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ABSTRACT
To estimate unknown population parameters based on panel data having nonignorable item
nonresponse, we propose an innovative data grouping approach according to the number of
observed components in the multivariate outcome y when the joint distribution of y and asso-
ciated covariate x is nonparametric and the nonresponse probability conditional on y and x has
a parametric form. To deal with the identifiability issue, we utilise a nonresponse instrument z,
an auxiliary variable related to y but not related to the nonresponse probability conditional on y
and x. We apply a modified generalised method of moments to obtain estimators of the param-
eters in the nonresponse probability, and a generalised regression estimation to utilise covariate
information for efficient estimation of population parameters. Consistency and asymptotic nor-
mality of the proposed estimators of the population parameters are established. Simulation and
real data results are presented.
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1. Introduction

Panel data are collected inmany statistical applications,
such as sample surveys, clinical trials, economics and
social sciences. For example, cluster sampling results
in panel data, which occurs in social studies and sam-
ple surveyswhenmutual homogeneitywithin clusters is
evident in the population of interest. Multivariate out-
come from a single sampled unit also leads to panel
data.

Item nonresponse is a common phenomena in panel
data, i.e., some components of the panel, not necessary
the entire panel, may be missing. For example, in sur-
vey studies, subjects may not respond to all questions;
in cluster sampling, some units within a cluster may not
respond; in multivariate outcome, some components
are measured while the others are not. Estimation and
statistical inference without taking nonresponse into
consideration could lead to seriously biased estimators
and conclusions.

Consider a k-dimensional response or outcome vec-
tor y of interest that is subject to itemnonresponse. Let r
be the response indicator vector of y, i.e., the jth compo-
nent of r is 1 (or 0) if the jth component of y is observed
(or not observed), j = 1, . . . , k. Statistical approaches
dealing withmissing data usually depend on the nonre-
sponse propensity (or mechanism), i.e., the conditional
distribution of r given (y, x), denoted by p(r | y, x),
where x is a covariate vector associated with y and is
always observed. If p(r | y, x) = p(r | yo, x), where yo
is the observed part of y, then nonresponse is ignor-
able (Little & Rubin, 2002; Rubin, 1976). Otherwise,

nonresponse is nonignorable. While there is a rich
literature for valid inference on unknown p(y) (the
distribution of y) or p(y | x) (the conditional distri-
bution of y given x) under ignorable nonresponse (S.
X. Chen et al., 2008; Little & Rubin, 2002; Robins
& Rotiv, 1997; Rotnitzky & Robins, 1997; Rubin, 1976),
statistical inference faces serious challenges under non-
ignorable nonresponse when p(r | y, x) depends on y as
well as some components of x.

We provide a brief review of the progress in research
on general nonignorable nonresponse in y. Green-
lees et al. (1982) proposed to handle nonignorable
item nonresponse by maximum likelihood estimation,
assuming both p(r | y, x) and p(y | x) are parametric;
however, the non-identifiability issue caused by nonig-
norable nonresponse is not well-addressed and, thus,
the result is not rigorous. Besides, a fully parametric
approach is sensitive to the parametric model assump-
tions. Since the population is not identifiable when
both p(r | y, x) and p(y | x) are nonparametric (Robins
& Rotiv, 1997), efforts have been made in situations
where one of p(r | y, x) and p(y | x) is parametric or
semiparametric. Tang et al. (2003) considered the sit-
uation where p(y | x) is parametric but p(r | y, x) is
nonparametric, and provided a rigorous treatment of
the identifiability issue for the first time; but they
assumed that the nonresponse propensity depends only
on y, i.e., p(r | y, x) = p(r | y), which may be impracti-
cal. This result was extended by Zhao and Shao (2015)
to more realistic situation where p(r | y, x) = p(r | y, u)

and u is a sub-vector of x. While both previously cited
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papers assumed a parametric p(y | x) but a unspeci-
fied p(r | y, x), parallel results were established byWang
et al. (2014) and J. Shao and L. Wang (2016) under a
univariate y (k = 1) with a nonparametric p(y | x) and
a parametric or semi-parametric p(r | y, x), which are
particularly useful in sample surveys where it is dif-
ficult to find a suitable parametric model for p(y | x).
Other than the results under a parametric model on
p(y | x), there is no general result on multivariate y
having nonignorable item nonresponse, although Wu
and Carroll (1988), Xu and Shao (2009), and Shao
and Zhang (2015) obtained some results when the
dependence of r on y is through an unobserved random
effect b, i.e., p(r | y, x) = p(r | b, x).

Under nonparametric p(y) and p(y | x), in this paper
we propose an innovative data grouping approach to
construct valid estimators of population parameters in
the presence of nonignorable item nonresponse in y,
assuming the following two main assumptions.

(A1) Given (y, x), components of r are conditionally
independent and identically distributed.

(A2) Given (y, x), the conditional probability of
observing a component of y is πθ(y, u), where
πθ is a parametric function of (y, u) with an
unknown parameter vector θ and x = (u, z)with
p(y | x) depending on z.

Our main methodology is introduced in Section 2,
followed by some simulation results in Section 3 and
two real data examples in Section 4. Section 5 contains
some technical proofs.

2. Methodology

We use the notation developed in Section 1. Our infer-
ence is based on a training sample of size n, (yi, xi, ri),
i = 1, . . . , n, which are independent and identically dis-
tributed with (y, x, r). Values of xi are always observed
and components of yi are observed if and only if the
corresponding components of ri are equal to 1.

2.1. Grouping

When there is no nonresponse, values in the entire set
{(yi, xi), i = 1, . . . , n} are exchangeable. But this does
not hold in the presence of nonignorable item nonre-
sponse in y. Although (yi, xi)’s with the same nonre-
sponse pattern ri are exchangeable, there are a total of 2k
different nonresponse patterns when k is the dimension
of y. Thus although grouping according to nonresponse
patter is natural to achieve within-group homogene-
ity, each group may not have enough units for efficient
estimation or inference.

Our main idea is to divide data into k+ 1 groups
with within-group homogeneity, using the following
key lemma under assumption (A1).

Lemma 2.1. Let � be the number of observed compo-
nents in y. Under (A1), p(y, x | r) = p(y, x | �), i.e., the
conditional distribution of (y, x) given r is the same as
the conditional distribution of (y, x) given �.

Proof: Let π = π(y, x) be the conditional probability
of observing a component of y given (y, x). Under (A1),
p(r | y, x) = π�(1 − π)k−� and � follows a binomial
distribution with probability π and size k conditioned
on (y, x). The result follows from

p(y, x | r)
p(y, x | �)

= p(r | y, x)p(y, x)∫ ∫
p(r | y, x)p(y, x) dy dx/ p(� | y, x)p(y, x)∫ ∫
p(� | y, x)p(y, x) dy dx

= p(r | y, x)
p(� | y, x) ·

∫ ∫
p(� | y, x)p(y, x) dy dx∫ ∫
p(r | y, x)p(y, x) dy dx

= π�(1 − π)k−�( k
�

)
π�(1 − π)k−�

×
( k
�

) ∫ ∫
π�(1 − π)k−�p(y, x) dy dx∫ ∫

π�(1 − π)k−�p(y, x) dy dx

= 1.

