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ABSTRACT
The outbreak of COVID-19 on the Diamond Princess cruise ship has attracted much attention.
Motivated by the PCR testing data on the Diamond Princess, we propose a novel cure mixture
nonparametric model to investigate the detection pattern. It combines a logistic regression for
the probability of susceptible subjects with a nonparametric distribution for the detection of
infected individuals. Maximum likelihood estimators are proposed. The resulting estimators are
shown to be consistent and asymptotically normal. Simulation studies demonstrate that the pro-
posed approach is appropriate for practical use. Finally, we apply the proposed method to PCR
testing data on the Diamond Princess to show its practical utility.
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1. Introduction

The epidemic of the novel coronavirus disease (COVID-19) outbroke in December 2019 inWuhan, China. Since its
outbreak, the epidemic has progressed rapidly and has emerged inmore than two hundred countries. It has become
an unprecedented global epidemic crisis. The transmissibility patterns in open spaces like households, offices and
public places are quite different from those in confined spaces such as aeroplanes, trains and cruise ships. Among
the outbreaks of COVID-19 all over the world, one of the most well-known eruptions is the one on the Diamond
Princess cruise ship. The high contagiousness of COVID-19 on the Diamond Princess cruise has attracted much
attention (Mizumoto et al., 2020; Sekizuka et al., 2020; Zhang et al., 2020). Its speciality can be observed through
Johns Hopkins’ daily released confirmed cases over the world, where the infected number of cases on Diamond
Princess ship is reported separately adjacent to that of Japan.

The Diamond Princess cruise ship started on January 20, 2020 in Yokohama, Japan, visited five places including
Hong Kong and returned Yokohama on February 3 (Sekizuka et al., 2020). During this period, an 80-year-old
passenger who disembarked on January 25 in Hong Kong, was confirmed for COVID-19 on February 1. After the
disembarkation of Diamond Princess at Yokohama, Japanese government asked 3711 individuals, including 2666
passengers and 1045 crew members, to stay onboard to carry out a 14-day quarantine period from February 5 to
February 19. The health status of all individuals on board was investigated, making daily time series of PCR testing
data, including number of tests and number of patients testing positive each day, publicly available (Mizumoto
et al., 2020). Table 1 reports the daily time series datawith number of tested individuals and individuals with positive
results.

The vessel with confined spaces offered a rare opportunity to understand features of the COVID-19 that are
otherwise hard to investigate. This is different from studying the spread in a wider population, where only some
people, typically with severe symptoms, are tested andmonitored. Closed confines like cruise ship are an ideal place
to study how COVID-19 behaves, since almost the whole population and the PCR testing result for everyone are
known (Mallapaty, 2020). Testing almost all of the passengers and crews helps us to understand a key blind spot in
COVID-19 outbreaks. The comprehensive key information on the Diamond Princess allows us to investigate the
infection patterns, including infections with no symptoms. Outbreaks seed easily on cruise ships because of the
close environments and high proportions of older people, who tend to be more vulnerable to the disease. Since the
Diamond Princess, at least 25 other such vessels and aircraft carriers have confirmed a high number of COVID-19
cases (Mallapaty, 2020).

Hence, studying the extent of transmission of COVID-19 in encompassed spaces like Diamond Princess cruise
is of great importance to understand the disease progression and to manage the epidemic. It has major implications
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Table 1. Number of tests and number of individuals testing positive for pas-
sengers and crews on the Diamond Princess cruise ship, Yokohama, Japan,
February 2020 (n = 3711).

Reported Number of Number of individuals The cumulative number of
date tests testing positive individuals testing positive

Feb 5 31 10 10
Feb 6 71 10 20
Feb 7 171 41 61
Feb 8 6 3 64
Feb 9 57 6 70
Feb 10 103 65 135
Feb 12 53 39 174
Feb 13 221 44 218
Feb 15 217 67 285
Feb 16 289 70 355
Feb 17 504 99 454
Feb 18 681 88 542
Feb 19 607 79 621
Feb 20 52 13 634

Data on February 11 and 14 are not available.

for controlling and anticipating the trajectory and impact of the pandemic. Precise knowledge of the infection dis-
tribution is crucial for the prevention and control of these diseases. Correct understanding of the virus transmission
pattern might give some guidelines when designing the passenger cabins and making the cruise travel more safe in
the future.

The available data on theDiamond Princess have unique features because at the beginning, the upper-respiratory
specimens were collected from symptomatic individuals and their close contacts for PCR testing. Starting from
February 11, due to the expansion of laboratory capacity, quarantine officers systematically collected respiratory
specimens from all passengers by age group, starting with those aged 80 years and older as well as individuals with
comorbidities, such as diabetes or a heart condition. This means that a non-random sampling was implemented
in the selection for PCR test. In addition, the individual data are not observed. The only available data are the
aggregated data, which provides weak information and brings difficulty in statistical inference.

