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ABSTRACT
This paper studies the inference problem of index coefficient in single-indexmodels under mas-
sive dataset. Analysis ofmassive dataset is challenging owing to formidable computational costs
or memory requirements. A natural method is the averaging divide-and-conquer approach,
which splits data into several blocks, obtains the estimators for each block and then aggre-
gates the estimators via averaging. However, there is a restriction on the number of blocks.
To overcome this limitation, this paper proposed a computationally efficient method, which
only requires an initial estimator and then successively refines the estimator via multiple rounds
of aggregations. The proposed estimator achieves the optimal convergence rate without any
restriction on the number of blocks. We present both theoretical analysis and experiments to
explore the property of the proposed method.
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1. Introduction

Single-index models provide an efficient way of coping with high-dimensional nonparametric estimation problem
and avoid the ‘curse of dimensionality’ by assuming that the response is only related to a single linear combination
of the covariates. Because of its usefulness in several areas such as discrete choice analysis in econometrics and
dose–response models in biometrics, we restrict our attention to the single-index model in the following form:

Y = g0(X�γ 01) + ε, (1)

where Y is the univariate response and X is a vector of the p-dimensional covariates. The function g0(·) is an
unspecified and nonparametric smoothing function; γ 01 is the unknown index vector coefficient. For identifiability,
one imposes certain conditions on γ 01, and we assume that γ 01 = (1, γ �

0 )� with γ 0 ∈ R
p−1. This ‘remove-one-

component’ method for γ 01 has also been applied in Christou and Akritas (2016), Delecroix et al. (2006) and
Ichimura (1993). ε is assumed to be independent and identically distributed random error with E[ε | X] = 0.

In single-index model (1), the primary parameter of interest is the coefficient γ 01 in the index X�γ 01, since γ 01
makes explicit relationship between the response variable Y and the covariate X. Various strategies for estimating
γ 01 have been proposed in the literature, see Jiang et al. (2013), Jiang et al. (2016), Tang et al. (2018),Wu et al. (2010),
and Xia et al. (2002) and so on.

The development of modern technology has enabled data collection of unprecedented size. For instance, Face-
book had 1.55 billion monthly active users in the third quarter of 2015. In recent years, statistical analysis of such
massive dataset has become a subject of increased interest. However, when the sample size is excessively large, there
are two major obstacles. First, the data can be too big to be held in a computer’s memory. Second, the computing
task can take too long to wait for the results. Some statisticians have made important contributions. One of these
methods, called the averaging divide-and-conquer (ADC) has been widely adopted. The main idea of ADC is to
first compute local estimators on each block and then take the average, see Chen and Xie (2014), Chen et al. (2019),
Jiang et al. (2020), Lin and Xi (2011) and so on.

These averaging-based, ADC approaches suffer from one drawback. In order for the averaging estimator to
achieve the optimal convergence rate that utilizes all data points at once, each block must have access to at least
O(

√
n) samples, where n is the sample size of the full data set. In other words, the number of blocks should be

much smaller than
√
n, which is a highly restrictive assumption. Jordan et al. (2019) proposed the communication-

efficient surrogate likelihood procedure to solve distributed statistical learning problem,which relaxes the condition
on the number of blocks. However, their methods cannot be applied to estimate unknown index vector coefficient
in the single-index model (1), according to the unknown nonparametric function.
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This paper proposes an iterative divide-and-conquer (IDC) method for estimating the unknown index vector
coefficient inmodel (1) undermassive dataset, which reduces the required primarymemory and computation time.
The proposed IDCmethod can remove the constraint on the number of blocks inADCmethod, which only requires
an initial estimator and then successively refines the estimator via multiple rounds of aggregations. The resulting
estimator is as efficient as the estimator by the entire dataset.

The remainder of the paper is organized as follows. In Section 2, we introduce the proposed procedures for
model (1). Both the simulation examples and the applications of two real datasets are given in Section 3 to illustrate
the proposed procedures. Final remarks are given in Section 4. All the conditions and their discussions as well as
technical proofs are relegated to the Appendix.

