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ABSTRACT
Many of the best predictors for complex problems are typically regarded as hard to interpret
physically. These include kernel methods, Shtarkov solutions, and random forests. We show
that, despite the inability to interpret these three predictors to infinite precision, they can be
asymptotically approximated and admit conceptual interpretations in terms of their mathe-
matical/statistical properties. The resulting expressions can be in terms of polynomials, basis
elements, or other functions that an analyst may regard as interpretable.
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1. Introduction

Fundamentally point prediction is an input–output
relation. Given a pair of related sequences x1, x2, . . .
and y1, y2, . . . where each yi is an outcome of some
Yi, the predicted value for yi is ŷi = Fi(xi) in which
Fi is typically chosen using the earlier xi’s and yi’s,
i.e., xi−1, . . . , x1 and yi−1, . . . , y1. An extra set of burn-
in data may be used to choose Fi and there may be
added complexities from side information.Wemay put
many sorts of desiderata on the Fi’s – low predictive
error, simplicity, even insisting each Fi ∈ Fi for some
set of functions Fi. However, the point predictor, Fi, is
a merely a function – a way to convert an input x to an
output y.

Interval predictors are somewhat more complex:
They give a prediction interval, say Ii with a pre-
assigned probability that the event {Yi ∈ Ii} will occur.
Thus they have the same input but a different out-
put. Regardless of any further desiderata we might
impose, such as optimality criteria, interval predictors
(or their generalization to regional predictors) remain
input–output relations. This may be regarded as an
example of conformal prediction, see Vovk et al. (2005),
as we discuss later in Section 5.

By contrast, modelling is a conceptually different
process. In principle, a statistical modeler proposes a
model, say Y = F(x) + ε for simplicity, to be true and
has a collection of terms, say tj(x) for j = 1, . . . ,m, that
may be part of an additive model. The modeler uses the
data to choose terms and the end result is amodel some-
thing like Y(x) = ∑q

j=1 t̂j(x) + ε, where the t̂j’s are the
same as the tj’s apart from estimating some coefficients.
The modeler then asserts that the model reflects reality

by ensuring that each component has a correlate in real-
ity: Each tj means something physical, there is a reason
that the terms are added, and it has been verified that
the error ε represents intrinsic variability rather than
small terms that have been ignored i.e., bias. In this case,
the model gives the point predictor Ŷ(x) = ∑q

j=1 t̂j(x)
and it is assumed that any estimates in t̂j are satisfac-
torily close to their true values that the model is ‘good’
– not readily falsifiable. Note that even though Ŷ is an
estimator of F, we focus on how well it predicts Y.

What are the differences between these two approa-
ches? First, a predictor is just a mathematical construct
to match the output from a data generator (DG). It has
no greater significance. All that matters about Ŷ is how
close Ŷ(x) is to Y = y, i.e., how well using Ŷ lets some-
one predict Y. The quality of the prediction is usually
measured formally, e.g., by some cumulative error such
as the prediction sum of squares

PRESSn =
n∑

i=1
(yi − Ŷ−i(xi))2,

where the subscript −i indicates that data point (xi, yi)
was not used to form Ŷ . However, the point remains:
Ŷ predicts well, adequately, or poorly according to how
we assess predictive performance. While there is noth-
ing more that must necessarily be said, there is much
that can be said – how the predictor was found, what its
properties are, etc. – and some aspects of these will be
discussed for the predictors here.

A clear statement of the basic problem studied
here can be found in Geisser (1975) who focused on
‘low structure’ data and treated it strictly empirically.
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i.e., with minimal discussions about abstract constructs
such as distributions. This is analogous to what we call
complex data – data about which it is hard to make
any strong assumptions. Geisser (1975)’s treatment was
prescient in that he clearly expressed many of the ideas
here in elementary settings such asANOVA, regression,
and posterior means. Our work goes beyond this by
examining techniques that were not available in 1975
and we do so from a contemporary conceptual stand-
point, not just empirically (although that is clearly no
less important).

The notion of ‘interpretability’ used here is the same
as used in Le andClarke (2020). Briefly, amodelM con-
sists of K components, say M = {c1, . . . , cK}. The ck’s
are the components that go into the formulation of a
model such as variables, parameters, and rules for how
they are to be combined to produce amodel. Themodel
M is interpretable if and only if each ck has a physical
correlate, i.e., they correspond to some identifiable and
measurable feature of the DG. We say a model is valid
if and only if it is interpretable and correct at least to
the degree that its predictions and future outcomes are
sufficiently close.

In this setting, the key question in modelling is how
well the terms in Ŷ encapsulate the components of the
DG. That is, what aspect (or ck) of the DG does a spe-
cific tj represent and how accurately? In short, the sub-
components of a model matter because it is hoped they
have physical correlates. The model is meant to match
reality in that its components can be interpreted physi-
cally in the context of the DG. Otherwise put, a model
can be falsified by falsifying one of its components.
Thus, it makes sense to ask if a model is ‘true’ – it being
understood that ‘true’ may only be in a provisional
sense. A better model may be found that discredits the
earlier model and science proceeds by sequentially fal-
sifying ever better models hopefully arriving at a model
that is either not-falsifiable or so close to true (in the
absolute sense) that it isn’t worth the trouble to falsify.
In either case, there is the idea of amodel being true that
has no genuine analog for predictors. The closest analog
would be for a predictor to be optimal (within a class)
but this is not part of measurable, objective reality.

The main link between predictors and model is that
models regularly provide predictors while predictors do
not in general lead to models – at least not directly.
(Indeed, models that do not make measurable predic-
tions are not valid models as they are not falsifiable.)
Thus, we may speak of model-induced predictors and
non-model induced predictors. Loosely, the class of
predictors is very much larger than the class of models.
So, one way to find good models is to find a good pre-
dictor and determine a model that performs almost as
well in terms of prediction. That way, there is a physical
interpretation even if some predictive power is lost.

Ideally, we want a model that is not falsified (or at
least is very hard to falsify) and that gives an extremely

good predictor. Sometimes this occurs but often it does
not especially for complex problems. That is, a really
good predictor often outperforms the predictor gener-
ated from a provisionally true model and does so by a
substantial margin. In earlier work, we gave examples
of this, see Le and Clarke (2020). That is, we showed
how certain interpretable predictors, linear models in
particular, could be modified to give improved predic-
tions. The modification were chiefly to introduce non-
interpretable features to the model induced predictor.
The end result was a predictor that had some inter-
pretable and some non-interpretable components, and
gave demonstrably improved prediction over themodel
induced predictor. We called the difference between
the error of using the partially interpretable predictors
over the model induced predictors the cost of mod-
elling. Intuitively, the flexibility from the loss of full
interpretability enabled improved prediction.

Here we examine the same problem but from the
reverse direction. That is, we start with uninterpretable
predictors and find interpretable models that are close
to them. The interpretable models do not in gen-
eral perform as well as the uninterpretable predictors
since the latter are the result of optimization. Thus,
non-interpretable (but optimal) predictors can lead to
approximate models that may be examined to see how
they relate to physical components of a DG. This is
anotherway to formalize the cost ofmodelling, or inter-
pretability, in terms of the loss of predictive accuracy
because the approximatemodel may still say something
useful about the DG.

One implication of this reasoning is that the principle
of falsification may have to be reconsidered. Falsifiabil-
ity is the assertion that any conjectured model must be
disprovable before it can become accepted. The prob-
lem is that if the predictions from essentially every
model for a DG can be improved, then essentially every
model is flawed and can be discredited. We are not
actually uncovering truth. Accordingly, the principle of
falsification may itself be ‘false’ in the sense that since
every model is disprovable, disprovability can only be
used to discriminate bettermodels fromworse ones not
to arrive at a model that can be generally accepted – at
least not often enough that it is useful as a foundational
philosophical principle.

A further complication is the concept of M-
closed, -complete, and -open problems; see Bernardo
and Smith (2000) for the original definitions. These are
defined by the location of a class of proposed models or
predictors relative to the DG. Here we say that an M-
closed problem is one in which the DG is exactly one of
a finite list of explicit candidate models. The problem is
thereforemerely selecting the one thatmatches the data
generator. In the Bayesian case, this also means that the
prior is well-defined in the sense that the prior proba-
bility of a model represents the pre-experimental belief
that the model is true.
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An M-complete problem is one in which the DG
has a true model but it is inaccessible in some sense.
For instance, it might be too complicated to formulate.
Theremay not be any closed form expression for it, so it
can only be approximated numerically. The true model
might be so complicated that it is unrealistic to learn
much about it fromdata thatmight realistically be gath-
ered. Indeed, the truemodel may be so complex that no
approximation to it is adequate even if a serviceable one
can be found under restrictions. The main point is the
model exists so that, for instance, expectations and con-
vergences are well defined but any properties of it are
problematic and uncertain. In this case, the prior prob-
abilities are not that a model is true but rather that it is
close to the true model given the model list. (Interpret-
ing the prior as weights on actions in a decision theory
problem is also possible; see Le and Clarke (2016b) for
a brief discussion of this.)

The two problem classes contrast sharply with the
M-open problem class in which no model for the data
generator can be assumed to exist. Hence, expecta-
tions and expressions related to the form of a model,
e.g., modes of convergence, do not make sense and the
meaning of a prior is unclear unless it is taken as a belief
that a given predictor, possibly model-based, will per-
form better than another predictor within the class of
predictors under study. In the M-open problem class
modelling makes little sense; we are essentially left only
with predictors and their properties. Thus, a model for
a DG in the class really means the predictor the model
generates because themodel has no necessarymeaning.
A predictor may be examined to learn something about
the DG, such as the relevance or irrelevance of a vari-
able, but detailed knowledge in the sense of a complete
set of correlates for a DG is unobtainable.