Taking the feature of selection bias and the incomplete aggregated data into account, the main purpose of this
paper is to propose a novel mixture model to fully characterize the data structure. We introduce a cure mixture
model that combines the nonparametric distribution for the detection time with logistic regression modelling the
cure fraction, where the detection time is defined as the time the infected individual begins to be detected by PCR
test. The maximum likelihood approach is introduced to jointly estimate the probabilities in nonparametric infec-
tion distribution and parameters in logistic regression. The proposed model can also estimate the distribution of
detection time and total numbers of infection that can be detected after 14 days of quarantine based on PCR test
data performed on the Diamond Princess cruise.

The rest of this paper is organized as follows. Section 2 introduces the proposed cure mixture model and the
maximum likelihood estimation approach. The large sample properties, including consistency and asymptotic nor-
mality, of the proposed estimator are given in Section 3. Finite sample performances of the proposed estimator
are investigated via simulation studies in Section 4. In Section 5, we apply the proposed method to the Dia-
mond Princess cruise ship PCR testing data to illustrate its practical utility. Finally, some remarks are concluded in
Section 6. All the technical proofs are relegated to the Appendix.

2. Methodology

2.1. Model

The COVID-19 data collected on the diamond princess cruise were very limited. All information was summarized
in Table 1. The information only includes the number of tests and number of individuals testing positive each day
during the quarantine. There were 3711 individuals, including 2666 passengers and 1045 crew members, on the
cruise. However, according to Table 1, the total number of tests is 3063. Therefore, we assume each individual was
only tested once and the sensitivity of the test was 100%. We will discuss the limitation in Section 6.

Suppose there are n∗ subjects (including passengers and crew members) on the Diamond Princess cruise ship
who have experienced a quarantine period that lasted 14 days. Each day a number of subjects were chosen for PCR
testing. Let xi and yi be the number of testing positive cases and number of tests at day i, respectively. This means,
n = ∑14

i=1 yi (n � n∗) subjects have PCR testing results, but n∗ − n individuals do not have.
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Denote the detection time as the time the infected individual begins to be detected by PCR test. Let ξij be the
detection time of the j-th subject whowas tested at day i, j = 1, 2, . . . , yi, i = 1, 2, . . . , 14. LetG(x) be the cumulative
distribution function of detection time ξ calculated from February 4. Therefore Gi = G(i) is the probability of
the detection time occurring before day i starting from February 4. That is, Gi is the probability that an infected
individual can be detected by PCR test at day i. For example, G1 represents the probability of testing positive on
February 5. According to the non-decreasing property of the distribution function, Gi should satisfy the constraint
G1 � G2 � · · · � G14.

In the real data, instead of observing the exact detection time ξij, we observe the number of testing positive indi-
viduals xi, which is equal to

∑yi
j=1 I(ξij � i) with conditional expectation E(xi) = yiGi. Let δij = I(ξij � i) indicate

whether the detection occurred before day i. Then xi = ∑yi
j=1 δij.

If there is no selection bias, it is a standard current status data problem discussed extensively in the statistical
literature, for example, (Sun, 2006). The nonparametric likelihood method can be used directly to estimateGi. The
observed likelihood function is

14∏
i=1

yi!
xi!
(
yi − xi

)
!
(Gi)

xi (1 − Gi)
yi−xi . (1)

However, Figure 1 shows that the observed frequency and estimated probability on each day have a large
discrepancy, especially in the first week. This demonstrates that the random selection process was violated.

Next, we provide a novel mixture modelling strategy that fully utilizes the non-random sampling. Before the
quarantine, people were unaware of the existence of virus on the Diamond Princess cruise ship. The cruise had
shows and dance parties and opened public facilities that attracted large crowds, including fitness clubs, theatres,
casinos, bars and buffet-style restaurants. During this period, all passengers and crew members were susceptible
to the COVID-19. After the quarantine, people gradually realized the high contagiosity of the virus and began
to take actions to avoid the infection. The anti-epidemic measures became stricter as time went on. Passengers
with confirmed cases were reported to be taken ashore for treatment. Some individuals even left the cruise in
advance. Therefore, it is reasonable to assume some individuals were insusceptible at this stage. Taking the above
facts and the incubation period into account, we suppose the detection patterns of the first week and secondweek of
the quarantine period are different. We divide subjects into susceptible and insusceptible individuals and suppose
the two weeks have different compositions. All the people in the first week are susceptible, and the proportion of
insusceptible individuals in the second week grows.

