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ABSTRACT
This paper carries out stochastic comparisons on the total capacity of weighted k-out-of-n sys-
tems with heterogeneous components. The expectation order, the increasing convex/concave
order and the usual stochastic order are employed to investigate stochastic behaviours of sys-
tem capacity. Sufficient conditions are established in terms ofmajorisation-type orders between
the vectors of component lifetime distribution parameters and the vectors of weights. Some
examples are also provided as illustrations.
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1. Introduction

The weighted k-out-of-n system might be first intro-
duced in Wu and Chen (1994) describing the situa-
tion where the components may have different con-
tributions to the system reliability/performance, and
the system functions if and only if the total capac-
ity (or weight) of the working components is no less
than k. Under appropriate certain conditions imposed
on the weights, it can be shown that the weighted k-
out-of-n systems are equivalent to coherent systems
(cf. Samaniego & Shaked, 2008).

Consider a weighted k-out-of-n system with n com-
ponents having lifetimes X1, . . . ,Xn and the weight/
capacity of component i is wi, i = 1, . . . , n. Then, the
system works if and only if the total contribution
of working components is no less than the thresh-
old value k>0. Let ψ(t;w,X) be the instantaneous
system capacity at time t ∈ R+, that is, ψ(t;w,X) :=∑n

i=1 wiI(Xi > t). Then the failure time of this system
can be expressed as

T(k;w,X) = inf{t : ψ(t;w,X) < k},
from which we have

P(T(k;w,X) > t) = P(ψ(t;w,X) ≥ k), t ∈ R+.
(1)

The study on reliability analysis of weighted k-out-
of-n system has attracted many researchers’ atten-
tion in the past few years. For example, Rahmani

et al. (2016b) discussed the influence of components
lifetimes and weights on the system’s total capacity
under the independent case in the sense of the haz-
ard rate ordering and the usual stochastic ordering.
When it is allowed to allocate components lifetimes
to the weights, they also presented the optimal alloca-
tion policy so as to maximise the system’s total capac-
ity. It is found that larger weight should be accom-
panied with good component with higher reliability
to enhance the system performance. Li et al. (2016)
studied the ordering properties of weighted k-out-
of-n system with statistically dependent component
lifetimes when the component weight vector varies
according to some majorisation-type orders. Recently,
Zhang et al. (2018) investigated performance levels
of k-out-of-n systems with random weights (cf. Ery-
ilmaz, 2013, 2015) and obtained optimal assembling
policies by means of maximising the system’s total
capacity according to some stochastic orders. For more
studies on other interesting topics such as (joint) impor-
tance measures of components and weights, redundan-
cies allocation and system assembly, interested readers
may refer to Meshkat and Mahmoudi (2017); Rahmani
et al. (2016a); Zhang (2018, 2021).

To the best of the author’s knowledge, it is still
absent on the study of the heterogeneity among com-
ponents lifetimes on the performance levels of weighted
k-out-of-n systems. In this paper, we investigate order-
ing properties of the total capacity of weighted k-
out-of-n systems with heterogeneous components in
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accordance with the expectation ordering, the increas-
ing convex/concave ordering and the usual stochastic
ordering. Sufficient conditions will be established by
means of some majorisation-type orders.

The rest of the paper is organised as follows.
Section 2 collects some useful definitions, notions and
lemmas used in the sequel. Section 3 presents the com-
parison results of the total capacity of weighted k-out-
of-n systems with heterogeneous components when the
vector of distribution parameters and vector of weights
change according to some majorisation-type orders.
Some examples on the conditions are also provided as
illustrations. Section 4 concludes the paper.

2. Preliminaries

Throughout, the terms ‘increasing’ and ‘decreasing’
are used in a non-strict sense. All expectations are
well defined whenever they appear. LetR = (−∞,∞),
R+ = [0,∞),In = {x : x1 ≤ x2 ≤ . . . ≤ xn}, andDn =
{x : x1 ≥ x2 ≥ . . . ≥ xn}. Let x{i,j} be the sub-vector of
x with its ith and jth elements deleted. We use ‘

sign= ’ to
denote that both sides of the equality have the same
sign, and ‘1n’ to denote an n-dimensional vector with
all of its components equalling to 1.

Stochastic orders is a very helpful tool to compare the
magnitude or variability of different random variables
arising from many research areas.

Definition2.1: For two randomvariablesX andY with
distribution functions F and G, survival functions F̄ =
1 − F and Ḡ = 1 − G, density functions f and g, hazard
rate functions hF = f /F̄ and hG = g/Ḡ, and reversed
hazard rate functions rF = f /F and rG = g/G, respec-
tively, X is said to be smaller than Y in the hazard rate
order (denoted byX ≤hr Y) if hF(x) ≥ hG(x) for all x ∈
R; the reversed hazard rate order (denoted by X ≤rh
Y) if rF(x) ≤ rG(x) for all x ∈ R; the usual stochas-
tic order (denoted by X ≤st Y) if F̄(x) ≤ Ḡ(x) for all
x ∈ R; the increasing convex [concave] order (denoted
by X ≤icx[icv] Y) if E[φ(X)] ≤ E[φ(Y)] for all increas-
ing and convex [concave] function φ : R �→ R; and
the expectation order (denoted by X ≤e Y) if E[X] ≤
E[Y].