2. Methodology andmain results

2.1. Iterative divide-and-conquermethod

Wefirst review the estimationmethod for full data (Wang et al., 2010), which can be analysed by one singlemachine.
Let {Xi,Yi}ni=1 be an independent identically distributed (i.i.d.) sample from (X,Y). We can obtain the estimator γ̂

of γ 0 by minimizing

n∑
i=1

{
Yi − ĝ

(
X�
i γ 1, γ

)}2
, (2)

where γ 1 = (1, γ �)�, γ ∈ R
p−1,

ĝ(u, γ ) = A2,0(u, γ 1, h1)A0,1(u, γ 1, h1) − A1,0(u, γ 1, h1)A1,1(u, γ 1, h1)
A0,0(u, γ 1, h1)A2,0(u, γ 1, h1) − A2

1,0(u, γ 1, h1)
, (3)

Al,s(u, γ 1, hr) = ∑n
i=1(X

�
i γ 1 − u)lYs

i Khr(X
�
i γ 1 − u), for l = 0, 1, 2, s = 0, 1, r = 1, 2, Kh(·) = K(·/h)/h, K(·) is

a symmetric kernel function and h is a bandwidth.
However, for massive dataset, we cannot obtain the estimator of γ 0, because a computer can’t store or spend a

long time to solve the optimization problem of (2).
Let us assume that n samples are partitioned intoM subsets. In particular, we split the data index set {1, . . . , n}

into S1, . . . , SM , where Sm denotes the set of indices on the m-th block, m = 1, . . . ,M. Without loss of generality,
each block has the sample size ñ = n/M, where ñ should be an integer.

The averaging divide-and-conquer (ADC) method for γ 0 can be obtained by Jiang et al. (2020) as follows:

γ̂ ADC = 1
M

M∑
m=1

γ̂m, (4)

where γ̂m is obtained by minimizing (2) with the subset {Sm}Mm=1.
Sensor network data are naturally collected by many sensors. However, by the results of Theorem 4.1 in Jiang

et al. (2020), for γ̂ ADC to achieve the optimal convergence rate Op(n−1/2), the number of machines M has to be
fixed. It is a highly restrictive assumption. In this section, we will propose a method for the case ofM → ∞, and it
is also valid for fixedM.

Note that ĝ(·) in (3) may not be a linear function, solving (2) is a nonlinear optimization problem, and the
computation can be challenging. Instead, we use a local linear approximation of ĝ(X�

i γ 1, γ ) around an initial value
γ̂
0
1, where γ̂

0
1 = (1, γ̂ 0�

)�. This yields

ĝ
(
X�
i γ 1, γ

)
≈ ĝ

(
X�
i γ̂

0
1

)
− ĝ′

(
X�
i γ̂

0
1

) (
X�
i γ 1 − X�

i γ̂
0
1

)
= ĝ

(
X�
i γ̂

0
1

)
− ĝ′

(
X�
i γ̂

0
1

) (
X�
i,−1γ − X�

i,−1γ̂
0
)
,

where Xi,−1 is the (p − 1)-dimensional vector consisting of coordinates 2, . . . , p of Xi and

ĝ′(u, γ ) = A0,0(u, γ 1, h2)A1,1(u, γ 1, h2) − A1,0(u, γ 1, h2)A0,1(u, γ 1, h2)
A0,0(u, γ 1, h2)A2,0(u, γ 1, h2) − A2

1,0(u, γ 1, h2)
. (5)
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We denote ĝ(X�
i γ̂

0
1) = ĝ(X�

i γ̂
0
1, γ̂

0
) and ĝ′(X�

i γ̂
0
1) = ĝ′(X�

i γ̂
0
1, γ̂

0
) for simplicity. Then, the proposed estimator

is obtained by minimizing the following least squares function,

γ̂ = argmin
γ

M∑
m=1

∑
i∈Sm

{
Yi − ĝ

(
X�
i γ̂

0
1

)
− ĝ′

(
X�
i γ̂

0
1

) (
X�
i,−1γ − X�

i,−1γ̂
0
)}2

=
⎧⎨⎩

M∑
m=1

∑
i∈Sm

ĝ′2
(
X�
i γ̂

0
1

)
Xi,−1X�

i,−1

⎫⎬⎭
−1⎧⎨⎩

M∑
m=1

∑
i∈Sm

ĝ′
(
X�
i γ̂

0
1

)
Xi,−1Y∗

i

⎫⎬⎭ , (6)

where Y∗
i = Yi − ĝ(X�

i γ̂
0
1) + ĝ′(X�

i γ̂
0
1)X�

i,−1γ̂
0.