We assume a cure mixture model (Farewell, 1982) for the detection time ξij. Specifically, the mixture modelling
of the cure rate assumes a decomposition of the detection time,

ξij = ηijξ
∗
ij + (1 − ηij)∞, j = 1, . . . , yi, i = 1, . . . , 14, (2)

where ξ∗
ij < ∞ denotes the detection time of a susceptible subject, and ηij indicates, by the value 1 or 0, whether

the sampled subject is susceptible or not.
It is worthy notifying that the observed data of most infectious diseases, including COVID-19 on the Diamond

Prince cruise ship, are aggregated data. The individual data are unavailable. Therefore, models on specific subjects
are impossible to be identified. We have the aggregated data on each testing day. The detection results of each
day should follow different patterns, because the anti-epidemic measures became stricter and the insusceptible
proportions increased as time went on. Thus, we assume the susceptible proportion and the distribution function
of detection time depend only on testing day i. Let Pr(ηij = 1) = λi, the proportion of susceptible patients among

Figure 1. Comparison of the observed detection rates {xi/yi}14i=1 and estimated ones if the selection bias is ignored. xi represents
number of patients that were tested positive at day i, and yi is the total number of tests at day i. Scatter points are the rate of xi/yi ,
where red and blue colours differentiate whether yi > 100 or not. Black line shows the estimated detection rates {Gi}14i=1.
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tested subjects at day i. At each day i, we suppose that tested individuals are amixture of a proportion ofλi susceptible
individuals who eventually get infected and a proportion of 1 − λi who are not susceptible to COVID-19 and will
never get infected. Let F(x) be the distribution function of detection time of a susceptible subject, that is, ξ∗

ij ∼ F(x).
Model (2) is equivalent to

ξij ∼ λiF(x) + (1 − λi)I(x = ∞), j = 1, . . . , yi, i = 1, . . . , 14.

For notation simplicity, we write Fi
.= F(i). Fi is the probability that a susceptible infected individual can be detected

by PCR test on day i. The proposed model is useful since a proportion of tested subjects will never be infected by
COVID-19. Thismodel is like survivalmodels with cure rate, which have arisen inmany disciplines (e.g. biomedical
sciences, economics, sociology, engineering science, etc) and have receivedmuch attention (Lu & Ying, 2004;Wang
et al., 2020).

Motivated by the priority in choosing symptomatic or high-risk groups, all chosen people in the first week were
likely to be infected and detected, and the susceptible probabilities maintained a high level nearly 1. Since symp-
tomatic and vulnerable individuals were tested first and some sick individuals disembarked at the end of first week,
it is expected that the proportions of non-susceptible individuals became larger as time went by. In other words,
starting from the second week, λi, i = 8, 9, . . . , 14, decrease. We suppose the mixture proportion λi varies across i
in the logistic form to add model flexibility. Specifically, we assume λi = 1, 1 � i � 7, and

λi = exp (θ1 + θ2(i − 7))
1 + exp (θ1 + θ2(i − 7))

, θ2 < 0, i = 8, 9, . . . , 14, (3)

with unknown parameters θ1 and θ2. It is easy to see that suspectable proportions in the first week are supposed to
be the same, and the suspectable probabilities λi, 8 � i � 14 in the second week have a logistic regression form and
decrease as i increases. Different forms of λi are designed to account for the data collection difference between the
two weeks. Under the proposed model, the true detected number during the quarantine period, N, is

N =
( 7∑

i=1
yi

)
F14 +

( 14∑
i=8

λiyi

)
F14 + (n∗ − n)λ14F14.

In summary, we formulate a cure model by assuming that the underlying population on the Diamond Princess
cruise ship is a mixture of susceptible and non-susceptible subjects. All susceptible subjects are vulnerable to be
infected and detected byCOVID-19, while the nonsusceptible ones are never infected and detected. Thus, wemodel
separately the detection distribution for susceptible individuals and the fraction of nonsusceptible ones.

2.2. Estimation

Theproposedmixturemodel uses a nonparametric approach to estimate the detection distributionF and a paramet-
ric approach to estimate the suspectable proportion λ. Since Pr(δij = 1) = λiFi, the conditional expectation of xi is
E(xi) = yiλiFi. The observed data are summarized as {(xi, yi); i = 1, . . . , 14}, which are constituted by n = ∑14

i=1 yi
independent and identically distributed random replications. The observed likelihood is then written as

Ln(F, θ) =
14∏
i=1

yi∏
j=1

(λiFi)δij (1 − λiFi)1−δij

=
14∏
i=1

(λiFi)
∑yi

j=1 δij (1 − λiFi)
∑yi

j=1(1−δij)

=
14∏
i=1

(λiFi)xi (1 − λiFi)yi−xi .

