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ABSTRACT
A regression model with skew-normal errors provides a useful extension for traditional normal
regression models when the data involve asymmetric outcomes. Moreover, data that arise from
a heterogeneous population can be efficiently analysed by a finitemixture of regressionmodels.
These observations motivate us to propose a novel finite mixture of median regression model
based on a mixture of the skew-normal distributions to explore asymmetrical data from several
subpopulations. With the appropriate choice of the tuning parameters, we establish the theoret-
ical properties of the proposed procedure, including consistency for variable selection method
and the oracle property in estimation. A productive nonparametric clusteringmethod is applied
to select the number of components, and an efficient EM algorithm for numerical computations
is developed. Simulation studies and a real data set are used to illustrate the performance of the
proposed methodologies.
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1. Introduction

When the data involve asymmetrical outcomes, inference under the linear regression model with the skewed ran-
dom errors can be viewed as an alternative procedure to the classical regression models with symmetric errors,
since the use of a skewed distribution for the errors could reduce the influence of outliers and thus make statistical
analysis more robust. Specifically, suppose that a response variable Y given a set of predictors x takes the form of

y = x�β + ε, (1)

where β represents a vector of the unknown regression coefficients and the conditional density of the error term
ε given x follows an unknown distribution with the probability density function (pdf) g(ε | x). It is known that
if g(ε | x) is symmetrical about 0, the estimation of β in (1) will be the same as the coefficients obtained by con-
ventional mean linear regression. However, if g(ε | x) is skewed, the median regression provides a more reliable
statistical analysis with adaptive robustness to outliers, since the median of a distribution is less susceptible to
outliers, especially when the data involve asymmetrical outcomes. We here refer the interested readers to Kottas
and Gelfand (2001), Zhou and Liu (2016) and Hu et al. (2019) for relevant research on the median regression of
population distributions.

It is noteworthy to mention that the median regression has been widely used for studying the relationship
between the response variable Y and a set of predictors x in symmetrical distribution, whereas such a median
regression may not be suitable for analysing the data exhibiting asymmetrical behaviour or the data that arise from
a heterogeneous population. To tackle this difficulty, mixture of regression models (known as switching regression
models in econometrics), initially introduced by Goldfeld and Quandt (1973), may be employed as a flexible tool
for studying the skewed data from two or more subpopulations. Since then, finite mixture of regression (FMR)
models has been widely used in a variety of fields including but not limited to biology, medicine, economics, envi-
ronmental science, sampling survey and engineering technology. The book byMcLachlan and Peel (2004) contains
a comprehensive review of FMRmodels. An FMRmodel is obtained when a response variable with a finite mixture
distribution depends on a set of covariates, and FMR models have been discussed extensively when the normality
is assumed for the regression error in each component.

However, it has been shown that the commonly used normal mixture model tends to be an over fitting model,
since additional components are usually needed to capture the skewness of the data. To overcome the potential
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inappropriateness of normal mixtures in some context, we may consider the use of the skew-normal distribu-
tions (Azzalini, 1985) as component densities of the errors; see, for example, Wu et al. (2013), Wu (2014), Tang
and Tang (2015), and H. Li et al. (2016, 2017), to name just a few. These observations motivate us to develop a novel
finite mixture of the median regression (FMMeR) model based on a mixture of the skew-normal distributions to
explore asymmetrical data that arise from several subpopulations. There exist two barriers for the development of
the FMMeRmodel. The first barrier is to deal with computational aspects of parameter estimation when fitting the
FMMeR model with the skew-normal distribution for the errors. We tackle this barrier by utilizing the stochas-
tic representation and hierarchical representation (see, for example, Liu & Lin, 2014) of skew-normal mixtures.
A second technical barrier is to determine the number of components of the FMMeR model under consider-
ation. Popularly, the log-likelihood maximum and two information-based criteria, AIC (Akaike, 1973) and BIC
(Schwarz, 1978), can be used to select the number of components. Although some success has been shown using
the model choice criteria, choosing the right number of components for a mixture model is known to be difficult.
Thus, we consider a procedure of clustering to determine the number of components, which has been shown to be
very effective via real-data example, and it is introduced in Subsection 5.3.