By the forms of (3) and (5), for given γ , it is easy to estimate g0(·) and g′
0(·) under massive dataset. Al,s(u, γ 1, hr)

in (3) and (5) can be rewritten as

Al,s(u, γ 1, hr) =
M∑

m=1

⎧⎨⎩∑
i∈Sm

(
X�
i γ 1 − u

)l
Ys
i Khr

(
X�
i γ 1 − u

)⎫⎬⎭ , (7)

where l = 0, 1, 2, s = 0, 1 and r = 1, 2. Thus, by (3), (5) and (7), we can obtain the estimators of g0(·) and g′
0(·) for

massive dataset. Note that the estimators are the same as the estimators in (3) and (5) which are computed directly
by the full data. Thus, we can use (3), (5), (6) and (7) to iteratively update the estimate of γ 0 until convergence.

2.2. Asymptotic normality of the resulting estimator

To establish the asymptotic property of the proposed estimator, the following technical conditions are imposed.

(C1) The density function of X�γ 1 is positive and satisfies a Lipschitz condition of order 1 for γ 1 in a neighbour-
hood of γ 01. Further, X�γ 01 has a positive and bounded density function on �, where � = {t = X�γ 01 :
X ∈ �} and � is the compact support set of X.

(C2) g0(t) and the j-th (2 ≤ j ≤ p) component of E[X | X�γ 0 = t] have two bounded and continuous derivatives.
(C3) E[ε | X] = 0 and E[ε4 | X] < ∞.
(C4) The kernel K(·) is a bounded, continuous and symmetric probability density function, satisfying∫∞

−∞ u2K(u) du �= 0 and
∫∞
−∞ |u|4K(u) du < ∞. In addition, � = E[g′

0(X
�γ 0)X−1X�

−1] is a positive definite
matrix.

Remark 2.1: Conditions (C1)–(C4) are commonly used in the literature, see Wang et al. (2010). Condition (C1)
is used to bound the density function of X�γ 1 away from zero. This ensures that the denominators of ĝ(u, γ 1)

and ĝ′(u, γ 1) are, with high probability, bounded away from 0 for u = X�γ 1, where X ∈ � and γ 1 is near γ 01.
The Lipschitz condition and the two derivatives in conditions (C1) and (C2) are standard smoothness conditions.
Condition (C3) is a necessary condition for the asymptotic normality of an estimator. Condition (C4) is a usual
assumption for kernel function.

Theorem 2.1: Suppose conditions (C1)–(C4) hold, ‖γ̂ 0 − γ 0‖2 = Op(ñ−1/2) with ñ = nc, 0 < c ≤ 1, and n → ∞,
h1 = O(n−1/4/ log n),h2 = O(n−1/4 log2 n), and Q ≥ 1 + log(log n/ log ñ)/ log 2. Then, the estimator γ̂ of the Q-th
iteration,

√
n(γ̂ − γ 0)

L−→ N
(
0,�−1S�−1) ,

where L−→ stands for convergence in the distribution, � = E{g′
0(X

�γ 0)X−1X�
−1} and

S = E[g′
0(X

�γ 01)
2{X−1 − E(X−1 | X�γ 01)}{X−1 − E(X−1 | X�γ 01)}�ε2].

The initial estimator γ̂
0 can be obtained by the method in Ichimura (1993) based on S1, which satisfies ‖γ̂ 0 − γ 0‖2 =

Op(ñ−1/2) under some regularity conditions.

Theorem 2.1 shows that γ̂ achieves the same asymptotic efficiency as estimator in (2) computed directly on all
the samples, see Theorem 2 inWang et al. (2010). Compared to the averaging divide-and-conquer method that also
can achieve the convergence rateOp(n−1/2) but under the condition fixedM, our approach removes the restriction
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on the number of machines M by applying multiple rounds of aggregations. It is also important to note that the
required number of rounds Q is usually quite small. For example, if n = 1020 and ñ = 105, then Q = 3.

After obtaining the estimation γ̂ of γ 0, for any given point u, we can estimate g0(·) in model (1) with massive
dataset by (3).

