,

rp(M | y) ∝ π

∑k
i=1 g

2
i

2

|detSMn | n2
k∏

i=1
CM,i(y)

	gi

(n
2

)
	gi

(gi
2

)qM(n).

Assuming that both the number of cliques k and the
clique sizes gk’s are unknown, the clique structure
can be estimated via Gibbs sampler. The first example
shows the simulation result for a 200 × 200 covari-
ance matrix (Figure 3). We consider the covariance
matrix to be with 1’s on the diagonal and (i, j)th entry
being 0.5 if the coordinate (i, j) belongs to a clique.
From top down, left to right, Figure 3 shows the trace
plot for log(rp(M | y)) without normalising constant,
true covariance �, sample covariance Sn, and the fidu-
cial probability of the estimated cliques based on the

10 Gibbs sampler Markov chains with random initial
states. The trace plot helps to monitor the convergence.
The fiducial probability of cliques panel reveals the
clique structure precisely. The last panel is the aggre-
gate result of 4000 iterations with burn in = 1000 from
the 10 Markov chains.

The covariance estimators can be obtained by sam-
pling from inverse Wishart distributions based on the
estimated clique structure. Figure 4 shows the con-
fidence curves of four statistics for estimated covari-
ance matrix �̂: log-transformed generalised fiducial
likelihood (SlogGFD), distance to � (D2Sig), log-
determinant (LogD), and angle between the leading
eigenvectors of �̂ and � (Eigvec angle). The truth for
SlogGFD and LogD is shown as red solid vertical lines.
In D2Sig and Eigvec angle panels, we include compar-
isons to sample covariance as red dotted-dashed verti-
cal lines. In addition, we compute the point estimation
via the Positive Definite Sparse Covariance Estimators
(PDSCE) method introduced in Rothman (2012). Its
corresponding statistics are shown as magenta dotted
vertical lines. In this example, the fiducial estimates
peak near the truth in Panels SlogGFD and LogD. The
estimated covariance matrices all appear to be more
similar to � than Sn as shown in panels D2Sig and
Eigvec angle. The PDSCE estimator is even closer to
� in terms of FM-distance; it however greatly overes-
timates det�.

The PDSCE method produces a good point estima-
tor to the covariance matrix. It is worth noting that our

Figure 3. Result for k = 10, p = 200,n = 1000. The trace plot (top left) shows that the chains converge quickly. Although n
p is small,

the sample covariance (bottom left) roughly captures the shape of true covariance (top right). The last panel (bottom right) shows
that the fiducial estimate captures the true clique structure perfectly.
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Figure 4. Confidence curve plots for estimated covariance matrix. k= 10,p= 200,n= 1000. Comparing to the sample covariance,
the estimators are closer to�. The PDSCE estimator shows even smaller FM-distance to�, it, however, greatly overestimates det�.

method shows similar performance with the benefit of
producing a distribution of estimators.

With the same underlying clique model, we gen-
erate 200 data sets. Then we apply our method with
a random Markov chain starting point and compute
the one-sided p-values for the estimate covariance log
determinant. With the same true covariance matrix, a
new set of 1000 observations are generated for each
simulation. Figure 5 shows the quantile–quantile plot of
the p-values against the uniform [0,1] distribution. The
dotted-dashed envelope is the 95% coverage band. It

Figure 5. 95% coverage plots for 200 repeated simulations.
k= 10,p= 200,n= 1000. Thep-values (in green) roughly follow
a uniform [0,1] distribution, and they lie inside of the envelope.

shows a well-calibrated 95% confidence interval. The p-
value curve (in green) is well enclosed by the envelope,
indicating good calibration of the coverage.