According to Lemma 2.1, we can partition the whole
dataset into k+ 1 groups, {(yi, xi),�i = d}, d = 0, 1,
. . . , k, where�i is the number of observed components
in yi. Each group {(yi, xi),�i = d} contains exchange-
able values and enough units for inference as long as k
is much smaller than n. �

2.2. Estimation under cluster sampling

We consider the situation where components of y have
the same distribution (e.g., we have panel data under
cluster sampling) and estimation of a parameter in the
population of y is our interest. To illustrate, we focus on
the estimation of μ, the mean of a component of y. For
d = 1, . . . , k, and each group with �i = d, the within-
group sample mean of observed values is

ȳd = 1
dnd

∑
i:�i=d

k∑
j=1

rijyij, (1)

where yij and rij are the jth components of yi and ri,
respectively, and nd is the number of units with �i =
d. Each ȳd is an estimator of μd = E(yij | �i = d). Note
that ȳ0 is not defined.

If μ0 = E(yij | �i = 0) is known, then the overall
population mean

μ =
k∑

d=0

pdμd,
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where pd = P(� = d), can be estimated by

μ̃ = n0
n

μ0 +
k∑

d=1

nd
n
ȳd. (2)

The proof of the following result is deferred to Section 5.

Theorem 2.1. Assume (A1) holds and that components
of y have the same distribution with finite second-order
moment Then, as n → ∞,

√
n(μ̃ − μ) → N

(
0, p0μ2

0 +
k∑

d=1

pd(σ 2
d + μ2

d) − μ2

)
in distribution, (3)

where σ 2
d = Var(yij | �i = d), d = 1, . . . , k.

Sinceμ0 = E(yij | �i = 0) is usually unknown, how-
ever, μ̃ is not an estimator and we need to find a way to
estimate μ0. In the group with �i = 0, all components
of yi are missing. Thus some assumption is needed to
relate this group with other groups. Under assumption
(A2), our idea is to solve this problem using data in the
groupwith�i = k, the groupwith completely observed
yi’s. From

p(y, x) = p(y, x | � = 0)P(� = 0)
P(� = 0 | y, x)

= p(y, x | � = k)P(� = k)
P(� = k | y, x) ,

we obtain the following relationship:

p(y, x | � = 0)

= P(� = k)
P(� = 0)

· P(� = 0 | y, x)
P(� = k | y, x)p(y, x | � = k)

= P(� = k)
P(� = 0)

· {1 − πθ(y, u)}k
{πθ(y, u)}k p(y, x | � = k),

where the second equality follows from (A1)–(A2) and
πθ(y, u) is defined in (A2), the conditional probabil-
ity of observing a component of y given (y, x). The
ratio P(� = k)/P(� = 0) can be estimated by nk/n0.
If we can obtain an estimator θ̂ of θ , then charac-
teristics in p(y, x | � = 0) can be estimated using this
relationship, nk/n0, θ̂ , and estimators of characteristics
in p(y, x | � = k) with completely observed (y, x).

Thus, μ0 = E(yij | �i = 0) can be estimated by

μ̂0 = nk
n0

∫ {1 − πθ̂ (y, u)}k
{πθ̂ (y, u)}k y d̂Fk(y, x)

= 1
kn0

∑
i:�i=k

k∑
j=1

{1 − πθ̂ (yi, ui)}k
{πθ̂ (yi, ui)}k

rijyij,

where y is a component of y and F̂k is the empirical
distribution based on the data set {(yi, xi),�i = k}.

Once μ0 is estimated by μ̂0, the overall population
mean μ can be estimated by

μ̂ = n0
n

μ̂0 +
k∑

d=1

nd
n
ȳd. (4)

In this way, other population characteristics can be sim-
ilarly estimated. For example, if we want to estimate
the distribution of a component of y at a point t, then
we just need to replace yij by the indicator of yij ≤ t
in the previous discussion. Quantiles of F can then be
estimated. Estimators of correlation between two com-
ponents of y and between y and x can be similarly
derived.We can also estimate parameters via estimating
equations.

2.3. Estimation of θ in propensity

To complete our proposed methodology, we need to
construct an estimator θ̂ of θ under (A1)–(A2). To esti-
mate θ , we follow the approach of generalised method
of moments (GMM) in Wang et al. (2014) for the
univariate response, but add a novel modification by
utilising the multivariate structure of y.

Define an L-dimensional estimating function

G(θ) =
(
g1(y, x, r, θ), . . . , gL(y, x, r, θ)

)′
,

where a′ is the transpose of a, L is an integer ≥ the
dimension of θ and the form of gl is specified later.
These functions are chosen so that, at the true param-
eter value θ , E{G(θ)} = 0 and E{∂G(θ)/∂θ} is of full
rank. Let

Gn(θ) =
(
1
n

n∑
i=1

g1(yi, xi, ri, θ), . . . ,

1
n

n∑
i=1

gL(yi, xi, ri, θ)

)′
.

IfL is the same as the dimension of θ , thenwe estimate θ

by θ̂ such that Gn(θ̂ ) = 0. If L is larger than the dimen-
sion of θ , we apply the two-step GMM (Hall, 2005;
Hansen, 1982) as follows:

(1) Obtain θ̂ (1) by minimising {Gn(θ)}′Gn(θ).
(2) Obtain θ̂ by minimising {Gn(θ)}′ŴGn(θ), where

Ŵ is the inverse of L × L matrix whose (l,m) ele-
ment isn−1∑n

i=1 gl(yi, xi, ri, θ̂
(1))gm(yi, xi, ri, θ̂

(1)).

The optimisation can be solved by using the MAT-
LAB function fminsearch, which is applied in our
simulation and data analysis in Sections 3 and 4.

It remains to specify the form of G(θ). Suppose first
that z is discrete and has q categories, say z = 1, . . . , q.
A straightforward extension of the approach in Wang
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Table 1. Example of D1,D2,D3 when k = 3 and n = 30.

Entire data set D1 D2 D3

Unit y1 y2 y3 Unit y1 y2 y3 Unit y1 y2 y3 Unit y1 y2 y3

1 ? ? ? 2 � � � 2 � � � 2 � � �
2 � � � 3 ? � � 5 � � � 5 � � �
3 ? � � 5 � � � 8 � � � 7 � � ?
4 � ? ? 8 � � � 11 � ? � 8 � � �
5 � � � 12 � � � 12 � � � 10 � � ?
6 ? ? � 15 � � � 14 � ? � 12 � � �
7 � � ? 16 ? � � 15 � � � 15 � � �
8 � � � 17 � � � 17 � � � 17 � � �
9 ? ? � 21 � � � 21 � � � 18 � � ?
10 � � ? 23 � � � 22 � ? � 20 � � ?
11 � ? � 24 ? � � 23 � � � 21 � � �
12 � � � 28 � � � 27 � ? � 23 � � �
13 ? � ? 28 � � � 28 � � �
14 � ? � 30 � ? � 29 � � ?
15 � � �
16 ? � �
17 � � �
18 � � ?
19 ? ? ?
20 � � ?
21 � � �
22 � ? �
23 � � �
24 ? � �
25 ? ? ?
26 ? � ?
27 � ? �
28 � � �
29 � � ?
30 � ? �

et al. (2014) (from univariate response to multivariate
y) is using

G(θ) = v
{

r1 · · · rk
[πθ(y, u)]k

− 1
}
, (5)

where rj is the jth component of the vector r of response
indicators and v is a vectorwhose first q components are
indicators of z = 1, . . . , q and the last p components are
the p-dimensional covariate vector u in (A2). With this
choice of G, E{G(θ)} = 0 under (A1)–(A2).