The usual stochastic order, which is often termed
as the first stochastic dominance in economics and
finance, implies both of the increasing convex and
concave orders, which in turn imply the expectation
order. Interested readers may refer to the excellent
monographs by Shaked and Shanthikumar (2007) for
more details on the properties and applications of these
stochastic orders.

The notion of majorisation is quite useful in estab-
lishing various inequalities stemming from reliability
theory, applied probability, actuarial science, and so on.

Let x1:n ≤ · · · ≤ xn:n be the increasing arrangement of
the components of x = (x1, . . . , xn).

Definition 2.2: A real-valued vector x = (x1, . . . , xn)
is said to be larger than another real-valued vector y =
(y1, . . . , yn) in the sense of the majorisation order, writ-
ten as x

m� y, if
∑j

i=1 xi:n ≤ ∑j
i=1 yi:n for j = 1, . . . , n −

1, and
∑n

i=1 xi:n = ∑n
i=1 yi:n; the supermajorisation

order, written as x
w� y, if

∑j
i=1 xi:n ≤ ∑j

i=1 yi:n for j =
1, . . . , n; and the submajorisation order, written as x �w
y, if

∑n
j=i xj:n ≥ ∑n

j=i yj:n for i = 1, . . . , n.

It is obvious that themajorisation order implies both
the supermajorisation order and the submajorisation
order, while the reverse statement is not true in general.

The following lemma plays a key role in deriving our
main results.

Lemma 2.1 (Marshall et al. (2011)): Let φ be a
real-valued function, defined and continuous on In
(w.r.t. Dn) and continuously differentiable on the inte-
rior of In (w.r.t. Dn). Denote the partial derivative
of φ with respect to its kth argument by φ(k)(z) =
∂φ(z)/∂zk, for k = 1, . . . , n. Then, φ(x) ≤ φ(y) when-
ever x

w	 y (w.r.t. x 	w y) on In (w.r.t. Dn) if and
only ifφ(1)(z) ≤ φ(2)(z) ≤ · · · ≤ φ(n)(z) ≤ 0 (w.r.t. 0 ≤
φ(1)(z) ≤ φ(2)(z) ≤ · · · ≤ φ(n)(z)), for all z in the inte-
rior of In (w.r.t.Dn).

For more details on majorisation-type orders and
their applications, one may refer to Marshall et al.
(2011).

Next, let us introduce the definition of copula.

Definition 2.3: For a random vectorX = (X1, . . . ,Xn)

with joint distribution function H and univariate
marginal distribution functions F1, . . . , Fn, its copula is
a distribution function C : [0, 1]n �→ [0, 1], satisfying

H(x) = C(F1(x1), . . . , Fn(xn)), x ∈ R
n.

Similarly, a survival copula is a distribution function Ĉ :
[0, 1]n �→ [0, 1], satisfying

H̄(x) = P(X1 > x1, . . . ,Xn > xn)

= Ĉ(F̄1(x1), . . . , F̄n(xn)), x ∈ R
n,

where H̄ is the joint survival function of X.

Copulas impose an easy addressable dependence
structure on the marginal distributions of random vec-
tor. In some results of the present paper, we shall assume
that the components lifetimes have a symmetric sur-
vival copula. For more detailed discussions on copulas,
interested readers may refer to Nelsen (2007).

Definition 2.4: A real-valued bivariate function
g(x1, x2) is said to be arrangement increasing (AI)
if g(x1, x2) ≥ g(x2, x1), for any x1 ≤ x2. The function
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g is said to be arrangement decreasing (AD) when the
inequality is reversed.

The notion AI [AD] means that the function
achieves larger [smaller] value when (x1, x2) and
the locations (1, 2) are similarly ordered. They are
very useful in establishing various inequalities aris-
ing from different areas. Readers can refer to Boland
and Proschan (1988); Hollander et al. (1977) for more
discussions.

3. Main results

In this section, we establish sufficient conditions for
the expectation order, the increasing convex [con-
cave] order and the usual stochastic order between two
weighted k-out-of-n systems composed of heteroge-
neous components.

Henceforth, it is assumed that w1 ≤ w2 ≤ · · · ≤ wn.
For a weighted k-out-of-n system, let Xλi be the life-
time of the ith component, and the reliability function
of Xλi is denoted by F̄(·; λi), i = 1, . . . , n. Denote Xλ =
(Xλ1 , . . . ,Xλn). First, we make the following assump-
tion throughout the paper:

Assumption 3.1: F̄(t; λ) is decreasing in λ > 0, for all
t ∈ R+.