5. Discussion

Covariance estimation is an important problem in
statistics. In this manuscript, we propose to look
into this classical problem via a generalised fiducial
approach. We demonstrate that, under mild assump-
tions, the GFD of the covariate matrix is asymptoti-
cally normal. In addition, we discuss the clique model
and show that the fiducial approach is a powerful
tool for identifying clique structures, even when the
dimension of the parameter space is large and the
ratio n/p is small. To identify the covariance struc-
ture for non-clique models, in contrast to typical sparse
covariance/precision matrix assumptions, we look at
cases where the ratio n/p is small and the covariate
matrix is sparse. This ‘unusual’ sparsity assumption
arises in applications where multiple dependent vari-
ables contribute to several response variables collab-
oratively. The fiducial approach allows us to obtain
a distribution of covariance estimators that are bet-
ter than sample covariance and comparable to the
PDSCE estimator. The distances to true covariance
matrix show that as dimension increases, the fidu-
cial estimators become closer to the true covariance
matrix.
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Similar to Bayesian approaches, generalised fiducial
inference produces a distribution of estimators, yet the
two methods differ fundamentally. Bayesian methods
rely on prior distributions on the parameter of interest,
while fiducial approaches depend on the data gener-
ating equation. In the framework discussed here, the
data generating mechanism is natural to establish than
choosing appropriate priors while some other times
priors are easier to construct.

Estimating sparse covariance matrix without know-
ing the fixed zeros is a hard problem. While our
approach shows promising results for the clique model,
for the general case it still suffers from a few draw-
backs: (1) due to the nature of RJMCMC, the compu-
tational burden can be significant if the matrix is not
very sparse; (2) to limit the search space, a row/column-
wise sparsity upper bound needs to be chosen based on
prior knowledge of the data type; (3) the results pre-
sented in this manuscript assume a squared covariate
matrix, which can be limited to direct applications to
high-throughput data. Furthermore, a more sophisti-
cated way of choosing initial states and mixing method
can improve the efficiency of our algorithm. It is pos-
sible and well worth it to extend our current work to
more general cases.
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Appendix

A.1 Regularity conditions and Jacobian formula

Before proving the theorem on consistency of the GFD, we
will first define the δ-neighbourhood of A0 and establish
some regularity conditions on the likelihood function and
Jacobian formula (Propositions A.1, A.2, 3.1).

Definition A.1: For a fixed covariate matrix A0 and δ ≥ 0,
define the δ-neighbourhood of A0 as the set B(A0, δ) = {A :
d(AAT,A0AT

0 ) ≤ δ}. Recall that d is the FM-distance (17).

Proposition A.1: For any δ > 0 there exists ε > 0 such that

PA0

{
sup

A�∈B(A0,δ)

1
n
(Ln(A) − Ln(A0)) ≤ −ε

}
→ 1,

where Ln(A) = log f (y,A) = ∑n
i=1 log f (yi,A).

Proof: Let � = AAT, �0 = A0AT
0 . Denote Sn as the sample

covariance matrix as before, n ∈ N. Since Sn is the maximum
likelihood estimator, we have

Sn
PA0−−→ �0, i.e.,

∀ r > 0, PA0({ω : d(Sn(ω),�0) ≥ r}) → 0.

Define Lδ,n = {ω : d(Sn(ω),�0) < δ/2}. For an arbitrary
ω ∈ Lδ,n, assume that λ

†
i ’s and λ∗

i ’s are the eigenvalues of

Sn(ω)�−1 and Sn(ω)�−1
0 , respectively. Suppose that A �∈

B(A0, δ), then

δ < d(�,�0) ≤ d(�, Sn(ω)) + d(Sn(ω),�0)

< d(�, Sn(ω)) + δ/2

⇒ d(�, Sn(ω)) =
√√√√ p∑

i=1
log2 λ

†
i > δ/2.

So there exists k ∈ {1, 2, . . . , p}, such that ln2 λ
†
k > δ2

4p , then

ln λk − λk < max
{

δ

2√p
− exp

(
δ

2√p

)
,

− δ

2√p
− exp

(
− δ

2√p

)}
:= mδ

due to the fact that the function g(λ) = ln λ − λ is concave
with unique maxima λ = 1; g(1) = −1.

Meanwhile,
1
n
(Ln(A) − Ln(A0))(ω)

= − ln |det(A)| − 1
2
tr{Sn(ω)�−1}

+ ln |det(A0)| + 1
2
tr{Sn(ω)�−1

0 }

= 1
2
ln(Sn(ω)�−1) − 1

2
tr{Sn(ω)�−1}

− 1
2
ln(Sn(ω)�−1

0 ) + 1
2
tr{Sn(ω)�−1

0 }

= 1
2

{ p∑
i=1

(ln λ
†
i − λ

†
i ) −

p∑
i=1

(ln λ∗
i − λ∗

i )

}

<
1
2

{−(p − 1) + mδ + p
}

= 1
2
(mδ + 1).