2.3. Algorithm

Based on the above analysis, we now introduce an iterative divide-and-conquer method for estimating γ 0.
Step 1:Without loss of generality, the entire data set is partitioned intoM subsets: S1, . . . , SM .
Step 2: Calculate the initial estimator γ̂

0 based on S1.
Step 3: Compute the estimators

ĝ
(
X�
i γ̂

0
1

)
=
∑M

k=1 B
k
2,0,1

∑M
k=1 B

k
0,1,1 −∑M

k=1 B
k
1,0,1

∑M
k=1 B

k
1,1,1∑M

k=1 B
k
0,0,1

∑M
k=1 B

k
2,0,1 − (

∑M
k=1 B

k
1,0,1)

2

and

ĝ′
(
X�
i γ̂

0
1

)
=
∑M

k=1 B
k
0,0,2

∑M
k=1 B

k
1,1,2 −∑M

k=1 B
k
1,0,2

∑M
k=1 B

k
0,1,2∑M

k=1 B
k
0,0,2

∑M
k=1 B

k
2,0,2 − (

∑M
k=1 B

k
1,0,2)

2
,

where

Bkl,s,r =
∑
j∈Sk

(X�
j γ̂

0
1 − X�

i γ̂
0
1)

lYs
j Khr(X

�
j γ̂

0
1 − X�

i γ̂
0
1),

l = 0, 1, 2, s = 0, 1, r = 1, 2.
Step 4: Compute the estimator γ̂ :

γ̂ =
( M∑
m=1

Cm

)−1 ( M∑
m=1

Dm

)
,

where Cm = ∑
i∈Sm ĝ′2(X�

i γ̂
0
1)Xi,−1X�

i,−1 and Dm = ∑
i∈Sm ĝ′(X�

i γ̂
0
1)Xi,−1Y∗

i .
Step 5: Iterate Q ≥ 1 + log(log n/ log ñ)/ log 2 times of Steps 3 and 4.

3. Numerical studies

In this section, we first use Monte Carlo simulation studies to assess the finite sample performance of the proposed
procedures and then demonstrate the application of the proposedmethodswith two real data analyses. All programs
are written in R code and our computer has a 3.3 GHz Pentium processor and 8G memory.

The Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1) is used in this section. When calculating the esti-
mator γ̂ in (6), according to Wang et al. (2010), we choose the bandwidths: h1 = ĥn1/5n−1/4/ log n and h2 =
ĥn1/5n−1/4 log2 n. We can use the method in Ichimura (1993) to obtain γ̂m in (4), which can be obtained by
‘npindexbw’ in R. All the simulations are run for 100 replicates.

3.1. Simulation example 1: effect ofMwith fixed n

In this example, we fix the total sample size n = 10000 and vary the number of blocks M from {10, 50, 100}, to
access the influence ofM on the proposed estimation method. The model for the simulated data is

Y = 5 cos
(
πX�γ 01

)
+ exp

(∣∣∣X�γ 01

∣∣∣)+ ε, (8)

where X is uniformly distributed on [0, 1]3, γ 01 = (1, γ �
0 )�, γ 0 = (2,−1)� and ε ∼ N(0, 1).

We compare the proposed iterative divide-and-conquer (IDC)method for γ 0 with the oracle procedure (Oracle)
which is obtained by solving (2) by the full data, and averaging divide-and-conquer (ADC) method.

Table 1 depicts the mean squared errors (MSE =
√

(γ̂ − γ 0)
�(γ̂ − γ 0)), and Absolute Bias (|γ̂ − γ 0|) of the

estimate γ̂ to assess the accuracy of the estimationmethods. FromTable 1, the following conclusions can be drawn.

(i) All the estimators are close to the true value because the results of Absolute Bias are very small.
(ii) Based on MSE, the performances of IDC estimator are better than those of ADC when M = 100, and are

worse than those of ADC whenM = 10 andM = 50.
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Table 1. Themeans of Absolute Bias, MSE (standard deviation) and t for simulation Example 1.