A key point is that the existence of M-open prob-
lems undermines the principle of falsifiability. If there
is no true model and predictors can only be evaluated
in terms of how well they perform on a relative basis,
then the principle of falsifiability is irrelevant to many
modern complex problems. That is, in many settings,
all models are wrong and hence already falsified. They
are not useful either except insofar as they give a good
predictor that may or may not say anything about the
DG. So, falsifiability per se is often merely a distraction
from good prediction.

Indeed, many of the most important data sets cur-
rently being or recently gathered were not generated
by a DG that admits a model, or, more precisely, were
not generated by a mechanism that has anything stable
or identifiable enough to model effectively. However, as
long as there is something to measure we can make a
guess as to its next value. Moreover, for these situations,
predictors derived frommodel averages are often found
to be better than their individual components, regard-
less of whether the models in the average are ‘true’
or merely regarded as the predictors they generate.

There are other classes of predictors also do not gen-
erally admit physical interpretations yet also have clear
predictive utility. Here, we study three classes of such
predictors.

Our goal is to show that it is possible to pro-
vide interpretations for predictors that are generally
uninterpretable. Specifically, kernel methods, the Bayes
Shtarkov solution, and random forests are predictors
for complex (M-complete or M-open) problems that
are typically regarded as hard or impossible to inter-
pret. We develop two types of interpretation for each
of them. One is an interpretation in the usual sense
of finding physical correlates, usually approximately,
for components of the predictors. The other is a the-
oretical characterization of these predictors in terms of
concepts to help guide their use.

In Section 5 we summarize out findings by stating
what we call the prediction principle that we propose
should be added to the falsification principle. This is
separate fromand in addition to the celebrated prequen-
tial principle, see Dawid (1984, 1992, 2010) and Dawid
and Vovk (1999), that we regard as foundational.

The structure of this paper is as follows. In Section 2
we provide an interpretation for kernelmethods such as
relevance vector machines (RVM’s) and support vector
machines (SVM’s) using the eigenfunctions of kernels
with a consistency result so the interpretations will be
valid. In Section 3 we present a Bayes version of the
Shtarkov predictor and indicate how to interpret it as
a mixing of Beta distributions or in terms of a Pearson
distribution. In Section 4 we show that a random forest
is asymptotically equivalent to boosting so random for-
est builds an additive logistic regression model. They
can also be approximated in a regression sense. Some
concluding remarks aremade in Section 5. Longer tech-
nical proofs are in Appendix 1 and some further discus-
sion of interpretability versus complexity can be found
in Appendix 2.

2. RVM’s and SVM’s for regression

For a regression problem with a training data set D =
Dn = {(yi, xi), i = 1, . . . , n}, where y is the response
variable and x is a covariate of dimension p, the goal
is to find a function f (x) to predict the responses y in a
test set. This can be viewed as a regularization problem
of the form

min
f∈HK

[
1
n

n∑
i=1

L(yi, f (xi)) + λ‖f ‖2HK

]
, (1)

where HK is a reproducing kernel Hilbert space
(RKHS) with kernel K and norm ‖ · ‖HK , L is a loss
function, and λ > 0 is the smoothing parameter. It can
be shown that (1) has a solution of the form

f̂λ(x) =
n∑

i=1
αiK(xi, x); (2)
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see Kimeldorf andWahba (1971). The solution f̂λ is not
a conventional model because the evaluations of K do
not have any necessary physical correlates and in addi-
tion to its dependence on the parameters αi, f̂λ depends
explicitly on the xi’s to define the functions in the sum,
the number of which depends on n. Indeed, the opti-
mal values of the αi’s are αi = αi(D). Estimating the
αi’s means finding a data-driven approximation α̂i(D)

even though the ‘true’ value depends onD. That is, the
data is used once to define the ‘true’ αi’s from the opti-
mization (1) and then again to obtain good estimates
for them. It is easiest to regard the latter estimates as
converging in the sense of real numbers rather than
stochastically.

Conditional onD, the (uninterpretable) representer
theorem predictor is

Ŷrep(x) =
n∑

i=1
αiK(xi, x). (3)

It is well known that RVM’s and SVM’s are of the
form (3). Moreover, it is seen that (3) is the mode of a
posterior where L(yi, f (xi)) is the exponent in an expo-
nential family and λ‖f ‖2HK

is the log of the prior on f.
The representation (2) of f is of special interest when
the number of covariates p is much larger than the sam-
ple size n and predictors such as Ŷrep(·) are often used
inM-complete (andM-open) settings.

We start with a consistency result so the approximate
interpretations we present will be asymptotically valid.

2.1. Consistency of the representer theorem
predictor

Consider anM-complete problem and let

Q̂n(f ) = 1
n

n∑
i=1

L(yi, f (xi)) + λ‖f ‖2HK
. (4)

The population version of (4) is

Q0(f ) = E(X,Y)L(Y , f (X)) + λ‖f ‖2HK
. (5)

We can assume that, for each i the α̂i = α̂i(D)’s are
known from the empirical optimization of Q̂n and that
the true values for the αi’s givenD are fixed with limits,
assuming they exist, due to the optimization of Q0.

Theorem 2.1: Assume (i) Q0(f ) is uniquely mini-
mized at f0, (ii) Q0(f ) is continuous in f, and (iii)
Q̂n(f ) converges uniformly in probability to Q0(f ) i.e.,
supf∈HK

|Q̂n(f ) − Q0(f )| P→ 0. Then

Ŷrep
P→ f0,

where the convergence is over independent outcomes
from the distribution of (X,Y).

Proof: This is a modification of Theorem 2.1 in Newey
and McFadden (1994). Since Q̂n(Ŷrep) ≤ Q̂n(f ) for any
f by the optimality of Ŷrep, we have that for any
ε > 0, Q̂n(Ŷrep) ≤ Q̂n(f0) + ε/3. Also, for any ε > 0,
Assumption (iii) gives

Q0(Ŷrep) < Q̂n(Ŷrep) + ε

3
,

Q̂n(f0) < Q0(f0) + ε

3
,

with probability approaching one (w.p.a.1), as n → ∞.
Therefore, w.p.a.1,

Q0(Ŷrep) < Q̂n(Ŷrep) + ε

3
< Q̂n(f0) + 2ε

3
< Q0(f0) + ε. (6)

For any δ > 0, let

B(f0, δ) = {f ∈ HK : ‖f − f0‖HK < δ}.
Since B(f0, δ)c is closed, Assumptions (i) and (ii) give

inf
f∈B(f0,δ)c

Q0(f ) = Q0(f ∗) > Q0(f0)

for some f ∗ ∈ B(f0, δ)c.
Choosing ε = inf f∈B(f0,δ)c Q0(f ) − Q0(f0) = Q0(f ∗) −

Q0(f0), expression (6) implies

Q0(Ŷrep) < Q0(f ∗) = inf
f∈B(f0,δ)c

Q0(f ) w.p.a.1,

and hence Ŷrep ∈ B(f0, δ). Letting δ → 0 completes the
proof. �

Some discussion of what Theorem 2.1 means and
does not mean is important here. The mode of con-
vergence is stochastic, in the Hilbert space norm. The
objects converging are functions of the form (3) in
which the xi’s appear as arguments in the kernel evalua-
tions and the (xi, yi)’s appear implicitly in the definition
of theαi’s. Thewhole function (3) converges to themin-
imizer f0. The function itself depends on D through
the values of the xi’s and the αi’s. This means that the
connection between (3) for one D and other data set
D∗ is unclear. The xi’s, yi’s, and the sample sizes, say
n and n∗, may be different. So, there is no necessary
relationship between αi(D) and αi(D∗) even when i ≤
min(n, n∗) and the first min(n, n∗) pairs (xi, yi) are the
same forD andD∗. It may be easiest to regard increas-
ing data sets as a sequence of problems corresponding
to the accumulation of data and the convergence in the
joint distribution of (X,Y) as summarizing the effect of
replications over the entirety of all the countably infi-
nite data sequences. There may be further structure
in the convergence of the αi’s and their effect on the
convergence of (2.1) to f0, but we do not treat this here.

The convergence in Theorem 2.1 is in probability.
The mode can be improved to L2 with some extra
hypotheses as seen in the following.
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Corollary 2.1: Assume the conditions in Theorem 2.1
hold. Assume

(i) Let X be a generic random variable representing any
Xi. Then there is an ε > 0 so that ∀x ∈ supp(X)

E[K2+ε(X, x)] < ∞;

(ii) The sum of squares of the αi’s is bounded with rate
(1/n), i.e., ∃M so that for anyD,

∑∞
i=1 α2

i (D)<M
and ∃N =N(n) so that

∑n
i=N α2

i = oP(1/(n−N)).

Then, as n → ∞, for any x we have

Ŷrep(x)
L2→ f0(x).