This implies

sup
A�∈B(A0,δ)

1
n
(Ln(A) − Ln(A0))(ω) ≤ 1

2
(mδ + 1) < 0.

Let ε = − 1
2 (mδ + 1), Uδ,n = {ω : supA�∈B(A0,δ)

1
n (Ln(A) −

Ln(A0))(ω) ≤ −ε}. Then Lδ,n ⊆ Uδ,n. Notice that

1 = lim
n→∞PA0(Lδ,n) = lim inf

n→∞ PA0(Lδ,n)

≤ lim inf
n→∞ PA0(Uδ,n) ≤ lim sup

n→∞
PA0(Uδ,n) ≤ 1.

Therefore, limn→∞ PA0(Uδ,n) = 1. �

Proposition A.2: Let Ln(·) be as above. Then for any δ > 0

inf
A�∈B(A0,δ)

min i={i1,...,ip}
1≤i1<···<ip≤n

log f (A, yi)

|Ln(A) − Ln(A0)|
A0−→ 0,

where f (A, yi) is the joint likelihood of p observations
yi1 , . . . , yip .

Proof: Note that

inf
A�∈B(A0,δ)

min i={i1,...,ip}
1≤i1<···<ip≤n

log f (A, yi)

|Ln(A) − Ln(A0)|
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≤
infA�∈B(A0,δ) min i={i1,...,ip}

1≤i1<···<ip≤n
log f (A, yi)

infA�∈B(A0,δ) |Ln(A) − Ln(A0)| .

For any A �∈ B(A0, δ), denote � = AAT, �0 = A0AT
0 and let

t> 0, we have

PA0

⎛
⎜⎝ min

i={i1,...,ip}
1≤i1<···<ip≤n

log f (A, yi) ≤ −t log n

⎞
⎟⎠

≤ PA0

(
min

i=1,...,n
log f (A,Yi) ≤ − t log n

p

)

= 1 −
[
1 − PA0

(
− log f (A,Yi) ≥ − t log n

p

)]n

≤ 1 −
[
1 − pEA0(− log f (A,Yi))

t log n

]n
(Markov inequality)

= 1 −
[
1 − p(log(2π) + log det(�) + tr{�−1�0})

2t log n

]n
→ 0, as n → ∞.

Note that the numerator goes to −∞ at most as fast as
−t log n. Meanwhile, for a fixed n and any ω ∈ Lδ,n = {ω :
d(Sn(ω),�0) < δ/2},

inf
A�∈B(A0,δ)

|Ln(A) − Ln(A0)|

= − sup
A�∈B(A0,δ)

Ln(A) − Ln(A0) ≥ εn.

By Proposition (A.1),

lim
n→∞ PA0

(
inf

A�∈B(A0,δ)
|Ln(A) − Ln(A0)| ≥ εn

)
= 1,

i.e., the denominator goes to infinity at least as fast as εn. �

Proof of Proposition 3.1: Given an ordered index vector r =
(r1, . . . , rl), let Er = (er1 ; · · · ; erl), where each erj is a 1 × p
vector with 1 in the rjth tuple and 0 everywhere else. Denote
−r = {1, . . . , p} \ r.

Under the �2-norm,

J(y,A) =
√√√√ p∏

i=1
det(UT

i Ui/n)

=
√√√√ p∏

i=1
det

(
ET−SiA

−1Sn(A−1)TE−Si

)
,

where Si is the list of indexes of fixed zeros in the ith row of
A.

By the Strong Law of Large Numbers for Sn and continuity
of J(y,A),

J(y,A) −→
√√√√ p∏

i=1
det

(
ET−SiA

−1�0(A−1)TE−Si

)

:= π�0(A) a.s.

Note that both Pn = J(y,A) and P0 = π�0(A) are polynomi-
als of entries of A−1. If the domain of A is in compact, the
coefficients of Pn converge to the coefficients of P0 uniformly.
Furthermore, the derivative is bounded, hence Pn is equicon-
tinuous.We have J(y,A)

a.s.−→ π�0(A) uniformly on compacts
in A. �

A.2 Proof of Theorem 3.1

Proof: Proposition 3.1 implies

sup
A∈B(A0,δ)

|J(y,A) − π�0(A)| → 0 a.s. PA0 .