Suppose λi > 0, Fi > 0. The log-likelihood is

�n(F, θ) =
14∑
i=1

yi∑
j=1

{
δij log(λiFi) + (1 − δij) log(1 − λiFi)

}

=
14∑
i=1

{
xi log(λiFi) + (yi − xi) log(1 − λiFi)

}
.
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We view F as a piecewise constant non-decreasing nonparametric function that only jumps at i = 1, . . . , 14. So
far we have 16 unknown parameters Fi, i = 1, . . . , 14, θ1 and θ2 but only have 14 pairs of observed data. To ensure
identifiability, we impose the constraints F2 = (F1 + F3)/2 and F13 = F12. Then

�n(F, θ) =
7∑

i=1,i�=2

{xi log Fi + (yi − xi) log(1 − Fi)}

+ {x2 log((F1 + F3)/2) + (y2 − x2) log(1 − (F1 + F3)/2)}

+
14∑

i=8,i�=13

{xi log(λiFi) + (yi − xi) log(1 − λiFi)}

+ x13 log(λ13F12) + (y13 − x13) log(1 − λ13F12).

The maximum likelihood estimators (MLEs) (F̂i, θ̂k) are derived by maximizing �n(F, θ), that is,

(F̂i, θ̂k) = argmaxF,θ �n(F, θ), 1 � i � 14, i �= 2, 13, k = 1, 2.

Then, we can estimate N by

N̂ =
( 7∑

i=1
yi

)
F̂14 +

( 14∑
i=8

λ̂iyi

)
F̂14 + (n∗ − n)λ̂14F̂14,

where λ̂i = exp(θ̂1 + θ̂2(i − 7))/{1 + exp(θ̂1 + θ̂2(i − 7))} for i = 8, . . . , 14.

Remark 2.1: We only have 14 days aggregated data, but 28 unknown parameters, λi, Fi, i = 1, . . . , 14. To overcome
the non-identifiability, we carefully account for the data characteristics, estimate Fi nonparametrically with two con-
straints, and impose a parametric model on λi. Logistic regression is the most common model for the proportion.
The logistic model provides an approximation for the susceptible proportion. We set one regression coefficient as
negative to describe the decreasing trend. Onemay also use other parametricmodels, for example, the probitmodel.
We have fitted the probit model λi = �(θ5 + θ6i), 8 � i � 14, θ6 < 0 to the Diamond Princess cruise ship data and
found the estimated number of cumulative infection cases was 1072, which is almost the same with the estimated
number 1074 using the logistic model. This shows the robustness and rationality of the imposed assumptions. If we
impose strict assumptions on Fi and constraints on some λi, one may also estimate λi nonparametrically.

Remark 2.2: The two constraints F2 = (F1 + F3)/2 and F13 = F12 are imposed according to the preliminary data
analysis. We can impose other alternative constraints. For example, we assume a Weibull distribution for F which
is commonly used in epidemical modelling. Suppose Fi = F(i) = 1 − exp{−(θ4i)θ3}, i = 1, 2, . . . , 14. Maximum
likelihood is used for parameter estimation.Applying this parametric approach to theDiamondPrincess cruise data,
the estimated total infected number at the end of quarantine is 1036, which is quite close to the estimated number
using the proposed nonparametric method. This shows the robustness and rationality of the imposed constraints.

3. Asymptotic results

In this section, we give the large sample properties of the proposed estimators. Write

�(F, θ)
.= lim

n→∞ n−1�n(F, θ)

=
14∑
i=1

pi
{
λiFi log(λiFi) + (1 − λiFi) log(1 − λiFi)

}

=
7∑

i=1,i�=2

pi{Fi log Fi + (1 − Fi) log(1 − Fi)}

+ p2
{
F1 + F3

2
log

F1 + F3
2

+ 2 − (F1 + F3)
2

log
2 − (F1 + F3)

2

}
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+
14∑

i=8,i�=13

pi
{
λiFi log(λiFi) + (1 − λiFi) log(1 − λiFi)

}
+ p13

{
λ13F12 log(λ13F12) + (1 − λ13F12) log(1 − λ13F12)

}
,

where pi = limn→∞ yi/n.
For notation simplicity, let β̂ = (β̂1, . . . , β̂14)

� = (F̂1, F̂3, . . . , F̂12, F̂14, θ̂1, θ̂2)�. Denote the true value ofβ asβ0 =
(F1,0, F3,0, . . . , F12,0, F14,0, θ1,0, θ2,0)�, and denote �(F, θ) as �(β). The likelihood function �(β) is differentiable with
respect to each component of β . Define V(β) = −d2�(β)/dβ2, R− = (−∞, 0), where the specific form of V(β)

is given in the Appendix.
We impose the following regularity conditions.