To enhance predictability and to give a concise model, it is reasonable to include only the significant covari-
ates in the model. As a result, variable selection has also become increasingly important for FMR models and a
rich literature has been generated in recent several decades. All-subset selection methods, such as the AIC and
BIC, and their modifications, have been widely investigated in the context of FMR models; for instance, P. Wang
et al. (1996) researchedmodel selection in a finite mixture of Poisson regressionmodels via AIC and BIC. However,
all-subset selection methods for FMR models are computationally intensive. To improve computational efficiency,
the least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996) and the smoothly clipped abso-
lute deviation (SCAD) method of Fan and Li (2001) are proposed as new methods for variable selection. The
penalized likelihood for FMR models, the extension of penalized least square methods, were proposed by Khalili
and Chen (2007). Recently, Wu et al. (2020) proposed an estimation and variable selection method for mixture of
joint mean and variance models; Yin, Wu, and Dai (2020) proposed variable selection procedures in FMR models
using the skew-normal distribution.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the skew-normal dis-
tribution and its median expression. In Section 3, we develop a variable selection method for FMMeR model via
the penalized likelihood-based procedure for analysing asymmetrical data from several subpopulations. Section 4
studies asymptotic properties of the resulting estimators. In Section 5, a numerical algorithm, a productive non-
parametric clusteringmethod for determining the number of components and a data-adaptivemethod for choosing
tuning parameters are discussed. In Section 6, we carry out simulation studies to investigate the finite sample perfor-
mance of the proposed methodology. A real-data example is provided in Section 7 for illustrative purposes. Some
concluding remarks are given in Section 8. Brief proofs of theorems and some technical derivations are given in
Appendices 1 and 2.

2. The skew-normal mixture of median regressionmodels

2.1. Skew-normal distribution

A random variable Y is said to follow a univariate skew-normal distribution with location parameter μ, scale
parameter σ ∈ (0,∞) and skewness parameter λ ∈ R, denoted by Y ∼ SN(μ, σ 2, λ), if its pdf is given by

f (y | μ, σ 2, λ) = 2
σ
φ

(
y − μ

σ

)
�

(
λ

(
y − μ

σ

))
, (2)

where φ(·) and�(·) denote the pdf and cumulative distribution function (cdf) of the standard normal distribution,
respectively. It is worth noting that if λ = 0, the density of Y reduces to a normal density N(μ, σ 2) and that the
distribution is positively skewed if λ > 0 and is negatively skewed if λ < 0.

We represent the skew-normal distribution in an incomplete data framework. Specifically, the stochastic
representation for random variable Y ∼ SN(μ, σ 2, λ) is given by

Yi = μ+ σ
(
δ(λ)Ri +

√
1 − δ2(λ)Vi

)
, (3)
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where i = 1, . . . , n with a sample size of n, δ(λ) = λ/
√
1 + λ2. Here, Ri ∼ TN(0, 1)I{ri > 0} and Vi ∼ N(0, 1),

whereRi andVi are independent.R ∼ TN(μ, σ 2)I{a1 < r < a2} is a truncated normal distributionwith the density

fR(r | μ, σ 2) =
{
�

(
a2 − μ

σ

)
−�

(
a1 − μ

σ

)}−1
× 1√

2πσ
exp

{
− 1
2σ 2 (r − μ)2

}
,

where a1 < r < a2 and I{·} represents an indicator function. For notational simplicity, let Y = (Y1, . . . ,Yn)
� and

R = (R1, . . . ,Rn)�. Furthermore, the skew-normal distribution can be decomposed into a normal distribution and
a truncated normal distribution by a hierarchical representation given by