According to Rahmani et al. (2016b); Zhang et al.
(2018), larger weight should be allocated with com-
ponent with higher reliability. Then, under Assump-
tion 3.1, the best assembly of components and weights
can be achieved by setting λ1 ≥ λ2 ≥ . . . ≥ λn, and the
worst assembly is obtained if λ1 ≤ λ2 ≤ . . . ≤ λn. That
is, λ ∈ Dn and λ ∈ In, respectively.

First, we study the expectation order. The following
assumption is needed for deriving the first main result.

Assumption 3.2: F̄(t; λ) is convex in λ > 0, for all
t ∈ R+.

Theorem 3.1: Under Assumptions 3.1 and 3.2, if λ ∈
Dn and λ

w� μ, then ψ(t;w,Xλ) ≥e ψ(t;w,Xμ), for all
t ∈ R+.

Proof: The desired result is equivalent to showing that
E[ψ(t;w,Xλ)] ≥ E[ψ(t;w,Xμ)], i.e.,

∑n
i=1 wiF̄(t; λi) ≥∑n

i=1 wiF̄(t;μi), for all t ∈ R+.
We first assume that μ ∈ Dn. Denote by φ1(λ) :=∑n
i=1 wiF̄(t; λi). Then ∂φ1(λ)

∂λi
= wi

∂ F̄(t;λi)
∂λi

≤ 0, i =
1, . . . , n, and

∂φ1(λ)

∂λi
− ∂φ1(λ)

∂λj
= wi

∂F̄(t; λi)
∂λi

− wj
∂F̄(t; λj)
∂λj

≥ wj

(
∂F̄(t; λi)
∂λi

− ∂F̄(t; λj)
∂λj

)

≥ 0,

for 1 ≤ i < j ≤ n. Thus the proof is finished by applying
Lemma 2.1.

Now, let us consider any permutation ofμ, sayμπ =
(μπ1 , . . . ,μπn), where π = (π1, . . . ,πn) is a permu-
tation of (1, 2, . . . , n). Without loss of generality, we
set

μπ = (μ1, . . . ,μi−1,μj,μi+1, . . . ,μj−1,

μi,μj+1, . . . ,μn), 1 ≤ i < j ≤ n.

Then, it can be verified that

E[ψ(t;w,Xμ)] − E[ψ(t;w,Xμπ )]

= wiF̄(t;μi)+ wjF̄(t;μj)− wiF̄(t;μj)− wjF̄(t;μi)

= (wi − wj)[F̄(t;μi)− F̄(t;μj)] ≥ 0,

where the inequality follows from Assumption 3.1. To
sum up, the proof is finished. �

Remark 3.1: As per Theorem 3.1, it indicates that,
under appropriate conditions, more heterogeneity
among the components leads to larger expected system
capacity. It should be noted that the components life-
times can be dependent in Theorem 3.1, which does not
affect the expectation ordering.

Combining Theorem 3.1 with Theorem 3.4 in Li
et al. (2016), the following result can be obtained
immediately.

Theorem 3.2: Under Assumptions 3.1 and 3.2, ifw, v ∈
In, λ,μ ∈ Dn,w �w v and λ

w� μ, thenψ(t;w,Xλ) ≥e
ψ(t; v,Xμ), for all t ∈ R+.

Proof: From Theorem 3.1, it holds that E[ψ(t;w,Xλ)]
≥ E[ψ(t;w,Xμ)], for all t ∈ R+. On the other hand,
the result of Theorem 3.4 in Li et al. (2016) implies that
E[ψ(t;w,Xμ)] ≥ E[ψ(t; v,Xμ)], for all t ∈ R+. Thus
the desired result follows. �

Next, we establish sufficient conditions for the
increasing convex ordering between ψ(t;w,Xλ) and
ψ(t;w,Xμ), for t ∈ R+. We need the following inde-
pendence assumption on the lifetimes of components.

Assumption 3.3: The components lifetimes in the
weighted k-out-of-n system are independent.

Besides, we need an additional assumption imposed
on the reliability function F̄(·; λ) with respect to the
parameter λ > 0.

Assumption 3.4: The function ∂ ln F̄(t;λ)
∂λ

is increasing
in λ > 0, for all t ∈ R+.