(C1) The parameter space B is a bounded and closed subset of (0, 1)12 × R × R−.
(C2) V(β0) is a non-singular 14 × 14 matrix.
(C3) β0 is the unique solution to �′(β) = 0 for β ∈ B, where �′(β) = d�(β)/dβ .

Theorem 3.1: Under the regularity conditions (C1)–(C3), β̂ converges to β0 almost surely.

Theorem 3.2: Under the regularity conditions (C1)–(C3), n1/2{β̂ − β0} converges asymptotically to a normal
distribution N(0,V(β0)

−1).

Based on the theoretical results for β̂ established in Theorems 3.1 and 3.2, we can follow the delta method to
easily get the asymptotic properties of F̂2 and F̂13.

4. Simulation studies

In this section, we conduct simulation studies to assess the finite sample performance of the proposed method. We
generate data to mimic the PCR testing data on Diamond Princess cruise ship. Specifically, suppose the total num-
ber of people (include passengers and crew members) on the cruise for quarantine is n∗ = 3711. There are 14 pairs
of observations {(xi, yi)}14i=1, where (y1, . . . , y14)� = (31, 71, 171, 6, 57, 103, 53, 221, 217, 289, 504, 681, 607, 52)� is
consisted by the number of total tests each day. The susceptible probabilities

λi = 1, 1 � i � 7,

λi = exp(θ1 + θ2(i − 7))
1 + exp(θ1 + θ2(i − 7))

, 8 � i � 14,

with θ1 = −0.518, θ2 = −0.232. Given yi, xi is generated fromBinomial distribution B(yi, λiFi)with success proba-
bility λiFi, where Fi, 1 � i � 14 are set as F = (F1, . . . , F14)�= (0.208, 0.208, 0.208, 0.208, 0.208, 0.631, 0.696, 0.696,
0.850, 0.900, 0.950, 0.950, 1.000, 1.000)�.

Under this configuration, the true number of infections isN = 1042.We simulate 500 datasets and use bootstrap
to derive estimated standard errors and confidence intervals of the unknown parameters. 100 bootstrap samples
are generated based on the nonparametric mixturemodel with estimated parameters. The 95% confidence intervals
(CI) are derived through normal approximation, where the estimated standard errors are calculated as the standard
deviation of bootstrap sample estimators.

Table 1 summarizes the simulation results, where the true parameters, the empirical biases (Bias), the empirical
standard deviations (SD), the estimated standard errors (SE) and the empirical coverage probabilities (CP) are given.
We can conclude that the empirical biases are negligible, the empirical standard deviations and estimated standard
errors match each other quite well, and the empirical coverage probabilities are close to the nominal one 95%.

5. Real data analysis

In this Section, we apply the proposed method to the Diamond Princess cruise data to show its practical utility.
We use the time series daily report PCR testing data, including the number of tests and number of patients testing
positive each day during the quarantine period, to estimate the distribution of detection time, and the varying
proportions of susceptible individuals, along with the total number of infections that can be detected. The data are
publicly available, for example, in Table 1 of Mizumoto et al. (2020).
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Table 2. Simulation results.

Parameter True Bias SD SE CP

F1 0.208 −0.023 0.036 0.039 95.6
F2 0.208 −0.012 0.025 0.025 92.6
F3 0.208 0.001 0.025 0.025 95.6
F4 0.208 0.011 0.034 0.039 98.8
F5 0.208 0.024 0.040 0.043 95.4
F6 0.631 −0.005 0.044 0.044 95.4
F7 0.696 −0.001 0.053 0.052 93.4
F8 0.696 0.018 0.070 0.064 92.4
F9 0.850 −0.024 0.104 0.093 91.0
F10 0.900 −0.019 0.096 0.093 94.8
F11 0.950 −0.025 0.089 0.085 94.6
F12 0.950 0.002 0.085 0.074 97.2
F13 1.000 −0.048 0.085 0.074 92.2
F14 1.000 −0.002 0.011 0.011 95.8
N 1043 13.55 59.62 53.59 96.6
θ1 −0.518 −0.007 0.216 0.225 96.2
θ2 −0.232 0.008 0.045 0.046 95.6
λ8 0.321 0.001 0.039 0.041 95.8
λ9 0.272 0.003 0.030 0.031 96.2
λ10 0.229 0.004 0.024 0.023 96.4
λ11 0.191 0.005 0.020 0.018 95.8
λ12 0.157 0.005 0.019 0.017 96.0
λ13 0.129 0.006 0.019 0.017 95.8
λ14 0.105 0.006 0.019 0.018 95.4

Table 3. MLEs and the corresponding confidence intervals in real
data analysis.