π∗(B, y) =
J
(
y, Ân + B√

n

)
f
(
y|Ân + B√

n

)
∫

Rp2
J
(
y, Ân + C√

n

)
f
(
y | Ân + C√

n

)
dC

=

J
(
y, Ân + B√

n

)

exp
[
Ln

(
Ân + B√

n

)
− Ln(Ân)

]
∫

Rp2
J
(
y, Ân + C√

n

)

× exp
[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]
dC.

Notice that

H = − 1
n

∂2

∂A∂A
(Ân) → I(A0) a.s. PA0 .

It suffices to show that∫
Rp2

∣∣∣∣J
(
y, Ân + C√

n

)
exp

[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]

−π�0(A0) exp
[−CTI(A0)C

2

]∣∣∣∣ dC PA0−−→ 0.

(A1)

Let Cx be the ijth entry of C, where x = i + (p − 1)j. By
Taylor Theorem,

Ln
(
Ân + C√

n

)
= Ln(Ân) +

p2∑
x=1

(
Cx√
(n)

)
∂

∂Ax
Ln(Ân)

+ 1
2

p2∑
x=1

p2∑
y=1

(
CxCy

(
√

(n))2

)

× ∂2

∂Ax∂Ay
Ln(Ân)

+ 1
6

p2∑
x=1

p2∑
y=1

p2∑
z=1

(
CxCyCz

(
√

(n))3

)

× ∂3

∂Ax∂Ay∂Az
Ln(A′)

= Ln(Ân) − CTHC
2

+ Rn

for some A′ ∈ [Ân, Ân + C√
n ]. Notice that Rn = Op(n−3/2 ×

||C||). Given any 0 < δ < δ0 and t> 0, the parameter space
Rp2 can be partitioned into three regions:

S1 = {C : ||C|| < t log
√
n};

S2 = {C : t log
√
n < ||C|| < δ

√
n};

S3 = {C : ||C|| > δ
√
n}.

On S1 ∪ S2,∫
S1∪S2

∣∣∣∣J
(
y, Ân + C√

n

)
exp

[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]
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−π�0(A0) exp
[−CTI(A0)C

2

]∣∣∣∣ dC
≤

∫
S1∪S2

∣∣∣∣J
(
y, Ân + C√

n

)
− π�0

(
Ân + C√

n

)∣∣∣∣
× exp

[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]
dC

+
∫
S1∪S2

∣∣∣∣π�0

(
Ân + C√

n

)

× exp
[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]

−π�0(A0) exp
[−CTI(A0)C

2

]∣∣∣∣ dC.
Since π�0(·) is a proper prior on the region S1 ∪ S2, the
second term goes to zero by the Bayesian Bernstein–von
Mises Theorem (see the proof of Theorem 1.4.2 in Ghosh
and Ramamoorthi (2003)).

Next we notice that∫
S1∪S2

∣∣∣∣J
(
y, Ân + C√

n

)
− πA0

(
Ân + C√

n

)∣∣∣∣
× exp

[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]
dC

≤ sup
C∈S1∪S2

∣∣∣∣J
(
y, Ân + C√

n

)
− πA0

(
Ân + C√

n

)∣∣∣∣
×

∫
S1∪S2

exp
[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]
dC.

Since
√
n(Ân − A0)

D−→ N(0, I(A0)
−1), we have

PA0

[{
Ân + C√

n
; C ∈ S1 ∪ S2

}
⊂ B(A0, δ0)

]
→ 1.

Furthermore,

Ln
(
Ân + C√

n

)
− Ln

(
Ân

)
= −CTHC

2
+ Rn,

so the integral converges in probability to 1. SincemaxC∈S1∪S2
≤ δ and Jn → π�0 , the term goes to 0 in probability.

Turning our attention to S3, notice that∫
S3

∣∣∣∣J
(
y, Ân + C√

n

)
exp

[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]

−π�0(A0) exp
[−CTI(A0)C

2

]∣∣∣∣ dC
≤

∫
S3
J
(
y, Ân + C√

n

)

× exp
[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]
dC

+
∫
S3

π�0(A0) exp
[−CTI(A0)C

2

]
dC.

The last integral goes to zero in PA0 because minS3 ||C|| →
∞.

For each y, let i be

i = argmin
ĩ

∣∣∣∣J
(
y, Ân + C√

n

)
− J

(
yĩ, Ân + C√

n

)∣∣∣∣
= argmin

ĩ
h(y,C, ĩ).