Theorem 3.3: Under Assumptions 3.1–3.4, if λ ∈ Dn

and λ
w� μ, then ψ(t;w,Xλ) ≥icx ψ(t;w,Xμ), for all

t ∈ R+.
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Proof: We first prove the result when μ ∈ Dn. The
desired result is equivalent to showing that
E[u(ψ(t;w,Xλ))] ≥ E[u(ψ(t;w,Xμ))], for all increas-
ing and convex function u and all t ∈ R+. Let�i,j(t) :=∑n

r 
=i,j wrI(Xλr > t). Note that, for any 1 ≤ i < j ≤ n,

φ2(λ) := E[u(ψ(t;w,Xλ))]

= F̄(t; λi)F̄(t; λj)E[u(wi + wj +�i,j(t))]

+ F̄(t; λi)[1 − F̄(t; λj)]E[u(wi +�i,j(t))]

+ F̄(t; λj)[1 − F̄(t; λi)]E[u(wj +�i,j(t))]

+ [1 − F̄(t; λi)][1 − F̄(t; λj)]E[u(�i,j(t))].

Taking the derivative of φ2(λ) with respective to λi, we
have
∂φ2(λ)

∂λi

= ∂F̄(t; λi)
∂λi

F̄(t; λj)E[u(wi + wj +�i,j(t))]

+ ∂F̄(t; λi)
∂λi

[1 − F̄(t; λj)]E[u(wi +�i,j(t))]

− ∂F̄(t; λi)
∂λi

F̄(t; λj)E[u(wj +�i,j(t))]

− ∂F̄(t; λi)
∂λi

[1 − F̄(t; λj)]E[u(�i,j(t))]

= ∂F̄(t; λi)
∂λi

F̄(t; λj)
{
E[u(wi + wj +�i,j(t))]

− E[u(wj +�i,j(t))]
}

+ ∂F̄(t; λi)
∂λi

[1 − F̄(t; λj)]
{
E[u(wi +�i,j(t))]

− E[u(�i,j(t))]
}
.

Since u is increasing, the Assumption 3.1 implies that
∂φ2(λ)
∂λi

≤ 0, for i = 1, . . . , n and t ∈ R+. Since λi ≥ λj,
wi ≤ wj, and u is increasing and convex, fromAssump-

tions 3.1, 3.2 and 3.4, we can obtain ∂ F̄(t;λi)
∂λi

≥ ∂ F̄(t;λj)
∂λj

,
∂ F̄(t;λi)
∂λi

F̄(t; λj) ≥ ∂ F̄(t;λj)
∂λj

F̄(t; λi), and

E[u(wi + wj +�i,j(t))] − E[u(wj +�i,j(t))]

= E
{
E[u(wi + wj +�i,j(t))

− u(wj +�i,j(t))|X{i,j}
λ ]

}
≥ E

{
E[u(wi +�i,j(t))− u(�i,j(t))|X{i,j}

λ ]
}

= E[u(wi +�i,j(t))] − E[u(�i,j(t))].

Then, one can observe that

∂φ2(λ)

∂λi
− ∂φ2(λ)

∂λj

=
[
∂F̄(t; λi)
∂λi

F̄(t; λj)− ∂F̄(t; λj)
∂λj

F̄(t; λi)

]

× {
E[u(wi + wj +�i,j(t))]

− E[u(wj +�i,j(t))]
}

+
[
∂F̄(t; λi)
∂λi

[1 − F̄(t; λj)]

− ∂F̄(t; λj)
∂λj

[1 − F̄(t; λi)]

]

× {
E[u(wi +�i,j(t))] − E[u(�i,j(t))]

}
≥
[
∂F̄(t; λi)
∂λi

F̄(t; λj)− ∂F̄(t; λj)
∂λj

F̄(t; λi)

]

× {
E[u(wi +�i,j(t))] − E[u(�i,j(t))]

}
+
[
∂F̄(t; λi)
∂λi

[1 − F̄(t; λj)]

− ∂F̄(t; λj)
∂λj

[1 − F̄(t; λi)]

]

× {
E[u(wi +�i,j(t))] − E[u(�i,j(t))]

}
=
(
∂F̄(t; λi)
∂λi

− ∂F̄(t; λj)
∂λj

){
E[u(wi +�i,j(t))]

− E[u(�i,j(t))]
}

≥ 0.

Hence, the proof is finished by applying Lemma 2.1.
On the other hand, it follows from Theorem 2.2

of Rahmani et al. (2016b) that ψ(t;w,Xμ) ≥st ψ(t;w,
Xμπ

), where μπ is a permutation of μ with a permu-
tation vector of indexes π . Since the usual stochas-
tic ordering implies the increasing convex ordering, it
must hold that ψ(t;w,Xμ) ≥icx ψ(t;w,Xμπ

). To sum
up, the desired result follows. �

Remark 3.2: In the same spirit with Theorem 3.1, the
result of Theorem 3.3 states that, under suitable condi-
tions (larger weight accompanied with ‘good’ compo-
nent),more heterogeneity among components lifetimes
results in greater system capacity in the sense of the
increase convex ordering. Since the increasing convex
ordering is stronger than the expectation ordering, it is
natural to note that some more restrictive conditions
are needed.

In order to study the effects of both of the hetero-
geneity among weights and components on the system
capacity, we strengthen Assumption 3.1 as follows.