M Methods Absolute bias of γ̂ 1 Absolute bias of γ̂ 2 MSE t

1 Oracle 0.0051 (0.0031) 0.0032 (0.0027) 0.0065 (0.0034) 1801
10 ADC 0.0053 (0.0036) 0.0033 (0.0023) 0.0067 (0.0035) 199

IDC 0.0057 (0.0039) 0.0045 (0.0037) 0.0078 (0.0045) 156
50 ADC 0.0060 (0.0044) 0.0039 (0.0049) 0.0077 (0.0059) 76

IDC 0.0066 (0.0044) 0.0050 (0.0037) 0.0089 (0.0048) 137
100 ADC 0.0150 (0.0161) 0.0207 (0.0931) 0.0204 (0.0227) 95

IDC 0.0122 (0.0133) 0.0103 (0.0515) 0.0126 (0.0143) 132
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0.
01
5

0.
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0

0.
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0.
03
0

M

M
S
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10 20 30 40 50 60 70 80 90 100
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ADC
IDC

Figure 1. Comparison of MSE versus the number of blocksMwith ñ = 100 for three methods for simulation Example 3.2.

(iii) t in Table 1 is the average computing time in seconds used to estimate the index parameter. From t, we see
that the operation times of ADC and IDC are faster than that of Oracle. Moreover, IDC is faster than ADC
under case ofM = 10.

3.2. Simulation example 2: effect ofMwith fixed ñ

To compare the effects of the threemethods on the number of blockswith fixed sample size on each block (ñ = 100),
we considerM of {10,20,. . . ,100}. The model for the simulated data is also from (8).

The results of MSE are presented in Figure 1. The average computing time in seconds used to estimate the index
parameter is presented in Figure 1. From Figures 1 and 2, the following conclusions can be drawn.

(i) From Figure 1, we can see that the performances of Oracle method are the best of the three methods under
differentM. However, by Figure 2, the operation times of Oraclemethod aremuch greater than those of ADC
and IDC under differentM.

(ii) As the number of blocks M continues to increase, the MSEs of Oracle and IDC decrease. However, ADC
doesn’t have this pattern.

(iii) If the number of blocks is less than 30, theMSEs of theADCmethod are less than that of IDC.However, as the
number of blocks continues to increase, IDC can significantly outperform the ADC method. Furthermore,
if the number of blocks is less than 60, the operation times of the IDC method are less than that of ADC.

3.3. Simulation example 3: effect of n

To examine the effect of increasing the sample size, n = 5000, 10000 and 20000 are considered. The following
single-index model is considered:

Y = sin(0.75X�γ 01) + ε, (9)

where X = (X1,X2)
� is a two-dimensional standard normal variable, the correlation between X1 and X2 is 0.5,

γ 01 = (1, γ �
0 )�, γ 0 = 2 and ε ∼ N(0, 0.22).
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Figure 2. The mean computing time of γ̂ (in seconds) for simulation Example 3.2.

Table 2. The means of Absolute Bias (standard deviation) and t for simulation Example 3.

n = 5000 n = 10000 n = 20000

M Methods Absolute bias t Absolute bias t Absolute bias t

1 Oracle 0.0083 (0.0042) 174 0.0048 (0.0036) 699 0.0043 (0.0032) 2628
10 ADC 0.0113 (0.0099) 22 0.0085 (0.0058) 76 0.0047 (0.0038) 287

IDC 0.0239 (0.0015) 40 0.0118 (0.0090) 152 0.0051 (0.0044) 591
50 ADC 0.0731 (0.0571) 20 0.0140 (0.0092) 32 0.0051 (0.0027) 78

IDC 0.0404 (0.0407) 53 0.0128 (0.0097) 178 0.0047 (0.0051) 640
100 ADC 0.1358 (0.0496) 34 0.0565 (0.0467) 41 0.0057 (0.0065) 62

IDC 0.0893 (0.0293) 106 0.0347 (0.0259) 215 0.0051 (0.0060) 696

Table 3. The coefficient estimates and MSFE for the combined cycle power plant data.