Proof: To establish the result, it is enough to show that
as n → ∞,

E[Ŷrep(x) − f0(x)]2 → 0. (7)

This is done in Appendix A. �

Again, some discussion of this result is worthwhile.
First, Assumption (i) is easy to verify formost kernelsK.
However, Assumption (ii) is asymptotic and therefore
hard to verify. The boundedness clause, while intuitive,
may have to be enforced by restricting (X,Y) to a com-
pact set and renormalizing P(X,Y). The compact set can
then be allowed to increase slowly while still preserving
the result. The second clause of the assumption, the rate,
is harder to deal with. Nevertheless, the rate assumption
(and the boundedness assumption) are nearly always
satisfied, at least approximately, in practice. While not
a verification, the second clause can be checked by see-
ing how the αj’s perform using bootstrap samples from
an D. If the clause is satisfied for bootstrap samples
and a range of finite n then it may be reasonable to
take as true. In practice, with RVM’s few of the αi’s are
non-zero so as a practical matter, Assumption (ii) usu-
ally appears to be satisfied. Indeed, this can be seen in
Tipping (2001).

A counterfactual may make Assumption (ii) less
unpalatable. If the Representer Theorem solution were
a Fourier expansion, the two clauses of Assumption
(ii) would seem fairly reasonable. The first clause of
Assumption (ii) would only mean that

∑
i αiK(xi, ·) is

in the Hilbert space because Bessel’s inequality gives
that the sum of squared Fourier coefficients is less than
the normof the function. (This is true for any orthonor-
mal basis.) Also, the rate

∑n
i=N α2

i = oP(1/(n − N))

as n and N(n) increase imposes a sparsity condition.
It limits the collection of functions that can be well
approximated because, as n increases, the last αi’s can’t
be too large. That is, the true function is only being
approximated by N(n) evaluations of the kernel. Oth-
erwise put, this method is only effective for functions
f0 that are sufficiently sparse in terms of the K(xi, x)’s

required to express them. The rate clause in Assump-
tion (ii) bounds how far f0 can be from the approxima-
tions Ŷrep, in L2, for consistency – as opposed to merely
optimal approximation – to hold.

The mode of convergence in Corollary 2.1 is in L2
pointwise in x. If a distribution P is assigned to X,
then Egoroff ’s theorem can be applied. It strengthens
the result by giving Ŷrep(X) − f0(X) → 0 in L2 uni-
formly forX ∈ AwhereA has arbitrarily large probabil-
ity under P. That is, the convergence is almost uniform
over most of the sample space of X.

To complete our treatment of the consistency of Ŷrep
we note that Assumption (iii) in Theorem 2.1 is hard to
verify. So, we provide sufficient conditions for it.

Theorem 2.2: Assume (i) the loss function L is con-
tinuous in f, (ii) there exists δ > 0 so that for any
f ∗ ∈ HK, E(X,Y)[supf∈B(f ∗,δ) L(Y , f (X))] < ∞ where
B(f ∗, δ) = {f ∈ HK : ‖f − f ∗‖HK < δ}, and (iii) there
exists an increasing sequence of compact subsets of HK,
{Dj}∞j=1, converging to HK such that, for each fixed n,
limj→∞ supf∈Dj

|Q̂n(f ) − Q0(f )| = supf∈HK
|Q̂n(f ) −

Q0(f )|. Then

sup
f∈HK

|Q̂n(f ) − Q0(f )| P→ 0.

Proof: The proof is adapted from Theorem 6.10, the
uniform weak law of large numbers, in Bierens (2005).
The details are in Appendix A. �

Remark: Uniform laws of large numbers emerge from
empirical process theory, see Van de Geer (2000) Chap-
ter 2 for instance. Often these results have weaker
hypotheses that are harder to verify. We have used
extensions of the classical law of large numbers since
our goal is predictor interpretability not weakest condi-
tions.

2.2. Theoretical interpretation of the representer
theorem solution predictors

Under Mercer’s conditions, see Mercer’s Theorem in
Scholkopf and Smola (2002), the kernel K can be
decomposed as

K(xi, x) =
∞∑

m=1
λmgm(xi)gm(x), (8)

where {gm | m = 1, 2, . . .} is an orthonormal set of
eigenfunctions ofK with

∫
K(x, y)gm(y) dy = λmgm(x),

m = 1, 2, . . .. Thus, different kernels correspond to dif-
ferent orthonormal bases.

We can now use the gm’s in a nonparametric regres-
sion expansion for f0.Write the projection of f0 onto the
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span of {g1, . . . , gM} as

r(x) =
M∑
j=1

βmgm(x) (9)

so that estimating the βm’s is equivalent to estimating
the projection. Since the gm’s are orthonormal, the opti-
mal βm’s in an L2 projection sense are 〈gm, f0〉 and these
can be estimated by β̂m = (1/n)

∑n
i=1 yigm(xi) form =

1, . . . ,M. For any reasonable choice of joint distribution
for (Y ,X), the central limit theorem gives that for each
m, there is a σm so that

β̂m ∼ N
(

βm,
σ 2
m
n

)
, (10)

asymptotically in n, assuming the second moments of
the β̂m’s exist. The integrated squared bias of r as an
estimator for f0 is

BM = B(f0, r) =
∫ ∞

−∞
(f0(x) − r(x))2 dx =

∞∑
m=M+1

β2
m.

(11)

Since both r and f0 are in aHilbert space, BM is finite for
anyM and for any latterm, βm → 0 asM → ∞. Now,
having controlled the variance of the β̂m’s and the bias
of r we see that

r̂M(x) =
M∑

m=1
β̂mgm(x) (12)

converges to r as n → ∞ and to f0 with bias roughly
BMn(f0, r̂). We can let Mn → ∞ so slowly as n → ∞
that BM also goes to zero. Doing this, it is seen that we
have BMn → 0 as well, possibly slowly with n. Now, r̂
converges to f0 pointwise in x, i.e.,

r̂M(x) → f0(x) in P (13)

for any x. More explicit formal conditions for (13)
and for versions of (13) in stronger modes of conver-
gence can be given, but that is beyond our present
scope. However, we note that this argument holds for
any orthonormal basis but that the gm’s, being derived
from K, are natural for this problem. Of course, if the
basis elements in any orthonormal basis have a physi-
cal interpretation for a given K that is more compelling
than the gm, that basis would be preferred.

From (13) and Theorem 2.1, we have the following.

Theorem 2.3: Assume (13) holds and that the hypothe-
ses of Theorem 1 are satisfied. For M-closed and M-
complete problems, for any x, the orthonormal basis
predictor r̂M in (12) is asymptotically equivalent to the
representer theorem solution predictor Ŷrep(x), i.e., as
n → ∞ and consequently Mn → ∞ at an appropriate
rate

r̂Mn(x) − Ŷrep(x)
P→ 0.

From Theorem 2.3 we are justified in regarding r̂ as
an interpretation of Ŷrep(x) on the grounds that the gm’s
(or other orthonormal basis) admit a physical interpre-
tation relevant to theDG. The cost of this interpretation
is asymptotically zero but for finite n depends on BMn

in (11) and the rate for the β̂m’s in (10).
Here we give some examples of the eigenfunctions

gm for common choices of kernel to show the inter-
pretability is non-trivial. (Other orthonormal bases
may be easier.)

Example 2.1: Consider the kernel K(x, y) = e−xy on
(0,∞).

By the definition of the Gamma function, for α > 0,∫ ∞

0
tα−1e−xt dt = �(α)x−α .

Changing α to 1 − α, for α < 1,∫ ∞

0
t−αe−xt dt = �(1 − α)xα−1.

So, for 0 < α < 1,∫ ∞

0

(
1√

�(α)
tα−1 + 1√

�(1 − α)
t−α

)
e−xt dt

=
√

�(α)�(1 − α)

×
(

1√
�(α)

xα−1 + 1√
�(1 − α)

x−α

)
.

Therefore, by definition, the eigenfunctions of this ker-
nel are

gα(x) = 1√
�(α)

xα−1 + 1√
�(1 − α)

x−α ,

for 0 < α < 1.

Example 2.2 (Polynomial kernel): The non-homoge-
neous version of the polynomial kernel of degree d is
defined by K(x, y) = (c + 〈x, y〉)d where c is a constant
and 〈·, ·〉 is the inner product.

For p = 2, say, let x = (x1, x2), c = 0, d = 3,
and suppose that (x1, x2) ∼ 0.5N((−3, 1), I2) +
0.5N((2,−1), I2), then the eigenfunctions of this kernel
are, see Liyang and Lee (2013),

g1(x) = 1
1862.615

(0.848x31 − 0.791x21x2

+ 0.437x1x22 − 0.097x32),

g2(x) = 1
343.748

(−0.518x31 − 1.073x21x2

+ 0.862x1x22 − 0.317x32),

g3(x) = 1
59.266

(−0.112x31 − 1.079x21x2

− 0.929x1x22 + 0.559x32),

g4(x) = 1
1862.615

(0.848x31 − 0.791x21x2

+ 0.437x1x22 − 0.097x32).
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Example 2.3 (Exponential kernel): Consider the exp-
onential kernel K(x, y) = exp (−|x−y|

w ) for the uni-
form distribution on the interval [−1, 1]. In Diaconis
et al. (2008) it was shown that the eigenfunctions of this
kernel can be written as cos(bx) or sin(bx) inside the
interval [−1, 1] for appropriately chosen values of b and
decay exponentially away from it.

Example 2.4 (Gaussian kernel): Consider the Gaus-
sian kernelK(x, y) = exp (− (x−y)2

2w2 ) for the normal dis-
tribution N(μ, σ 2). Let β = 2σ 2/w2 and let Hi(x) be
the i th-order Hermite polynomial, Shi et al. (2008)
provided the eigenfunctions of this kernel,

gi(x) = (1 + 2β)1/8√
2i−1(i − 1)!

exp
(
− (x − μ)2

2σ 2 ·
√
1 + 2β − 1

2

)

× Hi−1

((
1
4

+ β

2

)1/4 x − μ

σ

)
,

for i = 1, 2, . . . In particular, the first eigenfunction is

g1(x) =
(
1 + 4σ 2

w2

)1/8

× exp

⎛
⎝− (x − μ)2

4σ 2

⎛
⎝
√
1 + 4σ 2

w2 − 1

⎞
⎠
⎞
⎠.