Assumption3.5: Forλ1 ≥ λ2, it holds thatXλ1 ≤hr Xλ2 .

Assumption3.6: Forλ1 ≥ λ2, it holds thatXλ1 ≤rh Xλ2 .

Theorem3.4: Under Assumptions 3.2–3.5, ifw, v ∈ In,
λ,μ ∈ Dn, w �w v and λ

w� μ, then ψ(t;w,Xλ) ≥icx
ψ(t; v,Xμ), for all t ∈ R+.
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Proof: Since Assumption 3.5 implies Assumption 3.1,
by using Theorem 3.3 we have that ψ(t;w,Xλ) ≥icx
ψ(t;w,Xμ). On the other hand, by combiningTheorem
3.7 of Li et al. (2016) with Proposition 5.4 of
Cai and Wei (2014), it holds that ψ(t;w,Xμ) ≥icx
ψ(t; v,Xμ). Thus the desired result follows. �

In many practical scenarios, it often occurs that the
weighted k-out-of-n system might be consisting of two
types of components and each type of component has
the common weight (cf. Eryilmaz & Kan, 2020; Eryil-
maz & Sarikaya, 2014). The following corollary can be
obtained from Theorem 3.4 for this special weighted
k-out-of-n system.

Corollary 3.1: Consider two weighted k-out-of-n sys-
tems with weights (w11n1 ,w21n2) and (v11n1 , v21n2),
and component lifetimes (Xλ11n1 ,Xλ21n2) and (Xμ11n1 ,
Xμ21n2), respectively, where n1 + n2 = n. Suppose that
w1 ≤ w2, v1 ≤ v2, λ1 ≥ λ2, and μ1 ≥ μ2. Under Assu-
mptions 3.2–3.5, if (w11n1 ,w21n2) �w (v11n1 , v21n2)
and (λ11n1 , λ21n2)

w� (μ11n1 ,μ21n2), then ψ(t;w1,w2,
λ1, λ2) ≥icx ψ(t; v1, v2,μ1,μ2), for all t ∈ R+.

By adopting a similar proof in Theorem 3.3, the
following result presents sufficient conditions for the
increasing concave ordering when the larger weight is
accompanied with ‘bad’ component.

Theorem 3.5: Under Assumptions 3.1–3.4, if λ ∈ In
and λ �w μ, then ψ(t;w,Xλ) ≤icv ψ(t;w,Xμ), for all
t ∈ R+.

The next result can be obtained from Theorem 3.8
of Li et al. (2016) together with Proposition 4.1 of Cai
and Wei (2015), whose proof is similar with that of
Theorem 3.4 and thus omitted.

Theorem 3.6: Under Assumptions 3.2, 3.3, 3.4, and
3.6, if w, v ∈ In, λ,μ ∈ In, w

w� v and λ �w μ, then
ψ(t;w,Xλ) ≤icv ψ(t; v,Xμ), for all t ∈ R+.

The next corollary can be derived from Theorem 3.6
immediately.

Corollary 3.2: Under the setting of Corollary 3.1,
suppose that w1 ≤ w2, v1 ≤ v2, λ1 ≤ λ2, and μ1 ≤
μ2. Under Assumptions 3.2, 3.3, 3.4, and 3.6, if
(w11n1 ,w21n2)

w� (v11n1 , v21n2) and (λ11n1 , λ21n2) �w
(μ11n1 ,μ21n2), then ψ(t;w1,w2, λ1, λ2) ≤icv ψ(t; v1,
v2,μ1,μ2), for all t ∈ R+.

As an illustration, we present two distribution fami-
lies satisfying Assumptions 3.1, 3.2, 3.4, 3.5 and 3.6.

Example 3.1: We consider the scale and proportional
hazard rates (PHR) distribution families as follows:

(a) Scale family: For this case, we have F̄(t; λ) = F̄(λt),
t ∈ R+. Thus Assumption 3.1 holds naturally, and
Assumption 3.2 reduces to the condition that the
underlying density function f is decreasing (e.g.,
the gamma and Weibull density functions with
shape parameters less than 1). Assumption 3.4 can
be simplified into that the underlying hazard rate
function hF(t) is decreasing in t ∈ R+. Further,
Assumption 3.5 is equivalent to saying that thF(t) is
increasing in t ∈ R+, andAssumption 3.6 is equiv-
alent to saying that trF(t) is decreasing in t ∈ R+.
These simplified conditions are fulfilled by some
well-known distributions within the scale family;
see Ding et al. (2017); Zhang et al. (2019).

(b) PHR family: In this case, we have F̄(t; λ) =
F̄λ(t), t ∈ R+. It is easy to check that Assump-
tions 3.1, 3.2, 3.4, and 3.5 hold naturally.