Yi | Ri = ri ∼ N
(
μ+ σ riδ(λ), σ 2(1 − δ2(λ))

)
,

Ri ∼ TN
(
0, 1

)
I{ri > 0}. (4)

Azzalini and Capitanio (2013) adopted the moment-generating function to calculate the mean and variance for the
skew-normal distribution in (2) and they are given by

E(Y) = μ+ μ0(λ)σ , Var(Y) = σ 2
0 (λ)σ

2, (5)

respectively, whereμ0(λ)=̂
√
2/πδ(λ) and σ 2

0 (λ)=̂1 − μ2
0(λ). Of particular note is that Lin et al. (2007) introduced

a simple way of obtaining higher moments of the skew-normal distribution without the use of its moment-
generating function. Letting m0(λ) be the mode of the distribution SN(0, 1, λ), a quite accurate approximation
ofm0(λ) evaluated by the numerical maximization method is given by

m0(λ) ≈ μ0(λ)− t0(λ)σ0(λ)
2

− sign(λ)
2

exp
{
−2π

|λ|
}
,

where sign(λ) indicates the sign function for λ and

t0(λ)=̂4 − π

2
μ3
0(λ)

σ 3
0 (λ)

.

It deserves mentioning that the logarithm of the density for the skew-normal distribution is a concave function
and that this property is not altered by a change of location and scale parameters. Thus, m0(λ) is unique and the
mode of the skew-normal distribution in (2) can be reexpressed as Mode(Y) = μ+ m0(λ)σ . Mean(Y), Mode(Y)
and Median(Y) have the quantitative relationship when the observations follow a skew-normal distribution:
Median(Y) ≈ [Mode(Y)+ 2Mean(Y)]/3, that is,

Meadian(Y) ≈ μ+ [m0(λ)+ 2μ0(λ)]σ
3

, (6)

which could facilitate the development of the median regression with the skew-normal mixtures discussed below.

2.2. Median regression for skew-normalmixtures

In this paper, we assume that the response variable Yi follows a skew-normal distribution with location parameter
μi, scale parameter σ and skewness parameter λ, denoted by Yi ∼ SN(μi, σ 2, λ) for i = 1, . . . , n. A linear mode
regression model with skew-normal errors can be expressed as

yi = x�
i β + εi, (7)

where Median(Yi | X) = x�
i β = μi + [m0(λ)+ 2μ0(λ)]σ/3 defined by (6). Here X = (x1, . . . , xn) is a p × n

design matrix, such that each of its element xi = (xi1, . . . , xip)� is the p-dimensional vector of predictors, and
β = (β1, . . . ,βp)� is a p-dimensional vector of the unknown regression coefficients, and ε = (ε1, . . . , εn)� stands

for the n-dimensional vector of random errors such that εi
iid∼ SN(−[m0(λ)+ 2μ0(λ)]σ/3, σ 2, λ).
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We consider the case where the data from heterogeneous populations. A finite mixture median regression
(FMMeR) model withm-components of the skew-normal distributions is defined as⎧⎪⎪⎨⎪⎪⎩

f (yi | �) =
m∑
j=1

νjSN(yi | μij, σ 2
j , λj), i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

Median(yij) = x�
i β j,

(8)

where

SN(yi | μij, σ 2
j , λj) = 2

σj
φ

(
yi − μj

σj

)
�

(
λj
yi − μj

σj

)
,

ν = (ν1, . . . , νm)� are the mixing proportions which are constrained to be non-negative and sum to unity, βj =
(βj1, . . . ,βjp)� and � = (ν1, . . . , νm−1,β�

1 , . . . ,β
�
m, σ1, . . . , σm, λ1, . . . , λm)�. It is obvious that

μij = x�
i β j −

σj

3

[
m0(λj)+ 2

√
2
π
δ(λj)

]
, (9)

which shows that the location in the FMMeR model is altered by a change of scale and skewness parameters.