Other examplesmay be developed but the key points
are (i) the bases used for the orthonormal basis pre-
dictor should be chosen in view of the DG to ensure
interpretability, and (ii) for finite n, using an interpre-
tation of Ŷrep will not in general be as good a predictor
(in say PRESSn) and this is the cost of interpretability.

2.3. Amore empirical interpretation

If gm’s are not interpretable, and no obvious orthonor-
mal basis can be identified, wemight be led to default to
the coordinates of the xi’s since they, presumably, were
the quantities measured. In the dim(x) = 1 case we can
write Taylor expansions

gm(x) = β0 + β1x + · · · + βkxk.

If each Taylor expansion converges i.e., gm(x) analytic,
then we get an analogous result for projections of the
form of r(x) in (9). For ease of exposition, each Taylor
series can be represented as a finite sum of orthonor-
mal polynomials. A common choice is the Hermite
polynomials, often denoted H0,H1, . . .. Then the dif-
ference between using kth-order Taylor expansions and
expansions using the first k Hermite polynomial basis
elements is simply identifying the linear transformation
between bases.

Following Section 2.2, we can form r as in (9) and
r̂ as in (12) using Hermite polynomials, and obtain a

variant on Theorem 2.3 so that the r̂ provides a quan-
tifiably good approximation to f0. The result can be left
in Hermite polynomials or converted back to the Tay-
lor expansion of each gm in r. The point of converting
back to the polynomial basis used for Taylor expan-
sions is that functions of the form xj are usually easier
to interpret physically in the context of a DG than Her-
mite polynomials are simply because it was x that was
measured.

Thus, using linear models, which are commonly
regarded as interpretable, to approximate the gm’s, is
asymptotically equivalent to approximating K in (8)
directly. In practice, we suggest it will be easier to use
Hermite polynomials (or any other orthonormal basis)
on the terms on the right side of (8), and convert
them to the polynomials used inTaylor expansions than
approximating K directly. Again, the finite sample dis-
crepancy between the approximation we just described
and (3) quantifies the cost of passing from an optimal
predictor to an interpretable predictor. An entirely anal-
ogous argument holds when dim(x) ≥ 2 provided that
orthonormal bases for polynomial spaces with dim(x)
variables are used.

3. Bayes Shtarkov predictors inM-open
settings

Consider the online prediction of arbitrary sequences
y1, y2, . . ., drawn from a finite set Y . In M-open set-
tings, interest focusses on the case that no proba-
bility distribution can be assumed for a sequence of
length n, say yn = (y1, y2, . . . , yn). This is the paradigm
M-open statistical prediction problem for strings of
values.

This problem can be regarded as a sequential game
between Nature, N, and a Forecaster, F, permitting F to
access a collection of experts indexed by θ ∈ 
 ⊂ R

k

for some k. In the special case of log-loss, each round of
the game proceeds as follows. Each expert announces a
density say pθ . Given this, F announces a density q(·)
that will be used to predict the value N issues. Finally,
N issues y and pays F log q(y). If this number is neg-
ative, it is the amount of money F pays N and this
concludes the round. See Shtarkov (1987) and Cesa-
Bnachi and Lugosi (2006) for details of this game and
its properties.

Now suppose n independent rounds of this game
are to be played. Prior to the first round, each expert
θ announces a density p(· | θ) for yn. F receives these
pθ ’s and chooses the density q(yn) by trying to match
the performance of the best expert θ for predicting
yn. Then, N reveals yn and incurs the loss (or gain)
log q(yn). The question remains how F should use the
pθ ’s to choose q. Obviously, the best expert will incur
the loss minθ log 1/p(yn | θ) to F where θ ranges over
the experts.



STATISTICAL THEORY AND RELATED FIELDS 17

3.1. The Bayesian version

In the Bayes version of the game, F has access to experts
that areweighted by a priorw(θ). (Ifw ≡ 1, this reduces
to the frequentist version.) In this case, F would want to
choose q to minimize the maximum regret

sup
yn

[
log

1
q(yn)

− inf
θ
log

1
w(θ)p(yn | θ)

]

= sup
yn

[
sup
θ

log
w(θ)p(yn | θ)

q(yn)

]
. (14)

More formally, the solution qopt to (14) that we hence-
forth call the Bayes Shtarkov predictor (for the discrete
case) is, see Le and Clarke (2016a),

qopt(yn) = argq

[
inf
q∈P

(
sup
yn

sup
θ

log
w(θ)p(yn | θ)

q(yn)

)]

= w(θ̃(yn))p(yn | θ̃ (yn))∑
yn w(θ̃(yn))p(yn | θ̃ (yn))

, (15)

where θ ranges over the ‘parameter space’ indexing the
experts, P is the collection of all densities for yn with
respect to counting measure, and θ̃ is the posterior
mode. (Since q is in the denominator of (15), q(y) �= 0
for any y ∈ Y .)

In the continuous case, the sum becomes an inte-
gral over a subset of a real space, P becomes a class
of densities with respect to Lebesgue measure, so (15)
becomes

qopt(yn) = w(θ̃(yn))p(yn | θ̃ (yn))∫
w(θ̃(yn))p(yn | θ̃ (yn))dyn

; (16)

see Clarke (2007, Sec. 5.2) for discussion of (15)
and (16).

The solution qopt(yn) does not factor into a product
of q(yi)’s and so does not correspond to a stochas-
tic process. Nevertheless, regardless of how qopt(yn) is
computed, univariate Bayes Shtarkov densities predic-
tors, when they exist, are of the form

qopt(yn+1 | yn) = qopt(yn+1)

qopt(yn)
, (17)

and can be used prequentially, i.e., to generate sequen-
tial predictions.

The foregoing generalizes directly to the case where
side information, i.e., a value xi is associated to
each yi. So, let us write the corresponding qopt as
qshk(y | xn+1, yn), namely the Bayes Shtarkov predic-
tive density for Y where xn+1 = (x1, . . . , xn+1) and
yn = (y1, . . . , yn). Now, there are two ways to generate
predictions from qshk: (i) use qshk as a density to gener-
ate interval predictors, and (ii) convert qshk to a point
predictor.

For the first, recall that under various regularity con-
ditions, qshk can be approximated by the Bayesian’s

marginal density for the data, i.e., qshk(yn) ≈ m(yn) in
terms of regret. That is, (14) leads to

sup
yn

[
log

w(θ̃)p(yn | θ̃ )

qshk(yn)Î(θ̃)

]
= sup

yn

[
log

w(θ̃)p(yn | θ̃ )

m(yn)Î(θ̃)

]

= 1
2
log

n
2π

+ o(1), (18)

where Î(·) is the empirical Fisher information from
p(y | θ); see Xie and Barron (2000) and Clarke (2007).
Thismeans a stochastic process, the Bayesian’smixture,
is approximating a density qshk that does not corre-
spond to a stochastic process. Hence, even inM-open
problems, there may be good – new – predictors that
resemble familiar predictors. If computing qshk is oner-
ous, m(·) may be a good predictor. Likewise, condi-
tionals from m(·) such as m(yn+1 | yn) may be a good
approximation for (17).

More important for the present, if the Bayesian’s
marginal for the data is ‘interpretable’ – perhaps
because the densities proposed by the experts are – (18)
provides an asymptotic interpretation of qshk in terms
of m(·). The difference between m(·) and qshk repre-
sents the degree to which m(·) is predictively subopti-
mal to qshk – in regret under log-loss – and the degree
of suboptimality decreases as n → ∞. Thus, (1 − α)%
predictive intervals underm(·) and qshk are equivalent
in the limit even though for all finite n qshk is better in
terms of regret.

By contrast, if a generic ‘interpretable’ predictor
r(yn) is used, the regret usually becomes far worse. For
instance,

sup
yn

[
log

w(θ̃)p(yn | θ̃ )

r(yn)Î(θ̃ )

]

= sup
yn

[
log

w(θ̃)p(yn | θ̃ )

qshk(yn)Î(θ̃)

+n

(
1
n

n∑
i=1

log
q(yi | yi−1)

r(yi | yi−1)

)]

≈ 1
2
log

n
2π

+ n sup
yn

D(qi | ri) + o(1), (19)

in whichD(qi | ri) is defined by (19) and typically dom-
inates, resulting in a much larger loss for F. In part,
this is an artifact of using the log-loss of a density ratio
which is much more sensitive to tail behaviour than
other functions. Statements analogous to (17), (18),
and (19) hold for sequences of discrete outcomes yi.
In either case, this suggests that interpretability per se,
without any direct relationship to the minimum regret
in a logarithmic sense, gives much larger costs.

For the second, if we consider pointwise prediction,
we want a point predictor from qshk that represents
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where the mass of qshk is, say Eqshk(Y). One such pre-
dictor is

Ŷshk(x) = Eqshk(Y | xn+1, yn). (20)

Others includemed(Y | xn+1, yn),mode(Y | xn+1, yn)
etc. In addition, because of (18) we are led to approx-
imate each of these point predictors by expectations
with respect to the conditionalm(· | xn+1, yn) from the
mixture.