Parameter Estimate Standard Error Confidence Interval

F1 0.208 0.037 (0.136, 0.281)
F2 0.208 0.024 (0.162, 0.255)
F3 0.208 0.024 (0.162, 0.255)
F4 0.208 0.032 (0.145, 0.271)
F5 0.208 0.035 (0.140, 0.276)
F6 0.631 0.045 (0.543, 0.719)
F7 0.696 0.052 (0.587, 0.790)
F8 0.696 0.052 (0.587, 0.790)
F9 1.000 0.090 (0.783, 1.000)
F10 1.000 0.079 (0.803, 1.000)
F11 1.000 0.063 (0.837, 1.000)
F12 1.000 0.053 (0.855, 1.000)
F13 1.000 0.053 (0.855, 1.000)
F14 1.000 0.010 (0.981, 1.000)
N 1064 40.91 (984, 1144)
θ1 −0.476 0.198 (−0.864,−0.089)
θ2 −0.231 0.042 (−0.313,−0.149)
λ8 0.330 0.036 (0.259, 0.402)
λ9 0.281 0.027 (0.229, 0.333)
λ10 0.237 0.019 (0.200, 0.274)
λ11 0.198 0.014 (0.170, 0.226)
λ12 0.164 0.013 (0.138, 0.189)
λ13 0.134 0.014 (0.107, 0.161)
λ14 0.110 0.014 (0.081, 0.138)

In the real data, 14 pairs of (xi, yi) are observed. As stated in Section 2, we impose the constraints F2 =
(F1 + F3)/2 and F13 = F12 to solve the potential identifiability problem. Under the proposed nonparametric mix-
ture modelling framework, the maximum likelihood estimators (MLEs) are derived by maximizing the joint
log-likelihoodwith time series daily report data. The nlm() function in R is employed to estimate Fi, 1 � i � 14, i �=
2, 13, θ1, and θ2. Let F̂2 = (F̂1 + F̂3)/2 and F̂13 = F̂12. The proportion of susceptible individuals incorporated in
the PCR test at day i, λ̂i, can be derived from the logistic regression form with estimated θ̂1 and θ̂2. We use the
estimated parameters to simulate bootstrap samples, which include time series daily data of number of tests and
confirmed cases. 200 bootstrap samples are generated to estimate the standard errors, and the confidence intervals
are based on normal approximation. Table 3 lists the estimators F̂i, 1 � i � 14, θ̂i, i = 1, 2, N̂, λ̂i, 8 � i � 14, the
corresponding estimated standard errors and confidence intervals. The estimated F1 is about 0.2 and F9 is close to
1 (Table 3), which means that about 20% of susceptible individuals will be detected at the beginning of quarantine.
And 9 days later, all the susceptible individuals on the board will be detected.

Figure 2 presents the observed detection rates xi/yi (scatter points), along with the fitted detection rates λiFi
(black solid line). We use different colours and different symbols to demonstrate xi/yi with yi > 100 or yi < 100,
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Figure 2. Comparison of the observed detection rates {xi/yi}14i=1 and fitted ones based on the proposed nonparametric mixture
model. xi represents number of patients that were tested positive at day i, and yi is the total number of tests at day i. Scatter points
are the rates of xi/yi , where red and blue colours differentiate whether yi > 100 or not. Black line shows the fitted detection rates
{λiFi}14i=1.

respectively. For example, red circles represent scatter points xi/yi with yi > 100, while blue squares describe scatter
points xi/yi with yi < 100. Figure 2 suggests that the estimated nonparametric distribution Fi and the paramet-
ric susceptible proportion λi characterize the pattern of detection quite well. This shows the plausibility of the
assumption that λi decreases with i in the logistic regression form.

In contrast to the officially reported 634 individuals with PCR-positive results after the 14 days quarantine, which
as of April 27, 2020 had increased to 712 as released by the JohnsHopkinsUniversity, we conclude that the estimated
total number should be 1064. Zhang et al. (2020) used a completely different method to estimate the reproductive
number (R0) of the novel virus in the early stage of the outbreak and estimate the cumulative cases on the ship.
They estimated the cumulative cases as 1514 (1384–1656) if the R0 value remained 2.28 as the early stage on the
ship. If R0 value was reduced by 25% and 50%, the estimated total number of cumulative cases would be reduced to
1081 (981–1177) and 758 (697–817), respectively. A great deal of the transmission on the ship had occurred before
the quarantine when people were even not notified about the virus. As the containment measures became stricter,
it is expected that the R0 value reduced. We estimated the total number as 1064 (984–1144), which is almost in
accordance with the number when the R0 value was reduced by 25%.