Now, let us verify Assumption 3.6. Let φ3(λ) =
λ

x−λ−1 , where x ∈ (0, 1] and λ > 0. Observe that

φ′
3(λ)

sign= x−λ − 1 + λx−λ ln x =: φ4(λ).

Since φ′
4(λ) = −λx−λ(ln x)2 ≤ 0, it follows that

φ4(λ) is decreasing in λ > 0. Thus, φ4(λ) ≤
limλ→0+ φ3(λ) = 0, which in turn implies that
φ3(λ) is decreasing in λ > 0. Since the reversed
hazard rate function of Xλ1 can be written as

rXλ1 (t) = λ1F̄λ1−1(t)f (t)
1 − F̄λ1(t)

= hF(t)
λ1

F̄−λ1(t)− 1
.

By using the decreasing property of φ3(λ), we then
have

rXλ1 (t) = hF(t)
λ1

F̄−λ1(t)− 1

≤ hF(t)
λ2

F̄−λ2(t)− 1
= rXλ2 (t), λ1 ≥ λ2,

which implies Assumption 3.6.

The previous results both in Theorems 3.3 and 3.5
are established based on Assumption 3.3, that is, the
components in the system are assumed to be indepen-
dent. As a generalisation, the following theorem studies
the increasing convex ordering for a k-out-of-2 system
composed of only two dependent components, whose
lifetimes share a symmetric survival copula. To pro-
ceed, wemake the following assumption on the survival
copula.

Assumption 3.7: For a weighted k-out-of-2 system
with two dependent components sharing a survival
copula Ĉ, assume that Ĉ is symmetric and uĈ(u, v) is
AD in (u, v) ∈ (0, 1)2.

Theorem 3.7: Under Assumptions 3.1, 3.2, 3.4 and 3.7,
ifλ ∈ D2 andλ

w� μ, thenψ(t;w,Xλ) ≥icx ψ(t;w,Xμ),
for all t ∈ R+.
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Proof: According to the proof of Theorem 3.3, we can
write

φ4(λ) := E[u(ψ(t;w,Xλ))]

= Ĉ(F̄(t; λ1), F̄(t; λ2))u(w1 + w2)

+ [F̄(t; λ1)− Ĉ(F̄(t; λ1), F̄(t; λ2))]u(w1)

+ [F̄(t; λ2)− Ĉ(F̄(t; λ1), F̄(t; λ2))]u(w2)

+ [1 − F̄(t; λ1)− F̄(t; λ2)

+ Ĉ(F̄(t; λ1), F̄(t; λ2))]u(0).

It can be derived that

∂φ4(λ)

∂λ1
= ∂F̄(t; λ1)

∂λ1
Ĉ1(F̄(t; λ1), F̄(t; λ2))

× [u(w1 + w2)− u(w2)]

+ ∂F̄(t; λ1)
∂λ1

[1 − Ĉ1(F̄(t; λ1), F̄(t; λ2))]

× [u(w1)− u(0)] ,

∂φ4(λ)

∂λ2
= ∂F̄(t; λ2)

∂λ2
Ĉ2(F̄(t; λ1), F̄(t; λ2))

× [u(w1 + w2)− u(w2)]

+ ∂F̄(t; λ2)
∂λ2

[1 − Ĉ2(F̄(t; λ1), F̄(t; λ2))]

× [u(w1)− u(0)] ,

where Ĉ1(u, v) and Ĉ2(u, v) stands for the partial
derivative of Ĉ(u, v) with respective to u and v, respec-
tively. Upon using Assumptions 3.1, 3.2, 3.4 and 3.7,
we have ∂φ4(λ)

∂λ1
< 0, ∂φ4(λ)

∂λ2
< 0, λ1 ≥ λ2, F̄(t; λ1) ≤

F̄(t; λ2),

0 ≤ F̄(t; λ1)Ĉ1(F̄(t; λ1), F̄(t; λ2))

≤ F̄(t; λ2)Ĉ1(F̄(t; λ2), F̄(t; λ1))

= F̄(t; λ2)Ĉ2(F̄(t; λ1), F̄(t; λ2))

and

∂F̄(t; λ1)
∂λ1

Ĉ1(F̄(t; λ1), F̄(t; λ2))

= −
[(

−∂F̄(t; λ1)
∂λ1

1
F̄(t; λ1)

)
F̄(t; λ1)

× Ĉ1(F̄(t; λ1), F̄(t; λ2))
]

≥ −
[(

−∂F̄(t; λ2)
∂λ2

1
F̄(t; λ2)

)
F̄(t; λ1)

× Ĉ1(F̄(t; λ1), F̄(t; λ2))
]

≥ −
[(

−∂F̄(t; λ2)
∂λ2

1
F̄(t; λ2)

)
F̄(t; λ2)

× Ĉ1(F̄(t; λ2), F̄(t; λ1))
]

= ∂F̄(t; λ2)
∂λ2

Ĉ2(F̄(t; λ1), F̄(t; λ2)).