2.3. Identifiability

An important part associated with statistical inference for FMR models is their identifiability. It is well known that
mixture models are not absolutely identifiable in general. However, in some mixture model settings, it is possible
to establish a weaker sense of identifiability. Titterington et al. (1985) have given relevant conclusions that the FMR
models of continuous distribution are identifiable inmost cases. Otiniano et al. (2015) introduced the identifiability
of finite mixture of skew-normal distribution and gave detailed explanation. The cumulative distribution function
of Y is denoted by FY . It is possible to define the skew-normal family as the set

F =
{
F : FY(y | μ, σ 2, λ) =

∫ y

−∞
f (t | μ, σ 2, λ) dt

}
and

H =
⎧⎨⎩H : H(y | �) =

m∑
j=1

νjFj(y | μij, σ 2
j , λj); Fj(y | μij, σ 2

j , λj) ∈ F

⎫⎬⎭
as the class of finite mixture of skew-normal distributions. The class H of all finite mixtures of F is identifiable if
and only if for any H, H̄ ∈ H ,

H =
m∑
j=1

νjFj, H̄ =
m̄∑
j=1

ν̄jF̄j.

The equality H = H̄ implies m = m̄ and (ν1, F1), . . . , (νm, Fm) are a permutation of (ν̄1, F̄1), . . . , (ν̄m, F̄m). The
following theorem given by Atienza et al. (2006) gives a sufficient condition for the identifiability of finite mixtures
of distributions. A′ denotes the accumulation set of A.

Theorem 2.1 (Atienza et al., 2006): LetF be a family of distributions. Let M be a linear mapping which transforms
any F ∈ F into a real function ϕF with domain Sϕ(F). Let S0(F) = {k ∈ Sϕ(F) : ϕF(k) 	= 0}. Suppose that there exists
a total order ≺ on F , such that for any F ∈ F there exists a point k(F) ∈ S0(F)′ verifying

(1) if F1, F2, . . . , Fl ∈ F ,with F1 ≺ Fj for 2 ≤ j ≤ l, then k(F1) ∈ [S0(F1) ∪ [∪l
j=2Sϕ(Fj)]]

′;

(2) if F1 ≺ F2, then limk→k(F1)
ϕF2 (k)
ϕF1 (k)

= 0.

Then, the class H of all finite mixture distributions of F is identifiable.
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3. Themethod for variable selection

Various classical variable selection criteria can be considered as tradeoffs based on the estimation variance and
modelling biases of penalized likelihood. The density f (x) is functionally independent of the parameters as an
assumption in FMMeRmodel when x is random. Hence, the variable selection can be done based absolutely on the
conditional density function specified in (2). Denote {(xi, yi)}ni=1 as a sample of observations from FMMeR model
specified in (8). The log-likelihood function of � is given by

�(�) =
n∑
i=1

log
m∑
j=1

νjSN(yi | μij, σ 2
j , λj).

Amaximum likelihood estimate (MLE) is obtained via maximizing �(�). TheMLE is often close to, but not strictly
equal to 0 when a component of x is not important. Thus, this covariate is not excluded from the model. To address
this problem, according to Khalili and Chen (2007), we define a penalized log-likelihood function as

L(�) = �(�)− p(�), (10)

with the penalty function

p(�) = n
m∑
j=1

νj

p∑
t=1

pτj(|βjt|),

where pτj(·) is a given penalty function with the tuning parameter τj ≥ 0 (j = 1, 2, . . . ,m), and the tuning param-
eters and the penalty functions are not necessarily the same for all the parameters. A data-driven criterion for
determining tuning parameters is introduced in Subsection 5.2. By choosing appropriate tuning parameters and
maximizing function L(�) in (10) to obtain penalized maximum likelihood estimator of � , denoted by �̂ , the
coefficients in the vicinity of 0 are compressed to 0 and automatically excluded. Thus, the procedure combines
the parameter estimation and variable selection and reduces the computational burden substantially. We use the
following three penalty functions to illustrate the theory that we develop for the FMMeR model:

LASSO penalty : pτj(|βjt|) = τj|βjt|,
HARD penalty : pτj(|βjt|) = τj

2 − (|βjt| − τj)
2I(|βjt| < τj),

SCAD penalty : p′
τj(|βjt|) = τj

{
I(|βjt| ≤ τj)+ (aτj − |βjt|)

(a − 1)τj
I(|βjt| > τj)

}
.