M Method AT AP RH V MSFE t

1 Oracle 1.0000 −0.0290 0.1326 0.2572 0.0627 4864
8 ADC 1.0000 −0.0287 0.1306 0.2670 0.0627 695

IDC 1.0000 −0.0401 0.1348 0.2624 0.0628 229
16 ADC 1.0000 −0.0284 0.1299 0.2717 0.0627 395

IDC 1.0000 −0.0346 0.1282 0.2657 0.0628 157
26 ADC 1.0000 −0.0267 0.1297 0.2727 0.0627 271

IDC 1.0000 −0.0346 0.1282 0.2659 0.0628 154
46 ADC 1.0000 −0.0336 0.1256 0.2665 0.0628 222

IDC 1.0000 −0.0345 0.1283 0.2654 0.0628 149
92 ADC 1.0000 −0.0391 0.1271 0.2702 0.0633 219

IDC 1.0000 −0.0353 0.1275 0.2694 0.0628 145

Table 2 presents the averages of Absolute Bias and computing time t over the 100 data sets alongwith its estimated
standard error. By varying the sample size, as expected, the Absolute Bias becomes smaller and computing time t
becomes bigger as the sample size grows.
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Figure 3. Estimated single index function for the combined cycle power plant data. The dots are the observations EP and the curve
is the estimated EP by the Oracle method.

3.4. Real data example 1: combined cycle power plant data

We apply the proposedmethod to combined cycle power plant data. The dataset contains 9568 data points collected
from a Combined Cycle Power Plant over 6 years (2006–2011), when the power plant was set to work with full load.
Features consist of hourly average ambient variables Temperature (AT), Ambient Pressure (AP), Relative Humidity
(RH) and Exhaust Vacuum (V) to predict the net hourly electrical energy output (EP) of the plant. The data set is
obtained from online site: https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant.

In this study, the following single-index model is used to fit the data:

EP = g
{
γ 1AT + γ 2AP + γ 3RH + γ 4V

}+ ε, (10)

where all the data are normalized.We considered the number of blocksM ∈ {8, 16, 26, 46, 92}; hence, the respective
values of the local sample size are ñ ∈ {1196, 598, 368, 208, 104}. Table 3 summarizes the estimated coefficients for
the above model, showing that AP has the smallest effect on EP among the four covariates and AT is the most
important covariate. Figure 3 shows the estimated EP by theOraclemethod alongwith the observations, illustrating
that single-index model (10) is very suitable to the combined cycle power plant data. Furthermore, we evaluate the
performances of three estimators based on mean square fitting error (MSFE = ∑9568

i=1 |EPi − ÊPi|/9568), where
ÊPi is the fitted value of EPi by (3). From Table 3, the following conclusions can be drawn.

(i) The MSFEs of IDC under differentM are very close to that of Oracle method. Thus the performances IDC
are well.

(ii) As the number of blocks M continues to increase, the MSFEs of ADC increase. The performances of IDC
estimator are better than those of ADC whenM = 92 and are worse than those of ADC whenM is small.

(iii) t in Table 3 is the average computing time in seconds used to estimate the index parameter. From t, we see
that the operation times of IDC are faster than that of Oracle and ADC.

3.5. Real data example 2: airline on-time data

Airline on-time performance data from the 2009 ASA Data Expo are used as a case study. These data are pub-
licly available (http://stat-computing.org/dataexpo/2009/the-data.html). This dataset consists of flight arrival and
departure details for all commercial flights within the United States from October 1987 to April 2008. About 12

https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
http://stat-computing.org/dataexpo/2009/the-data.html
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Table 4. The coefficient estimates and MAPE for the airline on-time
data.

Method HD DIS NF WF MAPE

LS 0.0044 −0.0505 −0.0004 −0.0451 0.2179
ADC 1.0000 −0.0271 0.0256 −0.0030 0.2051
IDC 1.0000 −0.0106 0.1216 −0.6948 0.2014

million flights were recorded with 29 variables. In this section, we only consider the data of year 2008 (the number
of samples is 1011963). The first 1000000 data points are used for the estimation and the remaining 11963 data are
used for the prediction.

Schifano et al. (2016) developed a linear model that fits the data as follows:

AD = γ 1HD + γ 2DIS + γ 3NF + γ 4WF + ε, (11)

where AD is the arrival delay (ArrDelay), which is a continuous variable found by modelling log(ArrDelay −
min(ArrDelay) + 1), HD is the departure hour (range 0 to 24), DIS is the distance (in 1000miles), NF is the dummy
variable for a night flight (1 if departure between 8 p.m. and 5 a.m., 0 otherwise), and WF is the dummy variable
for a weekend flight (1 if departure occurred during the weekend, 0 otherwise).