However, there are two problems. First, the par-
tially observed responses in y are not used in (5), since
r1 · · · rk = 1 if and only if all components of y are
observed. Second, a more serious issue is that L may
be smaller than the dimension of θ . For example, if u
is continuous and

πθ(y, u) = {1 + exp(α + β ′y + γ ′u)}−1, (6)

where θ = (α,β ′, γ ′)′, α is univariate, β is k-dimensio
nal, and γ is p-dimensional, then the dimension of θ

is p+ k+ 1 and L = p+ q; in this case L ≥ p + k + 1
requires that q> k. That is, we are not able to apply
GMM if z does not have more than k categories.

To overcome this difficulty, we consider the fol-
lowing modification. First, we construct k overlapped
subsetsD1, . . . ,Dk of the entire data set, whereDh con-
tains data from units whose yih may be missing but
all other components are observed, h = 1, . . . , k. With
the notation rj = the jth component of r, Dh = {r1 =

· · · = rh−1 = rh+1 = · · · = rk = 1}. Table 1 provides
an example of D1,D2,D3, where a check mark indi-
cates an observed datum and a question mark indicates
a nonresponse.

For each fixed h, we consider

G(h)(θ) = vh
{

rh
πθ(y, u)

− 1
}
, (7)

where L = p+ q+ k−1, vh is the L-dimensional vector
whose first p+ q components are the same as those of v
in (5), the rest k−1 components are r1y1, . . . , rh−1yh−1,
rh+1yh+1, . . . , rkyk, and yh is the hth component of y.
To see why the function G(h)(θ) in (7) can be used in
estimation equation, note that

E{G(h)(θ)}

= E
{
E
{
vh
[

rh
πθ(y, u)

− 1
] ∣∣∣∣ y, u,Dh

}}
= E

{
E(vh | y, u,Dh)

[
E(rh | y, u,Dh)

πθ (y, u)
− 1

]}
= 0,

where the second equality follows from the indepen-
dence between z and rh conditioned on (y, u,Dh)

and the last equality follows from the fact that
E(rh | y, u,Dh) = E(rh | y, u) = πθ(y, u) under (A1)–
(A2).

Note that the key difference betweenG(θ) in (5) and
G(h)(θ) in (7) is that the components of y other than the
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hth component are used as ‘covariates’ and included in
the vector vh in (7). In this way, we have more estimat-
ing functions and does not need to have the restriction
q> k in the case of (6), because L = p + q + k − 1 ≥
p + k + 1 is easily satisfied as long as q ≥ 2.

If we apply the GMM algorithm with G(θ) in (5)
replaced by G(h)(θ) in (7), we can obtain a GMM
estimator θ̂ (h) for every h. Our proposed final GMM
estimator of θ is then the weighted average estimator

θ̂ =
k∑

h=1

mhθ̂
(h)
/ k∑

h=1

mh,

wheremh is the number of units in Dh.
When z has continuous components, we can apply

the method by discretising z into q categories or use
moments of z as components of v.

Under the same regularity conditions assumed in
Wang et al. (2014), consistency and asymptotic normal-
ity of the estimator θ̂ can be established and details are
omitted. For a point estimator such as μ̂ defined in (4),
its consistency and asymptotic normality can also be
established but its asymptotic variance does not have a
simple explicit form such as the one for μ̃ given in (2).
The complication comes from the estimation ofμ0, the
correlation between μ̂0 and ȳk in (4), and the estima-
tion of θ that produces θ̂ correlated with μ̂0 and all ȳd’s
in (4).

Thus we do not try to obtain an explicit form of
the asymptotic variance of μ̂ defined by (4). Instead,
we recommend the bootstrap method for variance esti-
mation or inference. Since our point estimators are all
functions of averages and GMM estimators, the general
bootstrap theory ensures that the bootstrap variance
estimators are consistent and can be effectively applied
to avoid the complicated derivation of asymptotic vari-
ances of estimators such as μ̂ in (4), at the expense of a
large amount of computations. In Section 3, the perfor-
mance of bootstrap variance estimators is evaluated by
simulations.

2.4. Estimation formultivariate outcomes

In Sections 2.2 and 2.3, we consider the situation where
components of y have the same distribution and the
population parameter such as the mean μ of a compo-
nent of y can be estimated using the observed values
from all components within each group under assump-
tion (A1) to compensate the missing components. We
now consider a multivariate outcome y whose com-
ponents have different distributions, and we need to
estimate population parameters of the jth component
yj of y, j = 1, . . . , k. To illustrate, we focus on the esti-
mation of population mean μj = E(yj) with a fixed j =
1, . . . , k.

To handle the nonignorable nonresponse under
assumption (A1), we still group data according to the

value of�, the number of observed components in y, as
described in Section 2.1. However, we cannot make use
of observations from different components of y within
each group; instead, to estimate μj we can only use
observed values from the fixed jth component. Assum-
ing that μj0 = E(yj | � = 0) is known, an analog of μ̃

in (2) is

μ̃j = n0
n

μj0 +
k∑

d=1

nd
n
ȳjd, (8)

where ȳjd is the sample mean of observed values of the
jth component of ywithin group� = d. The number of
observations used for ȳjd, njd, is smaller than the num-
ber of observations dnd = ∑k

j=1 njd used for ȳd in (1).
Hence, μ̃j in (8) may be not stable when the sample size
n is not very large. To overcome this difficulty, we con-
sider making use of the always observed covariate x to
improve the estimation efficiency.

If a correct parametric model between y and x
is imposed, then covariate information can be effec-
tively utilised through the model. Although a linear
or parametric relationship between y and x for the
whole dataset without nonresponse might be possible,
it is unrealistic to expect such relationship still exists
between y and x in each group with � = d. A purely
nonparametric regression between y and x in each
group may be applied, but a nonparametric method
may be inefficient and suffers from the well-known
curse of dimensionality.

A popular approach in sample surveys for improv-
ing efficiency without relying on any model between y
and x is the Generalised Regression (GREG) method.
The GREG is first discussed in Cassel et al. (1976) and
studied extensively in the literature; for example, Sarn-
dal et al. (2003) and J. Shao and S. Wang (2014). Since
this approach is model-assisted but not model-based,
i.e., a model is used to derive efficient estimators that
are still asymptotically valid even if the model is incor-
rect, it suits our purpose of utilising covariates without
modelling within each group.

For each d and j, let ȳjd be the sample mean of
observed values of the jth component of ywithin group
� = d, x̄jd be the sample mean vector of x values corre-
sponding to the observed values used in computing ȳjd
within group� = d, x̄d be the sample mean of x values
based on all units in group � = d, and

β̂ jd =
⎡⎣ ∑
i:�i=d

rij(xi − x̄jd)(xi − x̄jd)′
⎤⎦−1

×
∑

i:�i=d

(xi − x̄jd)rijyij, (9)

which is a least squares estimator based on observed
data from jth component of y and x within group � =
d. Assuming that μj0 is known, our proposed GREG
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estimator of population mean μj is

μ̃GR
j = n0

n
μj0 +

k∑
d=1

nd
n

{ȳjd + β̂
′
jd(x̄d − x̄jd)}. (10)

The following theorem summarises the asymptotic
behaviour of the proposed GREG estimator μ̃GR

j
in (10), for each fixed j = 1, . . . , k. Note that no model
assumption is imposed on the relationship between y
and x.