Assume pj(y) is the proposed density for Y from
expert j, j = 1, . . . , J, i.e., we assume finitely many
experts or that a continuum of experts can be approxi-
mated by a weighted sum of finitely many. Even though
there is no distribution associated with Y because the
problem isM-open, we can still take expectations with
respect to qshk and the pj’s. We can write

|Y − E∑J
j=1 γjpj

(Y)|

≤ |Y − Eqshk(Y)| + |Eqshk(Y) − E∑J
j=1 γjpj

(Y)|

= |Y − Ŷshk| + |Ŷshk − E∑J
j=1 γjpj

(Y)|, (21)

where γj > 0,
∑J

j=1 γj = 1, and subscripts on E indi-
cate density in which expectation is taken. Since the
Bayes Shtarkov predictor is best in log-loss, the first
term in (21) is likely to be small. Thus, we only need
to find γj’s such that the second term in (21) is as
small as possible if not zero. If this is done, then the
first term represents the minimal cost of prediction
and the second term represents the additional cost of
interpretation, if the pj’s are interpretable.

We can modify (21) by adding and subtracting
expressions involving expectations with respect to
m(yn+1 | xn+1, yn) as a way to try to identify the com-
ponents of the errormeant by (21) in terms of the unin-
terpretable qshk, its distance from a mixture (possibly
regarded as interpretable) and sums of weighted den-
sities of the experts (if they are interpretable), e.g., we
can add and subtract Em(·|yn)Y in the last term of (21).
In practice, the last terms would represent the cost of
interpretability while the first term on the right in (21)
represents the minimal cost of prediction.

3.2. A theoretical interpretation for Bayes
Shtarkov predictors

Separate from approximating qshk by mixture densities
or other expressions, in some cases we can character-
ize qshk as a mixture itself. The hypotheses are rather
strong and themixing density is somewhat artificial but
in some examples this characterization may be useful.
We have the following.

Theorem 3.1: Assume qshk is m-monotone over (0,∞)

i.e., (−1)kq(k)
shk(|x|) ≥ 0 for k = 0, . . . ,m − 1 where

q(k)
shk is the kth derivative of qshk and q

(0)
shk = qshk. Then

qshk can be represented as the following mixture for any
integer k, 1 ≤ k ≤ m,

qshk(y) =
∫ ∞

0

[
1
s
k
(
1 − |y|

s

)k−1

+

]
g(s) ds, (22)

where a+ = max{a, 0} and the mixing density g(s) is

g(s) = 1
k

k−1∑
j=0

(−1)j

j!
[jsjq(j)

shk(s) + sj+1q(j+1)
shk (s)].

Proof: The proof of Theorem 1 in Polson et al. (2014),
based on Williamson (1956), holds for all positive val-
ues of y. For negative values of y, define f (y) on (0,∞)

by f (y) = qshk(−y), then we have the same result for
f (y):

f (y) =
∫ ∞

0

[
1
s
k
(
1 − y

s

)k−1

+

]
g(s) ds.

Hence, for the negative values of y,

qshk(y) = f (−y) =
∫ ∞

0

[
1
s
k
(
1 − −y

s

)k−1

+

]
g(s) ds.

Thus, for all y, qshk has the representation (22). �

We do not have sufficient conditions for qshk to
be m-monotone. However, examples of qshk in Le
and Clarke (2016a) look like graphs of 1/y or e−y which
arem-monotone.

One of the implications of Theorem 3.1 is that if
X ∼ Beta(1, k) and S ∼ g(·) then Y = SX will have
density (22). For instance,

(1) if k = 1, g(s) = sq′
shk(s) and X ∼ Beta(1, 1) =

Uniform(0, 1),
(2) if k = 2, g(s) = − s2

2 q
′′
shk(s) and X ∼ Beta(1, 2),

(3) if k = 3, g(s) = s3
3 q

′′′
shk(s) and X ∼ Beta(1, 3).

Thus, while g remains uninterpretable, X is recog-
nizable and Y is a product. A limitation of this result is
that it is only for univariate y. However, as suggested by
the relationship between m(·) and qshk in (18), exten-
sions to multivariate y may be possible under some
M-open analog of stationarity – provided there is the
right sort of dependence so that the middle term of
order n in (19) can be avoided.

3.3. An empirical interpretation for Bayes
Shtarkov predictors

We can approximate the univariate density qshk(y) by
finding the member of a large family of densities clos-
est to it. For this we want a relatively large family of
candidate densities that are parametrized in some way
that reflects out understanding of the shapes of densi-
ties. One such family consists the Pearson distributions
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first introduced by Pearson (1895). There are at least
7 useful subtypes within the Pearson family; Pearson
himself ultimately identified 12. Overall, this family is
characterized by five parameters: A location parameter
a (often interpretable as a mode), a location parameter
λ (often interpretable as a mean, μ1), a variance μ2, a
skewness γ1 (this enters as β1 = γ 2

1 ), and a kurtosis β2.
While this family is only for univariate densities, there
are proposed generalizations to the multivariate case,
see Steyn (1960) amongst others, although they are not
well developed and there is little recent work on them.

Formally, a Pearson density p is any solution to the
differential equation,

p′(y)
p(y)

+ a + (y − λ)

b0 + b1(y − λ) + b2(y − λ)2
= 0, (23)

where

b0 = 4β2 − 3β1

10β2 − 12β1 − 18
μ2,

b1 = a = √
μ2
√

β1
β2 + 3

10β2 − 12β1 − 18
,

b2 = 2β2 − 3β1 − 6
10β2 − 12β1 − 18

.

Now, in principle, values of (a, λ,μ1,β1,β2) yielding
the Pearson density closest to a given qshk density can
be found. This Pearson density may be regarded as an
interpretation of qshk, but it cannot be as good as qshk
in terms of regret, see (14). The increase in regret from
using the Pearson density closest to qshk, rather than
qshk itself, is the cost of interpretation.

The solution of (23) is the indefinite integral

pprs(y) ∝ exp
(

−
∫

y − a
b2y2 + b1y + b0

dy
)
.

For the sake of completeness, we look at an example,
namely the two cases of the Pearson type IV distri-
butions based on whether b21 − 4b0b2 is negative or
non-negative. (The term discriminant arises from the
use of the quadratic root formula.) They are:

Case I: if b21 − 4b0b2 < 0, then

pprs(y) ∝
[
1 +

(
y − λ

α

)2
]−m

× exp
[
−ν arctan

(
y − λ

α

)]
, (24)

where

α =
√
4b0b2 − b21

2b2
,

ν = −2b2a + b1
2b22α

,

m = 1
2b2

.

Case II: if b21 − 4b0b2 ≥ 0, then

pprs(y) ∝
(
1 − y

a1

)−ν(a1−a) (
1 − y

a2

)−ν(a2−a)
,

(25)

where

a1 =
−b1 −

√
b21 − 4b0b2
2b2

,

a2 =
−b1 +

√
b21 − 4b0b2
2b2

,

ν = 1
b2(a1 − a2)

.

Let d be a distance between densities. We can find v̂1 =
(λmin,αmin, νmin,mmin) and v̂2 = (amin, a1,min, a2,min,
νmin) that achieve

arg(min d(qshk, pprs)), (26)

where the minimum is over the parameters in (24)
or (25), respectively. Naturally, we would choose the
Pearson density corresponding to whichever of v̂1 and
v̂2 gave a lower value of the minimum in (26). In prin-
ciple, this can be done over the other types of Pearson
densities (or any parametrized class of densities) so that
the parameters giving the overall minimum for the dis-
tance in (26) can be found. The result is a Pearson
distribution whose density approximates qshk as closely
as possible within the family and hence has an interpre-
tation based on the shape of the approximating density.
If the minimum is not small enough given the choice of
d, we may be led to consider richer families of densities
than Pearson.

As a final point for this section, recall it is well
known that if all moments of a distribution exist then
they characterize the distribution and that the more
the moments of two distributions that are close, the
closer the two distributions are. Thus, as long as the
moments of the distribution are meaningful the distri-
butions can be regarded as interpretable, but, as we have
seen, interpretation has a cost.

4. Random forest predictors

Random forest (RF) predictors were introduced by
Breiman (2001a). The main idea is to use bootstrap
aggregation on trees with binary splits or, more for-
mally, binary recursive partitioning models, and add
one extra step to reduce the correlation between any
pair of trees in the forest. The extra step is random
selection from the explanatory variables. That is, when
growing a tree on a bootstrapped sample, before each
split, choosem ≤ p of the explanatory variables at ran-
dom to be candidates for splitting.Values form typically
range from log2 p to √p. Despite the de-correlation
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step, RF’s have many of the properties of bagging trees.
Here we focus on RF’s because they are one of the most
successful model averaging methods for binary classifi-
cation and often have benefits othermethods, including
boosting, do not.

Here we will relate RF’s to boosting, see Schapire
(1990), to show the main point of this paper – that
interpretable methods have a performance cost over
optimal predictive methods – holds for classification as
well as regression. This is a different perspective from
Wyner et al. (2017) who argue that RF’s and boosting
work well because both are interpolating and averag-
ing. Our point has to do with interpreting classifiers not
understanding why they work.