In this study, the following single-index model is used to fit the data:

AD = g
{
γ 1HD + γ 2DIS + γ 3NF + γ 4WF

}+ ε. (12)

For comparison purposes, we use the least squares (LS) method to estimate (γ 1, γ 2, γ 3, γ 4)
� in model (11), and

use the ADC and IDC methods proposed in Section 2 to estimate (γ 1, γ 2, γ 3, γ 4)
� in model (12). The number

of blocks is 1000 for these three methods. Furthermore, we evaluate the performance of these estimators based on
their out-of-sample prediction with the mean absolute prediction error (MAPE) of the predictions,

MAPE = 1
n

n∑
i=1

∣∣ADi − ÂDi
∣∣ ,

where ÂDi is the fitted value of ADi, i = 1, . . . , nwith n = 11, 963. ÂDi can be obtained by (3). Table 4 presents the
estimated coefficients and MAPEs of the three methods. From Table 4, we can see that the IDC method performs
better than LS and ADC according to the smaller MAPE.
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method significantly reduces the required amount of primary memory and enjoys a very low computational cost.
The proposed method achieves the same asymptotic efficiency as the estimator using all the data. Furthermore, it
allows a weak condition on the sample size as a function of memory size.

Funding

We would like to acknowledge support for this project from the Fundamental Research Funds for the Central Universities of
China (No. 2232020D-43).

References

Chen, X., Liu, W., & Zhang, Y. (2019). Quantile regression under memory constraint. The Annals of Statistics, 47(6),
3244–3273. https://doi.org/10.1214/18-AOS1777

Chen, X. Y., & Xie, M. G. (2014). A split-and-conquer approach for analysis of extraordinarily large data. Statistica Sinica, 24(4),
1655–1684. https://doi.org/10.5705/ss.2013.088

Christou, E., & Akritas, M. (2016). Single index quantile regression for heteroscedastic data. Journal of Multivariate Analysis,
150, 169–182. https://doi.org/10.1016/j.jmva.2016.05.010

Delecroix, M., Hristache, M., & Patilea, V. (2006). On semiparametric M-estimation in single-index regression. Journal of
Statistical Planning and Inference, 136(3), 730–769. https://doi.org/10.1016/j.jspi.2004.09.006

Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. Journal of
Econometrics, 58(1-2), 71–120. https://doi.org/10.1016/0304-4076(93)90114-K

Jiang, R., Guo, M. F., & Liu, X. (2020). Composite quasi-likelihood for single-index models with massive datasets. Communica-
tions in Statistics – Simulation and Computation, 51(9), 5024–5040. https://doi.org/10.1080/03610918.2020.1753074

https://doi.org/10.1214/18-AOS1777
https://doi.org/10.5705/ss.2013.088
https://doi.org/10.1016/j.jmva.2016.05.010
https://doi.org/10.1016/j.jspi.2004.09.006
https://doi.org/10.1016/0304-4076(93)90114-K
https://doi.org/10.1080/03610918.2020.1753074


STATISTICAL THEORY AND RELATED FIELDS 57

Jiang, R., Qian, W. M., & Zhou, Z. G. (2016). Weighted composite quantile regression for single-index models. Journal of
Multivariate Analysis, 148, 34–48. https://doi.org/10.1016/j.jmva.2016.02.015

Jiang, R., Zhou, Z. G., Qian, W. M., & Chen, Y. (2013). Two step composite quantile regression for single-index models.
Computational Statistics & Data Analysis, 64, 180–191. https://doi.org/10.1016/j.csda.2013.03.014

Jordan,M., Lee, J., & Yang, Y. (2019). Communication-efficient distributed statistical learning. Journal of the American Statistical
Association, 14(526), 668–681. https://doi.org/10.1080/01621459.2018.1429274

Lin, N., & Xi, R. (2011). Aggregated estimating equation estimation. Statistics and Its Interface, 4(1), 73–83. https://doi.org/10.
4310/SII.2011.v4.n1.a8

Schifano, E., Wu, J., Wang, C., Yan, J., & Chen, M. H. (2016). Online updating of statistical inference in the big data setting.
Technometrics, 58(3), 393–403. https://doi.org/10.1080/00401706.2016.1142900

Tang, Y.,Wang, H., & Liang, H. (2018). Composite estimation for single-indexmodels with responses subject to detection limits.
Scandinavian Journal of Statistics, 45(3), 444–464. https://doi.org/10.1111/sjos.v45.3