∫
S3
J
(
y, Ân + C√

n

)
exp

[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]
dC

≤
∫
S3

{
h(y,C, i)f

(
yi|Ân + C√

n

)

+J
(
yi, Ân

C√
n

)
f
(
yi|Ân + C√

n

)}

× exp
[
Ln

(
Ân + C√

n

)

− Ln(Ân) − log f
(
yi|Ân + C√

n

)]
dC.

Note that as n goes to infinity, the first two product terms,
h(·)f (·) and J(·)f (·), are both bounded; the exponent term
goes to −∞ by Proposition A.2, so the integral goes to zero
in probability.

Having shown Equation (A1), we now follow Ghosh
and Ramamoorthi (2003) and let

Dn =
∫

Rp2

∣∣∣∣J
(
y, Ân + C√

n

)

× exp
[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]∣∣∣∣ dC.
Then the main result to be proven Equation (18) becomes

D−1
n

{∫
Rp2

∣∣∣∣J
(
y, Ân + B√

n

)

× exp
[
Ln

(
Ân + B√

n

)
− Ln(Ân)

]

−Dn

√
det(I(A0))

(2π)p
exp

(
−BTI(A0)B

2

)∣∣∣∣
}
dB

PA0−−→ 0.

(A2)

Because ∫
Rp2

J(y, Ân) exp
(

−BTI(A0)B
2

)
dB

= J(y, Ân)

∫
Rp2

exp
(

−BTI(A0)B
2

)
dB

= J(y, Ân)
(2π)p√
det(H)

a.s.−→ π(A0)
(2π)p√
det(H)

,

and (A1) implies that Dn
P−→ π(A0)

(2π)p√
det(H)

. It is sufficient

to show that the integral in Equation (A2) goes to 0 in
probability. This integral is less than I1 + I2, where

I1 =
∫

Rp2

∣∣∣∣J
(
y, Ân + B√

n

)

× exp
[
Ln

(
Ân + B√

n

)
− Ln(Ân)

]

−J
(
y, Ân

)
exp

(
−BTI(A0)B

2

)∣∣∣∣ dB
and

I2 =
∫

Rp2

∣∣∣∣J (
y, Ân

)
exp

(
−BTHB

2

)

−Dn

√
det(I(A0))

(2π)p
exp

(
−BTI(A0)B

2

)∣∣∣∣ dB.
Equation (A1) shows that I1 → 0 in probability.
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Since

J(y, Ân)
P−→ π(A0) and Dn

P−→ π(A0)
(2π)p√

det(I(A0))
,

we have

I2 =
∣∣∣∣J (

y, Ân

)
− Dn

√
det(I(A0))

(2π)p

∣∣∣∣
×

∫
Rp2

exp
(

−BTHB
2

)
dB P−→ 0.

�

A.3 Derivation of the normalising constant (22)

Using a substitution A−1(nSn)1/2 = Z with the Jacobian
dA = |detZ|−2p|det(nSn)|p/2 dZ we have∫

J(y,A)f (y|A) dA

= |det(Sn)|
p
2

∫
e−

1
2 tr(A

−1(nSn)1/2)(A−1(nSn)1/2)�

(2π)np/2|detA|n+p dA

= |det(Sn)|
p
2

∫
|detZ|n−p|det(nSn)|−n/2e−

1
2 trZZ

T
dZ

= (2π)−(n−p)p/2|det(Sn)|
p
2 |det(nSn)|−n/2E|detZ|n−p

=
π(p2−np)/2|det(Sn)|

p
2 	p

(n
2

)
|det(nSn)|n/2	p

(p
2

) .

The last equality follows from the fact that for a p × pmatrix
of independent standard normal normal variables Z we have

E|detZ|n =
2np/2	p

(
n + p
2

)

	p

(p
2

) .

A.4 Lemmas for the cliquemodel

Lemma A.1: Under the �2-norm, for any clique model M
with k cliques of sizes gi, i = 1, . . . , k, we have

CM,i(y) = |det(SM,i
n )|gi/2 → |det(�M,i

0 )| gi2 a.s.,

where SM,i
n is the sample covariance computed using only

observations within clique i under the model M, and �
M,i
0

denotes the ith block component of �M
0 .