Theorem 2.2. Assume (A1) and that, for each j =
1, . . . , k, the second-order moments of x and xyj are
finite, where yj is the jth component of y. Assume also
that, for every d = 1, . . . , k, �d = Var(x | � = d), the
conditional variance of x given � = d, is positive defi-
nite. Then, as n → ∞,

√
n(μ̃GR

j − μj) → N

(
0, τ 2j +

k∑
d=0

pdμ2
jd − μ2

j

)
in distribution, (11)

where μjd = E(yj | � = d),

τ 2j = 1
n
E

{
n2�

(
σ 2
j�

nj�
− n� − nj�

n�nj�
β ′
j���β j�

)}
,

(12)
njd is the number of observed yij’s within group � = d,
σ 2
jd = Var(yj | � = d), β jd = �−1

d Cov(x, yj | � = d),
Cov(x, yj | � = d) is the conditional covariance between
x and yj given � = d, d = 1, . . . , k, and β j0 and σ 2

j0 are
defined to be 0. In addition, result (11) holds with μ̃GR

j
replaced by μ̃j in (8) and β j� in (12) replaced by 0.

As indicated by Theorem 2.2, the GREG estima-
tor μ̃GR

j is always asymptotically more efficient than μ̃j
unless βdj = 0 for all d = 1, . . . , k − 1. It can also be
seen that nd = ndj when d = k, the group with all com-
pletely observed response vectors. This means that the
GREG approach does not help in the group � = k.

Note that we still need to estimate μj0 for each fixed
j. But this can be done using the same approach we
discussed in Sections 2.2 and 2.3. Also, the final esti-
mator ofμj (after replacingμj0 in (10) by its estimator)
can be shown to be consistency and asymptotically nor-
mal under the same regularity conditions assumed in
Wang et al. (2014), but its asymptotic variance does not
have a simple explicit form such as the one given in
Theorem 2.2. Thus we do not try to obtain an explicit
form of the asymptotic variance of the GREG estima-
tor ofμj. Instead, we recommend the bootstrapmethod
for variance estimation, as we discussed in the end of
Section 2.3.

3. Simulation results

In this section, simulation results are presented to
investigate the finite sample performance of our pro-
posed estimators developed in Section 2. We consider
some different settings. In all simulation studies, the
proposed GMM estimator θ̂ is calculated using the
MATLAB function fminsearch with initial value
θ = 0.

3.1. Results for a single covariate x = z and ywith
identically distributed components

We first present simulation results under situations
where k = 3, y = (y1, y2, y3), components yj’s are iden-
tically distributed, and there is only a single covariate
x = z satisfying (A2), i.e., there is no covariate u. Our
interest is to estimate the marginal population mean μ

of a component of y, without applying GREG.
For comparison, in addition to the proposed esti-

mator μ̂ in (4), we also include the naive estimate μ̂N ,
the sample mean of observed y-values, and μ̂F , the
sample mean when there is no nonresponse, used as a
benchmark.

In the first simulation study, z is discrete with q = 2
categories, P(z = 1) = 0.4 and P(z = 2) = 0.6. Condi-
tional on z, k = 3 components of y are independently
generated fromN(20 + 10z, 82). Note that components
of y are conditionally independent, but are depen-
dent unconditionally, and have the same distribution
with unconditional mean μ = 36. Given the generated
data, the nonrespondents are generated according to
the propensity

πθ(y, z) = [1 + exp(α + β1y1 + β2y2 + β3y3)]−1,
(13)

where θ = (α,β1,β2,β3)with value (2.5,−0.03,−0.03,
−0.03) in case I and value (−3, 0.02, 0.02, 0.02) in case
II. These values of θ are chosen so thatβ ’s have different
signs and the unconditional nonresponse probability is
approximately between 30% and 40%.

The population in cases III and IV is the same
except that z has q = 3 categories with P(z = 1) =
0.3, P(z = 2) = 0.3, and P(z = 3) = 0.4, the uncondi-
tional populationmean is 41, and θ = (α,β1,β2,β3) =
(2.8,−0.03,−0.03,−0.03) and (−3.3, 0.02, 0.02, 0.02)
in cases III and IV, respectively.

Table 2 reports simulation results for n = 2000 with
1000 simulation runs. The reported quantities are val-
ues of estimate, bias in percentage, and standard devia-
tion (SD) for the estimators of μ and parameters in the
propensity, based on 1000 simulations. For the estima-
tion of μ, we also calculate the simulation average of
the standard error (SE) and coverage probability (CP)
of the approximate 95% confidence interval, using the
bootstrap variance estimatorwith bootstrap sample size
100. We do not compute SE and CP for estimators of α
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Table 2. Simulation results for a single discrete covariate x = z and ywith identically distributed components (n = 2000 with 1000
simulations).

Estimation of mean Estimation in propensity

Case μ̂ μ̂N μ̂F α̂ β̂1 β̂2 β̂3

I Estimate 36.0097 37.3052 36.0029 2.4204 −0.0291 −0.0294 −0.0300
Bias(%) 0.0269 3.6255 0.0080 −3.1830 −2.9003 −2.0861 0.0493
SD 0.5927 0.1660 0.1477 0.6110 0.0099 0.0100 0.0099
SE 0.6197 0.1639 0.1504
CP 0.9580 0.0000 0.9520

II Estimate 36.0342 35.1975 36.0041 −3.0067 0.0199 0.0202 0.0196
Bias(%) 0.0951 −2.2291 0.0114 0.2243 −0.2509 0.9542 −1.9291
SD 0.4321 0.1760 0.1548 0.4128 0.0086 0.0086 0.0087
SE 0.4675 0.1698 0.1502
CP 0.9610 0.0050 0.9470

III Estimate 40.9571 43.3364 40.9965 2.7493 −0.0298 −0.0297 −0.0300
Bias(%) −0.1046 5.6987 −0.0085 −1.8100 −0.7331 −1.1194 −0.1108
SD 0.6585 0.2138 0.2068 0.4435 0.0084 0.0088 0.0080
SE 0.6987 0.2155 0.2113
CP 0.9520 0.0000 0.9520

IV Estimate 41.0381 39.4074 41.0018 −3.3208 0.0196 0.0202 0.0202
Bias(%) 0.0930 −3.8843 0.0044 0.6295 −1.9536 1.0658 1.0930
SD 0.6682 0.2376 0.2125 0.3398 0.0088 0.0080 0.0081
SE 0.7262 0.2316 0.2119
CP 0.9680 0.0000 0.9370

and β ’s as parameters in propensity are not the main
parameters of interest.

The results in Table 2 show that the GMM estima-
tor θ̂ and μ̂ in (4) work well for all cases, in terms of
estimation bias, SD, and CP. In addition, the bootstrap
SE performs well. The naive estimator μ̂N has a serious
positive bias when β ’s are negative (larger y has smaller
nonresponse probability) and has a negative bias when
β ’s are positive (larger y has larger nonresponse proba-
bility). Although μ̂N may have a small SD, its bias have
a serious effect on inference as its related CP is far from
the nominal level 95%.

We next turn to a continuous z ∼ N(0, 42) and
compare different ways to use z in estimation equa-
tions in (7). Conditional on z, components of y are
independent and identically distributed as N(30 +
1.5z, 82), which gives the unconditional mean μ =
30. Given the generated data, the nonrespondents are
generated according to (13) with θ = (α,β1,β2,β3) =
(1.8,−0.03,−0.03,−0.03). For the continuous z, we
consider three ways of using z in the GMM estimation
of θ . In case V, z is discretised into q = 2 categories
according to the median of z. In case VI, z is discre-
tised into q = 3 categories according to the 33% and
66% percentiles of z. In case VII, we use a moment of
z, i.e., the vector vh in (7) has its first two components
as (1, z). Results for n = 2000 with 1000 simulation
runs are given in Table 3, with the same quantities in
Table 2.