6. Concluding remarks

In this paper, motivated by the real PCR testing data on the Diamond Princess cruise ship, we propose a novel mix-
ture model to estimate the distribution of detection time among susceptible subjects and the susceptible proportion
among tested people each day. As a by-product, the total number that can be detected after the quarantine period is
estimated as 1064, which means that 42.5% of infected cases were undetected on the cruise. The estimated number
1064 is larger than the released 712. The discrepancy might be caused by the false-negative result of the PCR test
(Kucirka et al., 2020) or the occurrence of infection after the test. Some asymptomatic cases may be missed due
to the imperfect sensitivity of the PCR test, and they had the high transmissibility. We conclude that COVID-19
spread in the cruise ship is easier and faster than in open spaces. Strict containment efforts should be scaled up
prior to local outbreak.

Like all medical papers, we have to acknowledge the possible weakness in our approach. TheCOVID-19 data col-
lected on the Diamond Princess cruise were very limited. All information was summarized in Table 1. We assume
that each selected individual was tested by PCR only once and assume that the sensitivity of the test was 100%.
This might be not true because small proportion of individuals may be tested twice or more, and there may be
false positives. Our method should be modified if additional relevant testing information was available. Never-
theless, we believe our approach has at least reduced the possible bias in the data collection process, though our
solution may not be a perfect one. We would be happy to read other innovative approaches from other authors
in the future. During the outbreak of a pandemic, it would be useful to make quick statistical inference based on
very limited information, though, it may not be a very accurate one. Besides, in the second week of the quaran-
tine, the number of symptomatic and asymptomatic patients testing positive was publicly available. However, we
did not take these information into consideration. Incorporating such data in statistical modelling warrants future
research.
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Appendix

Proof of Theorem 3.1.: Write

1
n
�′
n(β) = 1

n
d�n(β)

dβ
= 1

n

14∑
i=1

yi∑
j=1

{
δij

d log(λiFi)
dβ

+ (1 − δij)
d log(1 − λiFi)

dβ

}

.= 1
n

14∑
i=1

yi∑
j=1

ζ ij(β),

wheren = ∑14
i=1 yi, ζ ij(β) = (ζ

(1)
ij (β), . . . , ζ (14)

ij (β))� .= (δij∂ log(λiFi)/∂β1 + (1 − δij)∂ log(1 − λiFi)/∂β1, . . . , δij∂ log(λiFi)/∂β14 +
(1 − δij)∂ log(1 − λiFi)/∂β14)

� is a 14-dimensional vector with

ζ
(1)
ij (β) = I(i = 1)

( δij

F1
− 1 − δij

1 − F1

)
+ I(i = 2)

( δij

F1 + F3
− 1 − δij

2 − F1 − F3

)
,

ζ
(2)
ij (β) = I(i = 3)

( δij

F3
− 1 − δij

1 − F3

)
+ I(i = 2)

( δij

F1 + F3
− 1 − δij

2 − F1 − F3

)
,

ζ
(3)
ij (β) = I(i = 4)

( δij

F4
− 1 − δij

1 − F4

)
,

ζ
(4)
ij (β) = I(i = 5)

( δij

F5
− 1 − δij

1 − F5

)
,

ζ
(5)
ij (β) = I(i = 6)

( δij

F6
− 1 − δij

1 − F6

)
,

ζ
(6)
ij (β) = I(i = 7)

( δij

F7
− 1 − δij

1 − F7

)
,
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ζ
(7)
ij (β) = I(i = 8)

( δij

F8
− (1 − δij)λi

1 − λiF8

)
,

ζ
(8)
ij (β) = I(i = 9)

( δij

F9
− (1 − δij)λi

1 − λiF9

)
,

ζ
(9)
ij (β) = I(i = 10)

( δij

F10
− (1 − δij)λi

1 − λiF10

)
,

ζ
(10)
ij (β) = I(i = 11)

( δij

F11
− (1 − δij)λi

1 − λiF11

)
,

ζ
(11)
ij (β) = I(i = 12)

( δij

F12
− (1 − δij)λi

1 − λiF12

)
+ I(i = 13)

( δij

F12
− (1 − δij)λi

1 − λiF12

)
,

ζ
(12)
ij (β) = I(i = 14)