Wang, J. L., Xue, L., Zhu, L., & Chong, Y. (2010). Estimation for a partial-linear single-index model. The Annals of Statistics,
38(1), 246–274. https://doi.org/10.1214/09-AOS712

Wu, T., Yu, K., & Yu, Y. (2010). Single-index quantile regression. Journal of Multivariate Analysis, 101(7), 1607–1621.
https://doi.org/10.1016/j.jmva.2010.02.003

Xia, Y., Tong,H., Li,W., &Zhu, L. X. (2002). An adaptive estimation of dimension reduction space. Journal of the Royal Statistical
Society Series B, 64(3), 363–410. https://doi.org/10.1111/rssb.2002.64.issue-3

Zhu, L., & Xue, L. (2006). Empirical likelihood confidence regions in a partially linear single-index model. Journal of the Royal
Statistical Society: Series B, 68(3), 549–570. https://doi.org/10.1111/rssb.2006.68.issue-3

Appendix

Proof of Theorem 2.1: We denote the first iteration γ̂
1, and note that (6) can be equivalently written as
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i γ̂
0
1) − ĝ′(X�
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≡ Vn1 + Vn2 + Vn3 + Vn4 + Vn5.

We first show that ‖Vn2‖2 = op(n−1/2). Let Vn2,s denote the s-th component of Vn2. Then, we have

Vn2,s = 1
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≡ Vn21,s + Vn22,s.

Note that ĝ′(u, γ ) in (3) can be rewritten as ĝ′(u, γ ) = ∑n
i=1 W̃ni(u, γ 1)Yi, where
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Thus Vn21,s can be rewritten as
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Hence, by Lemma 1 in Zhu and Xue (2006) and conditions (C2) and (C3), γ̂
0 is a consistent estimate of γ 0 and by the

Cauchy–Schwarz inequality, for c1 and c2 big enough, we have
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For Vn212,s, by Lemma 2 in Zhu and Xue (2006), for c3 and c4 big enough, we have
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We now considerVn213,s. Note that E(aijεjεi | X, εj) = 0 and E(ai1j1εj1εi1ai2j2εj2εi2 | X) = 0when {i1, j1} �= {i2, j2}; by Lemma 2
in Zhu and Xue (2006), for c5 and c6 big enough, we have
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By the condition ‖γ̂ 0 − γ 0‖2 = Op(ñ−1/2), we have Vn22,s = op(n−1/2). Combining the above results, the s-th moment of Vn2
converges to 0. By the Markov inequality, we have

‖Vn2‖2 = op(n−1/2).

We prove that the mean and the variance of n1/2Vn3,s tend to 0. Using
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This proves that

‖Vn3‖2 = op(n−1/2).
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We now consider Vn4.
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Noting that nh1h32/ log
2 n → ∞, we obtain Vn41,s = op(n−1/2). For Vn42, by a Taylor expansion, we get
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Thus we can obtain Vn42,s = op(n−1/2). Therefore,
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Finally, we consider Vn5.
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ĝ
(
X�
i γ 01

)
− ĝ
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We rewrite Vn51,s as
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For Vn511,s, by a Taylor expansion, we get Vn511 = Op(ñ−1). Similar to the proof of Vn42,s, we get
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Hence,
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Note that one round of aggregation enables a refinement of the estimator with its bias reducing from ñ−1/2 to ñ−1. Therefore,
an iterative refinement of the initial estimator will successively improve the estimation accuracy. The q-th iterative divide-and-
conquer method γ̂

q satisfies

γ̂
q − γ 0 = �−1 1

n

n∑
i=1

g′
0

(
X�
i γ 01

) {
Xi,−1 − E

(
X−1 | X�

i γ 01

)}
εi

+ op(n−1/2) + Op

(
ñ−2q−1

)
.

Thus, after Q iterations, where Q ≥ 1 + log(log n/ log ñ)/ log 2, we have

γ̂ − γ 0 = �−1 1
n

n∑
i=1

g′
0

(
X�
i γ 01

) {
Xi,−1 − E

(
X−1 | X�

i γ 01

)}
εi + op(n−1/2).

By the central limit theorem, we can prove Theorem 2.1. �
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