From the results in Table 3, we can see that cutting z
into three categories results in a smaller SD compared
with that for discretising z into two categories. Using
(1, z) for vh with a continuous z results in the most effi-
cient estimators of μ among the three ways of using z
in (7).

3.2. Results for x = (u, z) and ywith identically
distributed components

We now add a covariate u into the cases in Section 3.1
and consider x = (u, z) with a univariate continuous
u and a categorical z. We consider four cases. In
cases VIII–IX, z is a discrete covariate having q = 2
categories, P(z = 1) = 0.4, and P(z = 2) = 0.6. Given
z, u ∼ N(10z, 102). Given z = 1 and u, components
of y are independent and identically distributed as
N(u + 5z, 82); given z = 2 and u, components of y
are independent and identically distributed as N(10 +
0.5u + 5z, 82). The unconditional mean μ is 24. The
propensity is

πθ(y, u)

= [1 + exp(α + β1y1 + β2y2 + β3y3 + γ u)]−1,
(14)

where θ = (α,β1,β2,β3, γ )= (0.6,−0.03,−0.03,−0.03,
0.04) in case VIII and (1.7,−0.03,−0.03,−0.03,
−0.04) in case IX. These values are chosen so that γ

has different signs and the unconditional nonresponse
probability is approximately between 30% and 40%.

In cases X–XI, z has q = 3 categories, P(z = 1) =
0.3, P(z = 2) = 0.3 and P(z = 3) = 0.4. Given z, u ∼
N(10z, 102). Given z = 1 and u, components of y
are independent and identically distributed as N(u +
5z, 32); given z = 2 and u, components of y are
independent and identically distributed as N(1.5u +
5z, 32); given z = 3 and u, components of y are inde-
pendent and identically distributed as N(10 + 0.5u +
5z, 32). The unconditional meanμ is 32.5. The propen-
sity is given by (14) with θ = (α,β1,β2,β3, γ ) =
(1,−0.03,−0.03,−0.03, 0.05) in caseX and (2.8,−0.03,
−0.03,−0.03,−0.05) in case XI.
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Table 3. Simulation results for a single continuous covariate x = z and y with identically distributed components (n = 2000 with
1000 simulations).

Estimation of mean Estimation in propensity

Case μ̂ μ̂N μ̂F α̂ β̂1 β̂2 β̂3

V Estimate 30.0268 31.4417 29.9946 1.7769 −0.0304 −0.0302 −0.0298
Bias(%) 0.0893 4.8056 −0.0180 −1.2853 1.4452 0.5892 −0.6491
SD 0.3932 0.1884 0.1767 0.4663 0.0114 0.0111 0.0115
SE 0.4333 0.1814 0.1687
CP 0.9770 0.0000 0.9390

VI Estimate 30.0194 31.4549 30.0098 1.7658 −0.0300 −0.0298 −0.0301
Bias(%) 0.0647 4.8497 0.0327 −1.8974 0.0565 −0.7405 0.3017
SD 0.3697 0.1805 0.1659 0.4278 0.0102 0.0093 0.0102
SE 0.3918 0.1810 0.1686
CP 0.9620 0.0000 0.9470

VII Estimate 30.0441 31.4541 30.0040 1.7513 −0.0292 −0.0274 −0.0373
Bias(%) 0.1471 4.8470 0.0135 −2.7030 −2.7809 −8.6993 24.4380
SD 0.3511 0.1828 0.1676 2.3737 0.0270 0.1044 0.2069
SE 0.3926 0.1810 0.1686
CP 0.9720 0.0000 0.9490

Results for n = 2000 with 1000 simulation runs are
given in Table 4. Conclusions for results in Table 4 are
similar to those in Tables 2 and 3.

3.3. Results for amultivariate outcome y

In this section, we present simulation results under
situations where k = 3, components of y = (y1, y2, y3)
have different distributions, and our interest is to esti-
mate each marginal population mean μj = E(yj), j =
1, . . . , k. We consider the proposed GREG estimator
μ̂GR
j as well as the estimator μ̂j without applyingGREG,

j = 1, . . . , k. The naive estimator μ̂N
j , the sample mean

of observed values of yj, and μ̂F
j , the sample mean of yj

when there is no nonresponse, are also included.
We consider x = (u, z) with independent u and z,

where u is continuous and distributed as N(3, 52).
In cases XII–XIII, z is continuous and distributed
as N(2, 1) and given z and u, y1 ∼ N(u + 3z, 32),
y2 ∼ N(u + 4z, 32), y3 ∼ N(2u + 5z, 32) and yj’s are
independent. The unconditional mean vector E(y) is
(9, 11, 16). In cases XIV–XV, z is discrete with q = 3
categories, P(z = 1) = 0.3, P(z = 2) = 0.3 and P(z =
3) = 0.4; given z and u, y1 ∼ N(2u + 2z, 32), y2 ∼
N(2u + 4z, 32), y3 ∼ N(4u + 2z, 32), and yj’s are inde-
pendent. The unconditional mean μ is (10.2, 14.4,
16.2). The propensity is given by (14) with θ =
(α,β1,β2,β3, γ ) = (0.1,−0.02,−0.02,−0.02, 0.05) in
cases XII and XIV and (−1.2, 0.02, 0.02, 0.02,−0.1)
in cases XIII and XV. These values are chosen so
that γ has different signs and the unconditional non-
response probability is approximately between 30%
and 40%.

Results for n = 2000 with 1000 simulation runs are
given in Table 5. The results show that both proposed
estimators μ̂j and μ̂GR

j perform well for each com-
ponent of y under all cases with coverage probabili-
ties close to the nominal level 0.95. They are much
better compared with the naive biased estimator μ̂N

j .
Also, the estimator μ̂GR

j with GREG has a respectable

improvement in standard deviation compared with μ̂j
without GREG.

4. Real data examples

We apply our proposed estimators to two real data sets
from the National Longitudinal Survey of Mature and
Young Women (NLSW) and the National Health and
Nutrition Examination Survey (NHANES). The pro-
posed estimation approach introduced in Section 2.2 is
applied on the NLSW survey data since components of
the outcome we choose from the dataset can be treated
as from the same distribution. The proposed estima-
tion method introduced in Section 2.4 with or without
the GREG is applied on the NHANES data since the
outcome we choose from the dataset is multivariate.

We present the estimated values and standard error
(SE) under bootstrap method of the marginal means as
well as the estimated values of the parameters in the
nonresponse propensity. Our results and conclusions
are based on assumptions (A1)–(A2) which, unfortu-
nately, cannot be checked using available data. The
assumption that components of r are conditionally
independent and identically distributed given (y, x)
seems reasonable from the specific problems under
investigation.

4.1. Application to NLSWdata

The NLSW started in the mid-1960s because the U.S.
Department of Labor was interested in studying the
employment patterns of non-institutionalised civilian
women in the United States. We focus on the survey of
mature women cohort with ages from 30s to early 40s.
A detailed description of this survey can be found at
https://www.bls.gov/nls/original-cohorts/mature-and-
young-women.htm.

Among many topics, we focus on the variable of
women’s weight in pounds (ERNYR-P) from heath
topic as our example. More specifically, we consider the
outcome y = (y1, y2, y3) (k = 3), where yj’s are weights

https://www.bls.gov/nls/original-cohorts/mature-and-young-women.htm
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Table 4. Simulation results for x = (u, z) with a categorical z
and a continuous u (n = 2000 with 1000 simulations).