4.1. Interpreting RF’s in terms of boosting

Our point in this subsection can be stated succinctly as
follows. Let RF(x) be the random forest classifier based
on x. Consider a data set D = {(yi, xi), i = 1, . . . , n}
where the pairs (yi, xi) are independent over i, yi ∈ Y =
{−1, 1} and xi ∈ R

p.WriteRF(x) = RFB,ρ,τ (x)where ρ

is a splitting rule, τ is a stop splitting rule and B is the
number of trees used to form the random forest. Thus,

RF(x) =
(
1
B

) B∑
b=1

Tb,ρ,τ (x)

where Tb = Tb,ρ,τ is the classification tree formed from
the bth bootstrap sample and the decorrelation used to
form Tb is suppressed in the notation. Let BSTCJ(x) =
BSTC(x) be the boosted classifier using J iterations of
the boosting procedure starting with the initial tree-
based classifier C(x) assumed to be ‘weak’. That is
P(Y �= C(X)) < .5, but not by much. Nowwe can write

RF(x) = (RF(x) − BSTC(x)) + BSTC(x). (27)

The idea is thatRF(·) is uninterpretable butBSTC(·)has
a limited interpretation (due to Friedman et al. (2000),
see below) so the term (RF(x) − BSTC(x)) represents
the cost of that interpretation. We assume that RF’s
perform a little better than boosted trees because they
generally do unless the boosting classifier is sufficiently
well-calibrated and does not overfit. That is, RF’s are
nearly automatic and hence more robust. Moreover, a
majority of successful classifiers are random forests or
variants on random forests; see Caruana et al. (2008) for
a definitive report emphasizing high dimensional prob-
lems. As a generality, boosting also does not generalize
well beyond binary classification.

Tomake this more precise, recall that while there are
a variety of boosting algorithms, and variants on boost-
ing algorithms including gradient boosting, AdaBoost
due to Freund and Schapire (1997) is arguably the most
popular. The basic idea of boosting is to improve a
weak classifier iteratively by averaging the reweighted
improvements i.e., to help the weak classifier learn from

its mistakes. To generate the improved classifiers, the
boosting procedure re-uses the data like bagging orRF’s
but builds iterates rather than starting anew with each
iteration.

Let C(x) be a fixed initial classifier for Y and assume
that, as a function, C(x) is representable as a tree.
Denote the iterates of C under the boosting algorithm
by Ĉj, j = 1, . . . , J. The iterates are also classifiers. They
are ensembled into a final classifier by weighted major-
ity voting to yield

BSTC(x) = sign

⎛
⎝ J∑

j=1
βjĈj(x)

⎞
⎠ , (28)

where the weights β1, . . . ,βJ are computed by the
AdaBoost algorithm, see Freund and Schapire (1997)
for details. The central intuition in Adaboost is that
increasing the penalty for misclassified data points
forces successive Ĉj’s to make fewer errors. There is a
performance criterion that is satisfied by most versions
of boosting, see Freund and Schapire (1997) Theorem6.
This result leaves open the possibility that a boosted
classifier could be perfect in a limiting sense but does
not actually give convergence of BSTC to a limit.

Even thoughAdaboostwas a novel approach to clas-
sification by ensembles, Friedman et al. (2000) showed
it was equivalent to to forward stagewise additive logis-
tic regression under exponential loss. This provides an
interpretation of boosting because the logistic regres-
sion gives an explicit expression for P(Y = 1 | D) in
terms of specifically constructed functions of x (the Ĉj’s
below), see Friedman et al. (2000, Sec. 3.3) and Hastie
et al. (2009, Secs. 10.4 and 10.5) for details. Since the Ĉj’s
are individual trees they admit interpretations in terms
of the explanatory variables. This result holds in a limit-
ing sense as the terms in the logistic regression increase
and as n → ∞. So, for each finite step, the boosted clas-
sifier is suboptimal even though it is Bayes optimal in
the limit; we use this below in the proof of Corollary 4.1.

One key step in the Adaboost procedure is choosing
how the iterates Ĉj are to be generated. There are vari-
ous choices; the most popular are probably naive Bayes
classifiers or trees with a maximum number of splits.
Here we use the latter. So, we start by taking C to be a
tree classifier and want our iterates to be trees as well.
Specifically, the criterion the iterates must satisfy is

Ĉj+1(x) = argmin
h∈Gj

n∑
i=1

Dj(i)1{yi �=h(xi)}(x), (29)

where Dj = (Dj(1), . . . ,Dj(n)) for j ≥ 1 is the ‘empiri-
cal’ distribution on the n data points given by

Dj(i) = Dj−1(i)e
βj−11{yi �=Ĉj−1(xi)}

Nj−1
(30)

in which Ĉ0 = C, Nj−1 is a normalization constant,
the βj−1’s are found by an auxiliary procedure, and
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the sequence of distributions Dj is initialized by D0 =
(1/n. . . . , 1/n).

In (29), the classifiers h at step j vary over a set of clas-
sifiers Gj. As noted, C is a tree and we want the iterates
to be trees. So, each Gj must be a class of trees. If Gj is
too small a class, e.g., trees with exactly one split (often
called ‘stumps’), then the range of boosted tree-based
classifiers will be too small. For instance, ifGj only con-
tained stumps, it would not include trees that allowed
interactions between entries in x. On the other hand, if
Gj is too big, Ĉj will fit the data perfectly even though
such a classifier often has poor generalization error. So,
we have to choose a reasonable value for the number of
splits to allow in the classifiers in Gj.

Chapter 10, Sec. 11 in Hastie et al. (2009) recom-
mends using trees with four to eight splits. Three splits
allows for interactions between explanatory variables,
but often not enough so starting with four splits and
working up to eight often a good overall procedure.
Hastie et al. (2009) comment that 10 or more splits are
rarely required for good performance, e.g., low gener-
alization error.

To see that under these circumstances (28) is a tree it
is enough to show that, as functions of x, a linear combi-
nation of trees is a tree. First, a real constant times a tree
function is a tree so it is enough to show that the sum of
two trees is again a tree. Let T1 and T2 be trees. To see
that T(x) = T1(x) + T2(x) is also a tree, observe that if
each leaf node of T1 is taken as the root node of T2 the
result is a tree T of twice the depth for which each input
vector of explanatory variables ends up in exactly one
leaf. However, some of the nodes or leaves may be void.
This does not make T invalid, just artificial, and it may
be collapsible into a much smaller tree. Nevertheless, in
a trivial sense, the linear combination of trees is tree.

Less artificially, write

Tk(x) =
uk∑

�=1

α�IR(k)
�

(x) (31)

for k = 1, 2, where the R(k)
� are disjoint and exhaus-

tive regions in R
p assumed to have edges parallel to the

axes of the real space. In the special case of p = 1, R

has an ordering so it is easy to see that assigning the
right constant to each intersection R(1)

� ∩ R(2)
�′ gives a

function that can be expressed as constants times indi-
cator functions for intervals in R. Since intervals can
be defined by splits on the single real variable, the sum
T(x) = T1(x) + T2(x) has the same form as (31) and
arises from a tree structure using binary splits on the
explanatory variables.

The same sort of argument applies to R
2. It is easy

to see that in the two dimensional case T(x) = T1(x) +
T2(x) can be written in the form (31). What harder is
to see that the regions defined by the R(1)

� ∩ R(2)
�′ arise

from binary splits on the entries of x. While harder, this
is not hard: In the real plane, label the coordinates as x1

and x2 and let the tree structure of T1 and T2 be repre-
sented as partitions ofR2. Pick the root note of, say, T1.
Without loss of generality, assume it is a split of the form
x1 < c1 versus x1 ≥ c1. Consider the left branch. The
region x1 < c1 will be partitioned by horizontal lines,
i.e., by ranges of x2. Choose the largest cutoff for x2, say
c2. Thus, splitting on x2 < c2 versus x2 ≥ c2 will give
us two daughter nodes on the left branch. We can then
repeat this for each cutpoint on the left branch splitting
at c3, c4 etc. The issue arises when the horizontal band
represented by the split is itself split by some value of x1.
If this happens at, say c4 then this simply adds another
split that has to be carried over to the other splits on
the left, i.e., for x2 < c5 versus x2 ≥ c5, x2 < c6 versus
x2 ≥ c6 etc. as far down the left side of the tree as there
are splits on x2. If there are further splits, they can be
accommodated in the same way and the argument can
be applied analogously to the right branch of the tree.
The same argument can be applied in three or more
dimensions; it is simply a matter of considering splits
on each dimension in turn and all the splits that may be
performed on it using the other explanatory variables,
in all possible sequences.

Now, if C(·) is a tree then its iterates Ĉ1, Ĉ2, . . .
can be assumed to be trees as can the final output
BSTC(x). It is reasonable to expect the boosted clas-
sifier to be Bayes optimal. Indeed, Theorem 6 in Fre-
und and Schapire (1997) gives that the probability of
misclassification by a J-step boosted classifier P(Y �=
CBoost,J(X)) can only decrease as J increases. Separately,
Biau et al. (2008) gives conditions under which some
randomized RF-like andmajority vote averaging classi-
fiers achieve theminimal Bayes risk. (These are not pure
RF’s because they ignore the decorrelation and choose
split points randomly.) Moreover, since we are using
trees here, and trees are a very rich class of nonpara-
metric function estimators (in this case classification
functions), it is safe to assume that there are trees that
are arbitrarily close to the Bayes classifier even if they
are not the same as studied in Biau et al. (2008).

Suppose a Bayes optimal classifier CB(x) exists, i.e.,
there is a classifier CB that achieves the minimal mis-
classification error, argminC∈S P(Y �= C(X))where S is
the set of essentially all classifiers. Then,

CB(x) = arg max
r∈{−1,1}

P(Y = r | X = x)

for each x. We begin with a result that initiates a
boosting procedure with a Bayes optimal classifier. Of
course, we find that the boosting procedure is unable
to improve an optimal classifier. This is no surprise.
Indeed, it is an artificial hypothesis – why boost an
optimal classifier? However, we will use this result in
Corollary 4.1 below and remove the hypothesis.