Then, by applying the convexity of u we have

∂φ4(λ)

∂λ1
− ∂φ4(λ)

∂λ2

= [u(w1 + w2)− u(w2)]

×
[
∂F̄(t; λ1)
∂λ1

Ĉ1(F̄(t; λ1), F̄(t; λ2))

− ∂F̄(t; λ2)
∂λ2

Ĉ2(F̄(t; λ1), F̄(t; λ2))
]

+
{
∂F̄(t; λ1)
∂λ1

[1 − Ĉ1(F̄(t; λ1), F̄(t; λ2))]

−∂F̄(t; λ2)
∂λ2

[1 − Ĉ2(F̄(t; λ1), F̄(t; λ2))]
}

× [u(w1)− u(0)]

≥ [u(w1)− u(0)]
(
∂F̄(t; λ1)
∂λ1

− ∂F̄(t; λ2)
∂λ2

)
≥ 0.

Hence, the proof is completed by applying Lemma 2.1.
�

In light of the proof of Theorem 3.7 and the setting
of Theorem 3.5, the following result can be obtained
immediately.

Theorem 3.8: Under Assumptions 3.1, 3.2, 3.4 and
3.7, if λ ∈ I2 and λ �w μ, then ψ(t;w,Xλ) ≤icv
ψ(t;w,Xμ), for all t ∈ R+.

As an illustration of Assumption 3.7, let us con-
sider the Farlie–Gumble–Morgenstern (FGM) survival
copula and the family of Archimedean survival copulas.

Example 3.2: (a) The FGM survival copula (cf.
Nelsen, 2007) is given by

Ĉ(u, v) = uv[1 + θ(1 − u)(1 − v)], −1 ≤ θ ≤ 1.

Note that

uĈ1(u, v) = uv + θuv(1 − u)(1 − v)+ u2v

− θu2v(1 − v),

vĈ1(v, u) = uv + θuv(1 − u)(1 − v)+ uv2

− θv2u(1 − u).

Then, for 0 ≤ u ≤ v ≤ 1, we have

vĈ1(v, u)− uĈ1(u, v)

= uv2 − θv2u(1 − u)− u2v + θu2v(1 − v)



78 Y. ZHANG

= uv[v − θv(1 − u)− u + θu(1 − v)]

= uv(v − u)(1 − θ) ≥ 0,

which implies the AD property of uĈ1(u, v) in
(u, v) ∈ [0, 1]2, irrespective of the dependence
structure.

(b) TheArchimedean survival copula (cf.Nelsen, 2007)
has its explicit expression

Ĉ(u, v) = ψ(ψ−1(u)+ ψ−1(v)),

where the generator ψ : R+ �→ [0, 1] is a decreas-
ing and continuous function such that ψ(0) = 1
and ψ(+∞) = 0. Observe that

uĈ1(u, v) = u(ψ−1)′(u)ψ ′(ψ−1(u)+ ψ−1(v)).

Thus, for 0 ≤ u ≤ v ≤ 1, the AD property of
uĈ1(u, v) in (u, v) is equivalent to uĈ1(u, v) ≤
vĈ1(v, u), i.e.,u(ψ−1)′(u) ≥ v(ψ−1)′(v). This boils
down to showing that u(ψ−1)′(u) is decreasing
in u ∈ [0, 1]. Since (ψ−1)′(u) = 1/ψ ′(ψ−1(u)),
by letting t = ψ−1(u) we need to show that
ψ(t)/ψ ′(t) is increasing in t ∈ R+. It equals to
saying that logψ is concave. For example, the
Gumbel–Hougaard survival copula (see (4.2.9) in
Table 4.1 of Nelsen, 2007) has log-concave gener-
ator meaning that the two components lifetimes
are negative lower orthant dependent (NLOD).
To this regard, we cannot obtain the similar
ordering result with that of Theorem 3.4 since
the component lifetimes are required to be posi-
tively dependent according to Theorem 3.7 of Li
et al. (2016) and Proposition 5.4 of Cai Wei (2014)
under the framework of Archimedean copulas.
We leave it as an open problem for further
investigation.

Next, let us present a result on the usual stochastic
ordering for the weighted k-out-of-2 system. We leave
it as an open problem extending the result to the case
when the system has more than three components.

Theorem 3.9: Consider two weighted k-out-of-2 sys-
tems with common weights (w1,w2). Under Assumption
3.3, if Xλ2 ≥st Xμ2 andmin{Xλ1 ,Xλ2} ≥st min{Xμ1 ,Xμ2},
then T(k;w,Xλ) ≥st T(k;w,Xμ), for all k>0.