Estimation of mean

Case μ̂ μ̂N μ̂F

VIII Estimate 24.0085 26.2166 23.9988
Bias(%) 0.0354 9.2358 −0.0052
SD 0.3526 0.2484 0.2627
SE 0.3763 0.2406 0.2543
CP 0.9620 0.0000 0.9450

Estimation in propensity

α̂ β̂1 β̂2 β̂3 η̂

Estimate 0.5253 −0.0290 −0.0297 −0.0292 0.0384
Bias(%) −12.4446 −3.4645 −1.0577 −2.7879 −3.9445
SD 0.2599 0.0122 0.0122 0.0124 0.0152

Estimation of mean

μ̂ μ̂N μ̂F

VIV Estimate 24.0020 27.8904 24.0086
Bias(%) 0.0083 16.2098 0.0358
SD 0.4641 0.2085 0.2479
SE 0.4623 0.2118 0.2541
CP 0.9780 0.0000 0.9500

Estimation in propensity

α̂ β̂1 β̂2 β̂3 η̂

Estimate 1.2077 −0.0326 −0.0270 −0.0290 −0.0468
Bias(%) −28.9598 8.7831 −9.9284 −3.4798 17.0849
SD 2.4568 0.4101 0.0505 0.2869 0.1186

Estimation of mean

Case μ̂ μ̂N μ̂F

X Estimate 32.5066 35.3083 32.5009
Bias(%) 0.0203 8.6409 0.0028
SD 0.3980 0.2608 0.2785
SE 0.4354 0.2596 0.2828
CP 0.9690 0.0000 0.9570

Estimation in propensity

α̂ β̂1 β̂2 β̂3 η̂

Estimate 0.9710 −0.0300 −0.0295 −0.0306 0.0499
Bias(%) −2.8962 −0.0200 −1.6826 2.0488 −0.2297
SD 0.2568 0.0273 0.0257 0.0268 0.0119

Estimation of mean

μ̂ μ̂N μ̂F

XI Estimate 32.3482 37.5787 32.5173
Bias(%) −0.4670 15.6268 0.0532
SD 1.0728 0.2053 0.2869
SE 1.7310 0.1811 0.2661
CP 0.9400 0.0000 0.9500

Estimation in propensity

α̂ β̂1 β̂2 β̂3 η̂

Estimate 2.6765 −0.0276 −0.0283 −0.0332 −0.0533
Bias(%) −4.4104 −8.1382 −5.5310 10.6065 6.6456
SD 0.6086 0.0808 0.0672 0.0743 0.0224

(in lbs) of respondent in 1997, 1999 and 2001, respec-
tively. The outcome values are self-reported in roughly
every 2 years. Since the participants are matured
women, the three components of y have almost the
same distribution. We are interested in estimating the
overall population mean μ of the weight using the
proposed method in Section 2.2. We use the age of
participant when she joined the NLSW survey as the
nonresponse instrument z.

In the dataset, each of three components of y has
about 29% nonresponse probability while the covariate
has no nonresponse. The number of observed values in

Table 5. Simulation results for x = (u, z) and multivariate y
(n = 2000with 1000 simulations); SDimp(%)= (1− SDof μ̂GR

j /

SD of μ̂j) × 100%.

Estimation of mean

Case μ̂j μ̂GR
j μ̂N

j μ̂F
j

XII j = 1 Estimate 9.0131 9.0137 9.6294 9.0064
Bias(%) 0.1456 0.1522 6.9935 0.0715
SD 0.2116 0.1843 0.1856 0.1469
SE 0.2179 0.1897 0.1851 0.1463
CP 0.9550 0.9470 0.0920 0.9540

SDimp(%) 12.8762
j = 2 Estimate 11.0105 11.0204 11.7195 11.0076

Bias(%) 0.0959 0.1852 6.5413 0.0687
SD 0.2327 0.2043 0.1971 0.1590
SE 0.2377 0.2064 0.2001 0.1580
CP 0.9590 0.9580 0.0650 0.9370

SDimp(%) 12.1987
j = 3 Estimate 11.0105 16.0257 17.1169 16.0077

Bias(%) 0.2687 0.1608 6.9809 0.0484
SD 0.3810 0.3146 0.3308 0.2624
SE 0.3819 0.3188 0.3272 0.2580
CP 0.9510 0.9570 0.0900 0.9400

SDimp(%) 17.4088

Estimation in propensity

α̂ β̂1 β̂2 β̂3 γ̂

Estimate 0.1036 −0.0201 −0.0206 −0.0208 0.0516
Bias(%) 3.5808 0.7052 3.0718 4.2204 3.1186
SD 0.1584 0.0251 0.0210 0.0186 0.0263

Estimation of mean

Case μ̂j μ̂GR
j μ̂N

j μ̂F
j

XIII j = 1 Estimate 9.0092 9.0094 8.8764 9.0034
Bias(%) 0.1020 0.1040 −1.3734 0.0381
SD 0.2116 0.1830 0.1784 0.1470
SE 0.2124 0.1865 0.1769 0.1459
CP 0.9560 0.9530 0.9050 0.9450

SDimp(%) 13.5115
j = 2 Estimate 11.0071 11.0110 10.7956 11.0005

Bias(%) 0.0642 0.1004 −1.8585 0.0046
SD 0.2283 0.2002 0.1836 0.1532
SE 0.2328 0.2044 0.1904 0.1567
CP 0.9430 0.9460 0.8150 0.9430

SDimp(%) 12.3331
j = 3 Estimate 11.0071 16.0159 15.8899 16.0062

Bias(%) 0.1387 0.0994 −0.6879 0.0390
SD 0.3563 0.3071 0.3090 0.2535
SE 0.3663 0.3084 0.3118 0.2570
CP 0.9400 0.9630 0.9230 0.9410

SDimp(%) 13.8014

Estimation in propensity

α̂ β̂1 β̂2 β̂3 γ̂

Estimate −1.2133 0.0186 0.0204 0.0209 −0.1014
Bias(%) 1.1097 −7.0930 1.8714 4.4117 1.4445
SD 0.1326 0.0255 0.0197 0.0166 0.0247

Estimation of mean

Case μ̂j μ̂GR
j μ̂N

j μ̂F
j

XIV j = 1 Estimate 10.2059 10.2035 12.2317 10.1935
Bias(%) 0.0579 0.0345 19.9190 −0.0638
SD 0.3286 0.2885 0.2803 0.2353
SE 0.3416 0.2953 0.2880 0.2354
CP 0.9560 0.9550 0.0000 0.9520

SDimp(%) 12.1951

(continued).
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Table 5. Continued.