Theorem 4.1: Suppose a Bayes classifier is used as C0
in a boosting procedure. Then, on average, in the limit of
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increasing n, the weights βj in (30) are identical positive
constants, for appropriately chosen Gj’s.

Proof: It is easy to see that the first step of the boosting
procedure gives

err1 = 1
n

n∑
i=1

I(Y �= Ĉ1) → E(X,Y)(I(Y �= Ĉ1(X)))

→ P(Y �= CB(X))

because of the minimum in (29), provided n → ∞ and
G1 = G1,n is increasing by invoking Theorem 6 Freund
and Schapire (1997). So, as n → ∞,

β1 = log
(
1 − err1
err1

)
→ log

(
1 − P(Y �= CB(X))

P(Y �= CB(X))

)
.

Now wi ∝ eβ1 if yi �= Ĉ1(xi) and wi ∝ 1 if yi = Ĉ1(xi)
for i = 1, . . . , n. Also, P(Y �= CB(X)) < 1/2, we have
eβ1 > 1. So, the first iteration wi’s are derived from the
β1’s and the number and indices of the misclassifica-
tions. Out of n data points there will be asymptotically
nP(Y �= CB(X)) misclassifications and they will occur
randomly over the n data points.

Thus, from examining (30), any instance of the dis-
tribution D1 randomly permutes the locations of the
eβ1 and ‘1’ entries, but the number of each type will be
asymptotically constant. So, the first step optimization
will again, on average, lead to the Bayes classifier: The
misclassifications of the Bayes classifier are randomly
located and spread uniformly over the occurrences of
eβ1 and ‘1’ entries. Therefore the output Ĉ1 is on aver-
age the same as the initial classifier C0(x) = CB(x).
The only way another classifier could improve on CB
would be to have fewermisclassifications on the indices
i that had eβ1 rather than one which is impossible (on
average) because the locations are random.

The same reasoning applies to step, j = 2. We get
that the same proportion of observations have the
weights wi ∝ eβ1 and ‘1’. Hence, at the end of this step
we still get that as n → ∞,

β2 = log
(
1 − err2
err2

)
→ log

(
1 − P[Y �= CB(X)]
P[Y �= CB(X)]

)

on average, wi ∝ eβ2 = eβ1 if yi �= Ĉ2(xi), and wi ∝ 1
if yi = Ĉ2(xi) for i = 1, . . . , n. Again, eβ2 > 1 with the
number of misclassifications the same as before and the
locations of the misclassifications permuted randomly.
HenceD2 is unchanged on average and Ĉ2 is essentially
CB, as before.

If we continue this process for steps j = 3, . . . , J, we
have in the limit

β1,β2, . . . ,βJ → log
(
1 − P(Y �= CB(X))

P(Y �= CB(X))

)
> 0,

as n → ∞, on average in PX,Y . �

Now, we get a corollary by initializing a boosting
procedure with a ‘weak’ classifier.

Corollary 4.1: Let C0(·) be weak classifier with P(Y �=
C0(X)) < 1/2 (i.e., as a classifier, C0(X) is better than a
coin toss). Then as n → ∞, the output of the AdaBoost
algorithm is a majority vote of a sum of trees, i.e., a
‘forest’.

Remark: The output of Adaboost is only a forest, a
collection of trees, not a random forest. In fact, the
output of boosting is the sign of a sum of a weighted
sequence of trees. As seen above, this is a tree. That is,
as a weighted sum of functions, the majority vote of the
individual trees from boosting is the same as the out-
put of a single tree. In the same spirit, a random forest
is a weighted sum of trees and therefore can be repre-
sented as a single tree if desired. Since Adaboost and
RF’s are good – essentially Bayes classifiers – we expect
the two should be close to each other as functions of
their inputs. Even though the tree from boosting is a
RF-like classifier, not actually aRF, we can still compare
it to an actual RF classifier as in (27).

Proof: Recall that the boosting classifier is asymptot-
ically Bayes optimal because it is a greedy approx-
imation to the relative classification rate, see Le
and Clarke (2018) Theorem 3.5, cf. Theorem 6 in Fre-
und and Schapire (1997). So, for J large enough the
iterates from the boosting procedure are Bayes optimal
asymptotically. Thus, by Theorem 4.1 the βj’s converge
to the same positive constant and for large enough J,
the latter terms in BSTC will dominate to give the limit.
That is,

BSTC(x) = sign

⎛
⎝ J∑

j=1
βjĈj(x)

⎞
⎠

≈ sign

⎛
⎝ J∑

j=1
Ĉj(x)

⎞
⎠

= majority vote of {Ĉj(x)}|Jj=1 = RF∗(x),

where RF∗ is a sum of trees and the approximation
improves as n → ∞. �

In view of (27), the Corollary means that if BSTC
is a good approximation for RF’s asymptotically then
RF’s will be well-approximated by an additive logistic
regression model under the exponential loss. It agrees
with the result in Le and Clarke (2018) showing that
the risks of RF’s and boosting converge to the min-
imal Bayes’s risk. Furthermore, we agree with Mease
and Wuner (2008) and offer an argument supporting
their claim that boosting does not overfit since RF’s
are asymptotically equivalent to boosting, at least in
a misclassification sense, and they do not overfit, see
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Breiman (2001b). The new part here is using BSTC
as an interpretation for RF’s and noting the cost of
interpretation.

4.2. Amore empirical interpretation for RF’s

By construction, RF’s give a function fRF(x1, . . . , xp).
So, suppose we also have a collection of functions
f1, . . . , fK that we want to use as a way to ‘interpret’ fRF
by regression. Conditional on the data and fk’s, solving

ŵ = arg min
w=(w1,...,wK )

n∑
i=1

(
fRF(xi) −

K∑
k=1

wkfk(xi)

)2

(32)

gives an approximation of fRF(x),

ŶRF =
K∑

k=1

ŵkfk(x). (33)

The ŵk’s may be found by using a standard least squares
approach treating fRF(xi) as the Yi’s and the fk(xi)’s
as K explanatory variables. More generally, since xi =
(xi1, . . . , xip) the fk’s can be regarded as the leading
terms in a basis expansion, e.g., a Taylor expansion in p
dimensions, cf. Section 2.2. It is easy to see that replac-
ing BSTC in (27) by the right side of (33) gives the cost
of interpreting fRF in terms of its regression function
(using the fk’s) by the residuals from (33). Whether the
residuals are satisfactorily small can be assessed by a
variety of established techniques.

Expression (32) can also be phrased in terms of logis-
tic regression, which may be more appropriate for a
classifier; just replace the inner sum in (32) by the cor-
responding expression from a logit in a selection of
variables such as the fi’s and again minimize the error
over choices of the parameters. This is not hard, but we
have not done it for of ease of exposition.

5. Discussion

In this paper we have examined three classes of pre-
dictors – kernel methods, Shtarkov solutions, and ran-
dom forests – and shown that, despite the inability
to interpret them, they can be asymptotically approx-
imated both theoretically and pragmatically by inter-
pretable expressions. In each case we have given an
expression that quantifies the cost of approximating the
ideal but uninterpretable predictor by its interpretable
expression. Consequently, up to approximation error,
the hitherto uninterpretable expressions that for the
most part did not permit physical inference have been
manipulated into forms from which physical inference
may be possible.

For the sake of completeness, it is important to
discuss conformal prediction; see Shafer and Vovk
(2008) for a comprehensive overview based on Vovk

et al. (2005). Applications to exponential families and
generalized linear models are given in Eck and Craw-
ford (2019) and recent computational progress is given
in Vovk et al. (2020). Essentially, conformal predic-
tion assumes sequential data and that future data will
resemble past data, i.e., theDGhas enough stability that
prediction is feasible.

Conformal prediction can also be regarded as an
extension of Geisser (1975) by including the assump-
tions necessary for future data to look like past data and
taking a probabilistic or stochastic processes approach
to data analysis. At root is a non-conformity mea-
sure used to assess how close data points are; different
non-conformity measures lead to different prediction
regions. Thus, this framework has much in common
with calibration and prequentialism, see Dawid (1984),
and is more general than time series (Box–Jenkins or
state space models). On the other hand, much contem-
porary sequential data will not fit into this framework.
In any event, our work here is broadly consistent with
conformal prediction even though our emphasis is on
interpretability more than the stochastic properties of
the DG.

Recall that our starting points was interpretabil-
ity and in Section 1 we proposed a definition for
interpretability. We did not distinguish between con-
structing an interpretable model pre-data or deriv-
ing an interpretable model post-data although it is
clear the latter will generally be better justified if it
is derived from an input–output relation that predicts
well. Then, we took linear combinations of variables as
the paradigm case for interpretable quantities. We did
this in Sections 2.3 and 4.2. In Section 3.3 we allowed a
broader interpretation – the interaction of variables and
parameters were not linear but closely related enough
that the effects could be readily seen. That is, in all
three cases, we implicitly identified the ck’s with vari-
ables and parameters whose combination was explicit
and properties could be queried.

An anonymous referee asked (i) if deep neural net-
works (DNN’s) are interpretable and if so could they
be used in place of the combinations of variables and
parameters in Sections 2.3 and 4.2 and (ii) if reinforce-
ment learning might provide an alternative interpreta-
tion to that in Section 3.3. for the Shtarkov solution. The
referee also observed that there are cases where DNN’s
may perform better than kernel methods and RF’s, and
implicitly recognized that the Shtarkov solution, possi-
bly with side information, was similar to reinforcement
learning. Thus, if DNN’s and reinforcement learning
are interpretablewhynot simply startwith the themand
ignore these other methods?