Proof: The Strong Law of Large Numbers implies SMn,i →
�

M,i
0 a.s. for each i = 1, . . . , k and the results follow by

continuity. �

Lemma A.1 provides the limits of the constant CM,i(y) as
sample size increases. The next lemma shows how the ratio∏k

i=1 	gi (
n
2 )∏l

j=1 	hj (
n
2 )

behaves when sample size increases.

Lemma A.2: Let gi, i = 1, . . . , k and hj, j = 1, . . . , l be inte-
gers such that

∑k
i=1 gi = ∑l

j=1 hi. Then as n → ∞
k∏

i=1
	gi

(n
2

)
l∏

j=1
	hj

(n
2

) ∼
(π

n

)∑k
i=1 g

2
i −∑l

j=1 h
2
j

4 .

Proof: It is well known (Abramowitz & Stegun, 1964) that

	(x + y)
	(x)

∼ xy, as x → ∞ and y is fixed. (A3)

Recall
k∏

i=1
	gi

(n
2

)
l∏

j=1
	hj

(n
2

) =
π

∑k
i=1(g

2
i −gi)/4

k∏
i=1

gi∏
s=1

	

(
n + 1 − s

2

)

π
∑l

i=1(h
2
i −hi)/4

l∏
j=1

hj∏
t=1

	

(
n + 1 − t

2

) .

Since both numerator and denominator include a product
of p gamma functions, the result of the lemma then follows
directly from Equation (A3). Note that Equation (A3) will be
sufficient when p is fixed. More precise bounds available in
Jameson (2013) could be used when p is growing with n. �

Lemma A.3: LetM be a clique model.

(i) If det(�0) < det(�M
0 ), then there is a> 0, such that∣∣∣∣∣det(S

M0
n )

det(SMn )

∣∣∣∣∣
n/2

≤ e−an eventually a.s.

(ii) IfM �= M0 is compatible with �0, then as n → ∞∣∣∣∣∣det(S
M0
n )

det(SMn )

∣∣∣∣∣
n/2

= OP(1).

Proof: If det(�0) < det(�M
0 ), set a = logdet�M

0 −logdet�0
4 .

By the Strong Law of Large Numbers,

SM0
n → �0, SMn → �M

0 , a.s.

Thus eventually a.s. detSM0
n /detSMn < e−a and the statement

of the lemma follows.
IfM �= M0 is compatible with �0, by the Central Limit

Theorem
√
n(SMn − SM0

n )
D−→ R.

By Slutsky’s theorem the spectral radius andminimumeigen-
value of (SM0

n )−1(SMn − SM0
n ) satisfy ρ = OP(n−1/2) and

λ = oP(1) respectively. Consequently by (23)∣∣∣∣∣detS
M0
n

detSMn

∣∣∣∣∣
n/2

≤ e
npρ2
2(1+λ) = OP(1).

�

A.5 Proof of Theorem 4.1

Theorem A.1: For any clique model M that is not compat-
ible with �0 assume det(�0) < det(�M

0 ) and the penalty
e−anqM(n)/qM0(n) → 0 for all a> 0 as n → 0.

For any clique model M compatible with �0 assume that
qM(n)/qM0(n) is bounded.

Then as n → ∞ with p held fixed rp(M0 |Y)
P−→ 1.

Proof: Because for any fixed p there are finitely many clique
models, we only need to prove that for any M �= M0,
rp(M |Y)

rp(M0 |Y)

P−→ 0.
Denote by gi, i = 1, . . . , k, the size of cliques in M and

hj, j = 1, . . . , l, the size of cliques inM0.
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By Lemma (A.1), (A.2) we have as n → ∞

rp(M |Y)

rp(M0 |Y)
∼ Kn−

∑k
i=1 g

2
i −∑l

j=1 h
2
j

4
qM(n)
qM0(n)

∣∣∣∣∣detS
M0
n

detSMn

∣∣∣∣∣
n/2

,

where K is a constant independent of n.
If M is not compatible with �0 by assumption and

Lemma A.3(i), we have rp(M|Y)

rp(M0 |Y)
→ 0 a.s.

If M �= M0 is compatible with �0 notice that M is
obtained by pooling together some cliques of M0. There-
fore

∑k
i=1 g

2
i − ∑l

j=1 h
2
j > 4. Consequently rp(M |Y)

rp(M0 |Y)

P−→ 0
by assumption and Lemma A.3(ii). �
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