Estimation of mean

Case μ̂j μ̂GR
j μ̂N

j μ̂F
j

j = 2 Estimate 14.4110 14.4100 16.5011 14.3915
Bias(%) 0.0764 0.0698 14.5906 −0.0588
SD 0.3461 0.2952 0.2964 0.2436
SE 0.3459 0.2966 0.2986 0.2439
CP 0.9550 0.9500 0.0000 0.9520

SDimp(%) 14.6967
j = 3 Estimate 14.4110 16.2097 20.1238 16.1886

Bias(%) 0.0064 0.0601 24.2210 −0.0705
SD 0.6786 0.5654 0.5603 0.4542
SE 0.6633 0.5645 0.5535 0.4517
CP 0.9490 0.9530 0.0000 0.9410

SDimp(%) 16.6760

Estimation in propensity

α̂ β̂1 β̂2 β̂3 γ̂

Estimate 0.0853 −0.0209 −0.0206 −0.0189 0.0466
Bias(%) −14.7282 4.4709 2.8384 −5.4701 −6.8876
SD 0.1920 0.0305 0.0186 0.0303 0.1200

Estimation of mean

Case μ̂j μ̂GR
j μ̂N

j μ̂F
j

XV j = 1 Estimate 10.2144 10.2160 9.0712 10.2000
Bias(%) 0.1410 0.1566 −11.0664 0.0004
SD 0.3727 0.3264 0.2830 0.2346
SE 0.3870 0.3436 0.2867 0.2355
CP 0.9650 0.9620 0.0260 0.9450

SDimp(%) 12.4127
j = 2 Estimate 14.4282 14.4221 13.2057

Bias(%) 0.1961 0.1535 −8.2938 0.0095
SD 0.4093 0.3620 0.3017 0.2433
SE 0.4235 0.3799 0.2965 0.2436
CP 0.9660 0.9610 0.0230 0.9400

SDimp(%) 11.5561
j = 3 Estimate 14.4282 16.2286 14.0698 16.1996

Bias(%) 0.1344 0.1768 −13.1493 −0.0026
SD 0.6812 0.5890 0.5366 0.4531
SE 0.7135 0.6175 0.5504 0.4518
CP 0.9600 0.9600 0.0400 0.9470

SDimp(%) 13.5300

Estimation in propensity

α̂ β̂1 β̂2 β̂3 γ̂

Estimate −1.5441 0.0105 0.0267 0.0240 −0.1351
Bias(%) 28.6770 −47.6082 33.4260 19.9365 35.0864
SD 9.8790 0.2753 0.1834 0.1707 1.3114

each nonresponse pattern for the outcome y is shown
in Table 6.

We computed the proposed estimator μ̂ in Sec-
tions 2.2 and 2.3. Since the covariate x = ‘age of respon-
dent when joining the survey’ is univariate and contin-
uous, we treat x = z and use the moments of z directly

Table 7. Estimation based on NLSW data.

Estimation of marginal population mean

ERNYR-P μ̂ μ̂N

Estimate 132.2044 158.1434
SE 1.2182 0.6510

Estimation of parameters in propensity

Parameter α̂ β̂1 β̂2 β̂3

Estimate −0.8844 −0.0245 0.0489 −0.0374

in the GMM algorithm. The results are given in Table 7
and the SE is computed as the squared root of the
bootstrap variance estimate with bootstrap size 100.

For comparison, we include the naive estimator μ̂N ,
the sample mean of observed y values. We can see that
our proposed estimator μ̂ has a significant difference
from the naive estimate μ̂N .

4.2. Application to NHANES data

The NHANES is a major program of the National Cen-
ter for Health Statistics, which is a part of the Cen-
ters for Disease Control and Prevention responsible
for producing vital and health statistics for the United
States. The NHANES is a program designed to assess
the health and nutritional status of adults and children
in the non-institutionalised civilian resident population
of the United States. A description of this survey can
be found at https://www.cdc.gov/nchs/nhanes/about_
nhanes.htm.

The NHANES program began in the early 1960s
and had been conducted as a series of surveys focus-
ing on different population groups or health topics. In
1999, the survey became a continuous program that
has a changing focus on a variety of health and nutri-
tionmeasurements tomeet emerging needs. The survey
is unique in that it combines interviews and phys-
ical examinations. The home-interview part collects
answers from demographic, socioeconomic, dietary,
and health-related questions. The examination compo-
nent conducted in amobile examination centre consists
of medical, dental, and physiological measurements, as
well as laboratory tests administered by highly trained
medical personnel.

Table 6. The number of observed values in each nonresponse pattern

Nonresponse pattern

Group Weight in 1997 Weight in 1999 Weight in 2001 Number of observations

� = 0 ? ? ? 504
� = 1 � ? ? 119

? � ? 67
? ? � 90

� = 2 � � ? 158
� ? � 134
? � � 143

� = 3 � � � 1799

Total 3014

https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
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Table 8. The number of observed values in each of nonre-
sponse pattern.

Missing pattern

Group LBXSCH BPXSY1 BMDAVSAD
Number of
observations

� = 0 ? ? ? 2007
� = 1 � ? ? 94

? � ? 91
? ? � 90

� = 2 � � ? 374
� ? � 422
? � � 444

� = 3 � � � 5578

Total 9100

The data set we focused on is for 2013–2014 con-
sisting of 9100 persons who completed both interview
and examination. We consider a multivariate outcome
y with k = 3 and two demographic covariates from the
dataset. The three components of y are the total choles-
terol (mg/dL), ‘LBXSCH’, the first reading of systolic
blood pressure (mm Hg), ‘BPXSY1’, and the average
sagittal abdominal diameter (cm), ‘BMDAVSAD’. The
two covariates are the age in years of the household
reference person, ‘DMDHRAGE’, and the total house-
hold income (reported as a range value in dollars),
‘INDHHIN2’.

Each of the three components of y has about 28%
missing values while two covariates have no missing
value. The number of observed values in each of non-
response pattern for y is shown in Table 8.

In this example, the three components of y have
different distributions and we are interested in esti-
mating the population mean for each yj. Therefore,
we apply our proposed estimator in Section 2.4 with
GREG, denoted by μ̂GR

j , and the estimator without gen-
eralised regression, denoted by μ̂j. For comparison, we
also include the naive estimate μ̂N

j , the sample mean of
observed yj values.

Since x is two dimensional, we try two scenarios,
z = DMDHRAGE and u = INDHHIN2 in case 1, and
z = INDHHIN2 and u = DMDHRAGE in case 2. The
propensity model we used is given by (14).

The results for two cases are given in Table 9, where
SE is computed as the squared root of the bootstrap
variance estimate with bootstrap size 100.

From both cases, we can see that estimators μ̂j and
μ̂GR
j are very similar but are significantly different from

the naive estimator μ̂N
j , indicating that the naive esti-

mator is biased according to our theory and empirical
results. The fact that different ways of defining z in
(A2) result in very similar estimates of μj’s indicates
that both covariates DMDHRAGE and INDHHIN2 are
suitable to be used as z in (A2), although different z’s
produce different estimates of parameters in propen-
sity. In this example, covariates may not help verymuch
in estimating the marginal population means, although
they are very helpful in handling nonignorable nonre-
sponse.

Table 9. Estimation based on NHANES data.