First, the interpretability of DNN’s is problematic.
Defining a clear physical correlate for nodes, layers
of nodes, types of layers of nodes, and connectiv-
ity will often be elusive because DNN’s are usually
overparametrized and may be mathematically distinct
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even as they have very similar numerical properties as
input–output relations. Some theorists have suggested
that aDNN can be partitioned so thatmodules within it
may have physical meaning or that reducing the num-
ber of neurons layer by layer might be akin to finding
summary statistics. However, these suggestions remain
conjectures. In short, it is not clear thatDNN’s are inter-
pretable according to the definition used here even if
sensitivity analyses can be used to understand the effect
of parameters and variables on each other – a difficult
task in practice for all but the smallest neural networks.
If this holds then the kind of analysis done earlier, for
kernel methods, say, to derive an interpretable approx-
imation would have to be done for DNN’s in order to
assess what the DNN might have to say about a DG.
That is, we are led to infer that the better performance
of DNN’s over other methods could be a result of their
flexibility and associated non-interpretability, at least
partially. Often, as a model becomes more complex or
more general it becomes less interpretable. This does
not contradict our basic assertion that interpretation
has a cost in terms of prediction.

As to reinforcement learning, this is usually regarded
as a sequential decision process in the context of dis-
crete time, discrete space Markov processes. While
transitions and actions may be interpretable, the anal-
ogy between reinforcement learning and the Shtarkov
solution is not tight: The Shtarkov solution does not
assume any distribution on the sequence of data points
and arises from a minimization of regret while rein-
forcement learning finds an optimal action for each
transition. It is reasonable to conjecture that some ver-
sion of reinforcement learning will provide an approx-
imation to Shtarkov in some settings, but investigating
this is beyong our present scope.

Finally, we draw three implications from our results.
First, from a pragmatic standpoint, we are arguing
that, as a generality, models are at best only approxi-
mately true and the degree of approximation is usually
unassessable. Proposed models can routinely be dis-
credited by searching a more general class of predictors
to get measurably better prediction. How can one assert
a model is ‘true’ if its predictions can be improved?
The consequence is that the other inferences frommod-
els taken as ‘true’ must be seen as unreliable absent
further validation and assessment of their degree of
mis-specification. In particular, physical interpretations
are tentative at best.

Model mis-specification is an extensively studied
topic, see Walker (2013) especially Sections 5 and 6,
and the ensuing discussion. These authors generally
focus on what we have called M-complete problems
and take this as being the typical setting for mod-
elling and analysis. Accordingly, these authors try to
characterize the inferential difference between what-
ever model used and the unknown but true model.
Two recurring questions are: (1) Given that the true

model class is unobtainable, what is it that we are
making inferences about? and (2) Since the degree of
mis-specification is important, how should we compare
proposed models? These are addressed in a variety of
ways by O’Hagan (2013), Hoff and Wakefield (2013)
and De Blasi (2013).

Second, here we offer answers, perhaps unsatisfying,
to these two questions.We argue that inferences should
be about the next outcome, i.e., prediction, and that we
should compare proposedmodels by how close the pre-
dictors they give are to the best predictor we can find.
That is, prediction is the paradigm statistical problem,
not estimation, interpretability, or other goals. Unless
we have achieved good prediction there is no partic-
ular reason to trust other inferences. After all, from
the falsification principle, it is unclear how to discredit
estimates or the result of tests except by repeating an
experiment, which is rarely done. The current term for
this longstanding problem is the ‘replicability crisis’. At
root, requiring optimal prediction is a solution to prob-
lems with replicability: No predictive validation implies
no valid inferences of any other sort.

Finally, we suggest as a default that experimenters
achieve good prediction via optimal uninterpretable
methods and then adapt the results (as much as they
dare) to make them interpretable. The loss of predic-
tive power as a consequence of constructing a physi-
cal interpretation can then be quantified and its cost
assessed. In this way a simplified, and possibly inter-
pretable, model may be validated up to a measurable
degree of predictive loss. The cost of interpretability is
then a limit on the validity of themodel much as a stan-
dard error is a limit on the certainty of an estimate. We
conclude with what might be called the prediction prin-
ciple: The degree of predictive success a method has
determines the reliability of any interpretation that rests
on it.
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Appendices

Appendix 1. Details of some proofs

Proof: To see (7), recall Theorem 2.1 gives

[Ŷrep(x) − f0(x)]2
P→ 0 as n → ∞. (A1)

More explicitly, givenD, using (3) the left-hand side of (A1) is[ n∑
i=1

αiK(Xi, x) − f0(x)

]2
, (A2)

where αi = αi(D). Cauchy-Schwarz gives that (A2) is
bounded by

2

[ n∑
i=1

αiK(Xi, x)

]2
+ 2f 20 (x)

≤ 4

[ n∑
i=N

αiK(Xi, x)

]2
+ 4

[N−1∑
i=1

αiK(Xi, x)

]2
+ 2f 20 (x)

≤ 4(n − N + 1)

( n∑
i=N

α2
i

)[
1

n − N + 1

n∑
i=N

K2(Xi, x)

]

+ 4

[N−1∑
i=1

αiK(Xi, x)

]2
+ 2f 20 (x). (A3)

Next, we show that the term 1/(n − N + 1)
∑n

i=N K2(xi, x)
on the right-hand side of (A3) is uniformly integrable. Begin
by noting that Jensen’s inequality gives( n∑

i=N
ai

)1+ε

≤ (n − N + 1)ε
( n∑
i=N

a1+ε
i

)
, (A4)

for any ε > 0 and ai ≥ 0, i = N, . . . , n. (Set ϕ(x) = x1+ε .)
Now, by (A4)

sup
n

E

[
1

n − N + 1

n∑
i=N

K2(Xi, x)

]1+ε

≤ sup
n

1
(n − N + 1)1+ε

× E

[
(n − N + 1)ε

n∑
i=N

K2(1+ε)(Xi, x)

]

≤ E[K2(1+ε)(X, x)] < ∞,

by Assumption (i). Thus, 1/(n − N + 1)
∑n

i=N K2(xi, x) is
uniformly integrable.

Assumption (ii) gives, as n → ∞, (n − N + 1)
×∑n

i=N α2
i = oP(1) and is bounded. So, the right-hand side

of (A3) is uniformly integrable in P(X,Y). This implies

[Ŷrep(x) − f0(x)]2

is uniformly integrable for any x and by (A1) has limit zero in
probability. Therefore,

E[Ŷrep(x) − f0(x)]2 → 0,

as n → ∞ by the Theorem 25.12 in Billingsley (2012), con-
cluding the proof. �

Proof: From (4), (5), and using the fact that

sup
x

|f (x)| ≤ max
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(A5)

To bound the terms on the right-hand side of (A5), since
E(X,Y) supf∈B(f ∗ ,δ) L(Y , f (X)) < ∞, note that
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Similarly, we have
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Therefore, from (A6) and (A7), the first term on the RHS
of (A5) is bounded by
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Combining (A5), (A8), and (A9), we get
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It follows from the continuity of L in f and the dominated
convergence theorem that the third term on the right-hand
side of (A9) satisfies

lim
δ→0

sup
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and hence we can choose δ so small that
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(A11)

Furthermore, by the compactness of Dj, there exist finitely
many of f ∗’s, say f1, . . . , fN(δ), such that Dj ⊂ ⋃N(δ)

i=1 B(fi, δ).
Hence, by the union of events bound,
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.

Using (A10) and (A11) this expression is bounded by
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≤
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4

)
,

which goes to 0 as n → ∞ by the weak law of large numbers,
concluding the proof by Assumption (iii). �

Appendix 2. Interpretability versus complexity

Interpretability is a different concept from complexity. We
have implicitly assumed that the best predictors (andmodels)
are highly complex, but we regard this as the most common
case in current practice, not a priori true. In point of fact,
an interpretable model may be simple or complex and an
uninterpretable model may be simple or complex. Otherwise
put, all pairs of (interpretability, complexity) can occur. As
a generality, M-closed problems are less complex than M-
complete problems and they in turn are less complex than
M-open problems. However, this ordering does not in gen-
eral preclude the existence of an interpretable predictor or
model for any problem.

Here, we use the notion of interpretability in Le
and Clarke (2020). On the other hand, here complexity refers
to howmany components are required for good prediction or
modelling. This is different from other notions of complex-
ity such as VC dimension or code length since these do not
require any components of a predictor or model to have any
physical correlates.

Nevertheless, as an empirical observation we have noted
that the more interpretability one demands of a model,
the more complex it will typically be and, often, the more
complex the true model is, the higher the model mis-
specification will be. Correspondingly, the less interpretabil-
ity one requires, the smaller the error of the predictor can
be but it is not clear what effect this has on complexity.
Empirically, the predictions from an interpretable model are
likely to be worse than the prediction from a well chosen
non-interpretablemodel or predictor. This arises for the intu-
itive reason that restricting model classes to only those that
are interpretable is likely to increase bias because real world
phenomena are rarely captured to infinite precision by what
we think are physically meaningful models. Because inter-
pretable models may be simplifications of the real phenom-
ena we expect some of the bias to be reflected in increased
variance as well. The exception is when the model actu-
ally is valid to infinite precision or at least to a precision
higher than that achieved by other models; this can hap-
pen but is atypical. These observations are neither new nor
surprising. The issue is to quantify them to ascertain how
much of an interpretation one can derive from an unin-
terpretable model without losing too much accuracy of
prediction.
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