Proof: By using (1), it is equivalent to showing that
P(ψ(t;w,Xλ) ≥ k) ≥ P(ψ(t;w,Xμ) ≥ k), for all k>0
and t ∈ R+. The proof can be completed by distin-
guishing the values of k in accordance with the follow-
ing four cases:

Case 1: k ≤ w1. For this case, it is clear that
P(ψ(t;w,Xλ) ≥ k) = P(ψ(t;w,Xμ) ≥ k) = 1, for all
t ∈ R+.

Case 2: w1 < k ≤ w2. For this case, by using Xλ2 ≥st
Xμ2 we have

P(ψ(t;w,Xλ) ≥ k)

= F(t; λ1)F̄(t; λ2)+ F̄(t; λ1)F̄(t; λ2)

= F̄(t; λ2) ≥ F̄(t;μ2) = P(ψ(t;w,Xμ) ≥ k).

Case 3:w2 < k ≤ w1 + w2. By applyingmin{Xλ1 ,Xλ2} ≥st
min{Xμ1 ,Xμ2}, we have

P(ψ(t;w,Xλ) ≥ k) = F̄(t; λ1)F̄(t; λ2)

≥ F̄(t;μ1)F̄(t;μ2)

= P(ψ(t;w,Xμ) ≥ k).

Case 4: k > w1 + w2. For this case, it is easy to see that
P(ψ(t;w,Xλ) ≥ k) = P(ψ(t;w,Xμ) ≥ k) = 0, for all
t ∈ R+.

Therefore, we have P(ψ(t;w,Xλ) ≥ k) ≥ P(ψ(t;w,
Xμ) ≥ k), for all k>0 and t ∈ R+, which proves the
desired result. �

Remark 3.3: According to Theorem 3.9, the condi-
tion Xλ2 ≥st Xμ2 means that the reliability of compo-
nent with lifetime Xλ2 is higher than that of Xμ2 . Fur-
ther, min{Xλ1 ,Xλ2} ≥st min{Xμ1 ,Xμ2} indicates that
the series systemwith components having lifetimesXλ1
andXλ2 is better than the systemwith components hav-
ing lifetimes Xμ1 and Xμ2 . These two conditions can be
simplified as follows for the scale and PHR models.

(a) Scale model: In this case, we have F̄(t; λ) =
F̄(λt), t ∈ R+. Thus Xλ2 ≥st Xμ2 is equivalent
to saying that λ2 ≤ μ2. On the other hand,
min{Xλ1 ,Xλ2} ≥st min{Xμ1 ,Xμ2} boils down to
F̄(λ1t)F̄(λ2t) ≥ F̄(μ1t)F̄(μ2t), for all t ∈ R+. Fur-
thermore, suppose that λ1 ≥ λ2, μ1 ≥ μ2, and
(λ1, λ2)

w� (μ1,μ2). Letφ5(λ1, λ2) = F̄(λ1t)F̄(λ2t).
We need to ensure that φ5(λ1, λ2) ≥ φ5(μ1,μ2). If
the baseline hazard rate function hF is decreasing,
then

∂φ5(λ1, λ2)
∂λ1

− ∂φ5(λ1, λ2)
∂λ2

= tφ5(λ1, λ2)(hF(λ2t)− hF(λ1t)) ≥ 0,

which implies the desired result by Lemma 2.1.
(b) PHR model: In this case, we have F̄(t; λ) = F̄λ(t),

t ∈ R+. Then, the conditions Xλ2 ≥st Xμ2 and
min{Xλ1 ,Xλ2} ≥st min{Xμ1 ,Xμ2} reduce to λ2 ≤
μ2 and λ1 + λ2 ≤ μ1 + μ2, respectively.

To conclude, we present an ordering result for the
hazard rate ordering in the next theorem. The proof is
easy to be conducted by following the discussions of
Theorem 3.9, and thus omitted for brevity.

Theorem 3.10: Consider two weighted k-out-of-2 sys-
tems with common weights (w1,w2). Under Assumption
3.3, if Xλ2 ≥hr Xμ2 and min{Xλ1 ,Xλ2} ≥hr min{Xμ1 ,
Xμ2}, then T(k;w,Xλ) ≥hr T(k;w,Xμ), for all 0 < k ≤
w1 + w2.
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4. Conclusion

Wehave studied stochastic comparisons on total capac-
ity of two weighted k-out-of-n systems in the sense of
the expectation ordering, the increasing convex [con-
cave] ordering, and the usual stochastic ordering. Some
useful majorisation-type orders are employed to estab-
lish sufficient conditions for four kinds of stochastic
orders. Some examples are also presented to illustrate
the conditions and assumptions needed in the results.

As a future work, more studies are needed on the
generalisations of Theorems 3.7, 3.8 and 3.9 to the
case of weighted k-out-of-n systems with more than
three dependent components. Besides, it is of great
interest to extend the current studies to the setting
of randomly weighted k-out-of-n systems (cf. Eryil-
maz, 2013; Zhang et al., 2018). We are currently work-
ing on these problems and hope to report some valuable
findings in a future paper.
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