( δij

F14
− (1 − δij)λi

1 − λiF14

)
,

ζ
(13)
ij (β) = I(i = 8, . . . , 14; i �= 13)

{
δij(1 − λi) − (1 − δij)λiFi(1 − λi)

1 − λiFi

}

+ I(i = 13)
{
δij(1 − λi) − (1 − δij)λiF12(1 − λi)

1 − λiF12

}
,

ζ
(14)
ij (β) = I(i = 8, . . . , 14; i �= 13)

{
δij(1 − λi)(i − 7) − (1 − δij)λiFi(1 − λi)(i − 7)

1 − λiFi

}

+ I(i = 13)
{
δij(1 − λi)(i − 7) − (1 − δij)λi(1 − λi)(i − 7)F12

1 − λiF12

}
,

where the last two equalities hold since ∂λi/∂θ1 = λi(1 − λi) and ∂λi/∂θ2 = λi(1 − λi)(i − 7) for i = 8, 9, . . . , 14.
It is easy to show that �′(β0) = 0, where �′(β) = limn→∞ n−1�′

n(β). According to the regularity condition (C1), {ζ ij(β);β ∈
B} is a Glivenko–Cantelli class (van der Vaart & Wellner, 1996). It follows from the Glivenko–Cantelli theorem (van der Vaart
& Wellner, 1996) that

sup
β∈B

‖n−1�′
n(β) − �′(β)‖ → 0 (A1)

almost surely. Note that β̂ is the maximizer of n−1�n(β), and n−1�n(β) is differentiable in terms of β . Hence n−1�′
n(β̂) = 0.

This, combined with (A1), implies that �′(β̂) = op(1). Then, according to the regularity condition (C3), β̂ converges to β0
almost surely. �

Proof of Theorem 3.2.: Expanding the first derivative of n−1/2�′
n(β) around the true value β0, we get

0 = n−1/2�′
n(β̂) = n−1/2�′

n(β0) + n−1�′′
n(β̃)n1/2(β̂ − β0)

= n−1/2�′
n(β0) + n−1�′′

n(β0)n
1/2(β̂ − β0) + op(1), (A2)

where β̃ lies between β̂ and β0, and the last equality follows from the continuity of �′
n(β). Note that n−1E(xi) → piλiFi as

n → ∞, where pi = limn→∞ yi/n, i = 1, . . . , 14. According to the regularity condition (C1) and the law of large numbers,
−n−1�′′

n(β0) → V(β0), where each element of the matrix V(β) = (vij(β))1�i,j�14 is given as follows:

v11(β) = − lim
n→∞

1
n

∂2�n(F, θ)

∂F21
= p1

F1
+ p1

(1 − F1)
+ p2

2(F1 + F3)
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2(2 − F1 − F3)
,

v12(β) = − lim
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1
n

∂2�n(F, θ)

∂F1∂F3
= p2

2(F1 + F3)
+ p2

2(2 − F1 − F3)
,

v1j(β) = 0, j = 3, . . . , 14,

v21(β) = v12(β),

v22(β) = − lim
n→∞

1
n

∂2�n(F, θ)

∂F23
= p3

F3
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(1 − F3)
+ p2

2(F1 + F3)
+ p2

2(2 − F1 − F3)
,

v2j(β) = 0, j = 3, . . . , 14,

v33(β) = − lim
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1
n

∂2�n(F, θ)

∂F24
= p4

F4
+ p4

(1 − F4)
,

v3j(β) = 0, j = 1, . . . , 14, j �= 3,

v44(β) = − lim
n→∞

1
n

∂2�n(F, θ)

∂F25
= p5

F5
+ p5

(1 − F5)
,

v4j(β) = 0, j = 1, . . . , 14, j �= 4,
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v55(β) = − lim
n→∞

1
n
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∂F26
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v6j(β) = 0, j = 1, . . . , 14, j �= 6,

v7j(β) = 0, j = 1, . . . , 14, j �= 7, 13, 14,
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v13,13(β) = − lim
n→∞
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v14,j(β) = vj,14(β), j = 1, . . . , 14.
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where n = ∑14
i=1 yi. By the regularity condition C1 and the Central Limit Theorem, n−1/2�′

n(β0) converges asymptotically to
Normal distribution N(0,�(β0)), where �(β0) = n−1∑14

i=1
∑yi

j=1 ζ ij(β0)ζ ij(β0)
�. According to the properties of the likeli-

hood function, we can easily show that �(β0) = V(β0). Then, it follows from (A2) and condition (C2) that n1/2(β̂ − β0)
converges asymptotically to normal distribution N(0,V(β0)

−1�(β0)V(β0)
−1) = N(0,V(β0)

−1). �
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