Results for z = DMDHRAGE

Estimation of mean

Component μ̂j μ̂GR
j μ̂N

j

LBXSCH Estimate 144.0550 144.0248 184.5257
SE 0.8946 0.9050 0.4634

BPXSY1 Estimate 89.1456 89.2445 119.2604
SE 16.6209 16.6619 21.5088

BMDAVSAD Estimate 0.5489 0.5500 0.2094
SE 0.1059 0.1066 0.0560

Estimation in propensity

α̂ β̂1 β̂2 β̂3 γ̂

Estimate 0.1740 0.0066 −0.0159 −0.1152 −0.0183
SE 2.4623 0.0105 0.0134 0.1161 0.0113
Results for z = INDHHIN2

Estimation of mean

Component μ̂j μ̂GR
j μ̂N

j

LBXSCH Estimate 144.0251 143.9984 184.5257
SE 0.8394 0.8407 0.5822

BPXSY1 Estimate 89.0743 89.1804 119.2758
SE 0.5200 0.5169 0.2308

BMDAVSAD Estimate 16.6357 16.6790 21.5052
SE 0.1020 0.1038 0.0658

Estimation in propensity

α̂ β̂1 β̂2 β̂3 γ̂

Estimate −1.5423 −0.0035 0.0055 −0.0978 0.0090
SE 6.2862 0.0346 0.0205 0.2393 0.0105

5. Technical proofs

Proof of Theorem 2.1: The asymptotic normality
result (3) follows from the Central Limit Theorem.
Hence, it remains to show that the asymptoticmean and
variance are of the given form. Let� = {�i, . . . ,�i, i =
1, . . . , n}. From conditioning,

E(μ̃) = E

{
E

(
n0
n

μ0 +
k∑

d=1

nd
n
ȳd

∣∣∣∣�
)}

= E

{ k∑
d=0

nd
n

μd

}
=

k∑
d=0

pdμd = μ,

so that themean of μ̃ − μ is 0. To derive the asymptotic
variance, we calculate

Var(μ̃) = Var

(
n0
n

μ0 +
k∑

d=1

nd
n
ȳd

)

= E

{
Var

( k∑
d=1

nd
n
ȳd

∣∣∣∣�
)}

+ Var

{
E

(
n0
n

μ0 +
k∑

d=1

nd
n
ȳd

∣∣∣∣�
)}
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= E

{
1
n2

k∑
d=1

ndσ 2
d

}
+ Var

{ k∑
d=0

nd
n

μd

}

= 1
n

k∑
d=1

pdσ 2
d + 1

n2

k∑
d=0

μ2
dVar(nd)

+ 1
n2
∑
d 	=l

μdμlCov(nd, nl)

= 1
n

k∑
d=0

pdσ 2
d + 1

n

k∑
d=0

μ2
dpd(1 − pd)

− 1
n

∑
d 	=l

μdμlpdpl,

where the last equality follows from the fact that the
vector (n0, n1, . . . , nk) follows a multinomial distribu-
tion so that Var(nd) = npd(1 − pd) and Cov(nd, nl) =
−npdpl for any d 	= l. Then, the result follows from

k∑
d=0

μ2
dp

2
d +

∑
d 	=l

μdμlpdpl =
( k∑
d=0

pdμd

)2

= μ2.

�

Lemma 5.1. Under the conditions of Theorem 2.2, for
each j = 1, . . . , k and each d = 1, . . . , k, β̂ jd → β jd in
probability as n → ∞, where β̂ jd is defined in (9) and
β jd = �−1

d Cov(x, yj | � = d).

Proof of Lemma 5.1: For fixed j and d, by (A1), the
weak law of large numbers for independent random
variables, and Lemma 2.1 in Section 2.1, as n → ∞,

1
njd

∑
i:�i=d

rijxiyij → E(xyj | � = d),

x̄jd → E(x | � = d), ȳjd → E(yj | � = d)

in probability. Therefore, as n → ∞,

1
njd

∑
i:�i=d

(xi − x̄jd)rijyij

→ E(xyj | � = d) − E(x | � = d)E(yj | � = d)

= Cov(x, yj | � = d) in probability.

Similarly, it can be shown that

1
njd

∑
i:�i=d

rij(xi − x̄i)(xi − x̄i)′ → �d in probability.

The proof is completed by combining the results and
using the definitions of β̂ jd and β jd. �

Proof of Theorem 2.2: From (10),

μ̃GR
j − μj = n0

n
μj0 +

k∑
d=1

nd
n
[ȳjd + β̂

′
jd(x̄d − x̄jd)]

−
k∑

d=0

pdμjd

=
k∑

d=0

(nd
n

− pd
)

μjd

+
k∑

d=1

nd
n
[(ȳjd − μjd) + β̂

′
jd(x̄d − x̄jd)]

= Uj + Vj + Wj,

where

Uj =
k∑

d=1

nd
n
[(ȳjd − μjd) + β ′

jd(x̄d − x̄jd)],

Vj =
k∑

d=0

(nd
n

− pd
)

μjd,

Wj =
k∑

d=1

nd
n
[(β̂ jd − β jd)

′(x̄d − x̄jd)].

By Lemma 5.1, Wj is asymptotically negligible com-
pared withUj andVj. Hence, to prove (11), it suffices to
show that

√
n(Uj + Vj) converges in distribution to the

limiting normal distribution in (11). Consider Vj first.
Note that

Vj =
k∑

d=0

nd
n

μjd − μj = 1
n

k∑
d=0

∑
i:�i=d

μjd − μj

= 1
n

∑
i:�i=d

k∑
d=0

μjd − μj.

Then

E(Vj) = 0 and Var(Vj) = 1
n

( k∑
d=0

pdμ2
jd − μ2

j

)
.

From the Central Limit Theorem,
√
nVj√

Var(Vj)
→ N (0, 1) in distribution.

We now turn to Uj. Let � = {�1, . . . ,�n}. Condi-
tioned on �,

E(Uj | �)

= E

{ k∑
d=1

nd
n
[(ȳjd − μjd) + β ′

jd(x̄d − x̄jd)]
∣∣∣∣�
}
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=
k∑

d=1

nd
n
E
(
ȳjd − μjd

∣∣∣∣�)

+
k∑

d=1

nd
n

β ′
jdE
(
x̄d − x̄jd

∣∣∣∣�)
= 0,

where the last equality follows from E(ȳjd − μjd | �) =
0 and E(x̄d − x̄jd | �) = 0 as given �, x and yj values
in group � = d are exchangeable. It follows from the
Central Limit Theorem that, conditioned on �,

√
nUj√

Var(Uj | �)
→ N (0, 1) in distribution.

Then, unconditionally,

√
nUj√

E{Var(Uj | �)} → N (0, 1) in distribution.

To complete the proof, it remains to show two items.
One is n−1E{Var(Uj | �)} = τ 2j given in (12); the other
is that Cov(Uj,Vj) = 0. The latter follows from

Cov(Uj,Vj) = Cov{E(Uj | �),E(Vj | �)}
+ E{Cov(Uj,Vj | �)}

= Cov{0,E(Vj | �)} + 0

= 0,

where the second equality follows from the fact that Vj
is a function of � so that Cov(Uj,Vj | �) = 0 almost
surely. To calculate E{Var(Uj | �)}, note that, for any
fixed d,

ȳjd + β ′
jd(x̄d − x̄jd) = ȳjd + nd − njd

nd
β ′
jd (̃xjd − x̄jd),

where

x̄jd = 1
njd

∑
i:�i=d

rijxi,

x̃jd = 1
nd − njd

∑
i:�i=d

(1 − rij)xi.

Since observations in x̄jd and x̃jd are not overlapped,
conditioned on �,

Var
(
ȳjd + β ′

jd(x̄d − x̄jd) | �
)

= Var
{
ȳjd + nd − njd

nd
β ′
jd (̃xjd − x̄jd)

∣∣∣∣�}

= Var
(
ȳjd | �)

+ (nd − njd)2

n2d
β ′
jdVar

(̃
xjd − x̄jd | �)β jd

+ 2(nd − njd)
nd

β ′
jdCov

(
ȳjd, x̃jd − x̄jd | �)

=
σ 2
jd

ndj
+ (nd − njd)2

n2d

nd
(nd − njd)njd

β ′
jd�dβ jd

− 2(nd − njd)
nd

β ′
jdCov

(
ȳjd, x̄jd | �)

=
σ 2
jd

njd
− nd − njd

ndnjd
β ′
jd�dβ jd.

This shows the desired result and completes the proof.
�
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