Following the idea of Fan and Li (2001), we set a = 3.7 for application purposes in this article. The LASSO penalty
has a good performance in numerical computation because of its convex property. The SCAD penalty gives a good
performance in selecting important variables. HARDpenalty should workmore like SCAD, although less smoothly.

4. Asymptotic properties

In this section, we consider the consistency for variable selection method and the oracle property in estima-
tion. Without loss of generality, the coefficient vector β j(j = 1, . . . ,m) of the j-th component is decomposed into
β�
j = (β�

1j ,β
�
2j), where β1j and β2j contain the nonzero effects and zero effects of β j, respectively. Naturally, we

also split the parameter �� = (��
1 ,�

�
2 ) such that �2 contains all zero effects, that is, β2j in the true model.

The vector of true parameters is denoted as �0. The components of �0 are denoted with a superscript, namely
�0 = (ν01 , . . . , ν0m−1,β

0�
1 , . . . ,β0�

m , σ 0
1 , . . . , σ

0
m, λ

0
1, . . . , λ

0
m)

�, where β0jt is the t-th component of β0
j . Let dj denote

the number of nonzero elements β0jt of the subvector β0
1j for each j. Let

an = max
j,t

{p′
τj(β

0
jt ;β

0
jt 	= 0)}, bn = max

j,t
{p′′
τj(β

0
jt ;β

0
jt 	= 0)},

where 1 ≤ t ≤ dj and 1 ≤ j ≤ m. p′
τj(β

0
jt) and p′′

τj(β
0
jt) are the first and second derivatives of the penalty func-

tion pτj(β
0
jt) with respect to β0jt , respectively. The asymptotic results obtained in this article are based on the three

conditions on the penalty functions pτj(·).

C0: For all j, pτj(0) = 0, and pτj(β) is symmetric and non-negative. Furthermore, it is nondecreasing and twice
differentiable for all β ∈ (0,∞) with at most a few exceptions.



STATISTICAL THEORY AND RELATED FIELDS 35

C1: As n → ∞, bn = o(1).
C2: For all j and Tn = {β ; 0 < β ≤ n−1/2 log n}, limn→∞ infβ∈Tn p′

τj(β) = ∞.

Condition C1 is used to explain the asymptotic properties of the estimators of nonzero effects. Conditions C0
and C2 are required for sparsity.

Theorem 4.1 (Consistency): Let hi = (xi,Yi), i = 1, 2, . . . , n, be a random sample from a density function f (h,�)
that satisfies the regularity conditions R1–R4 in the Appendix 1. The penalty functions pτj(·) satisfy conditions C0 and
C1 as a assumption. Then there exists a local maximizer �̂ of the penalized log-likelihood function L(�) for which

‖�̂ − �̂0‖ = Op{n−1/2(1 + an)},

where ‖ · ‖ represents the Euclidean norm.

Theorem4.2 (Oracle property): Assume that the conditions given in Theorem 4.1 are fulfilled. The penalty functions
pτj(·) satisfy conditions C0–C2, and m is known in parts (a) and (b). We then have the following.

(a) For any � such that ‖� − �0‖ = Op(n−1/2), with probability tending to 1,

L(�1,�2)− L(�1, 0) < 0.

(b) For any
√
n-consistent maximum penalized likelihood estimator �̂ of �,

(1) sparity: P(β̂2j = 0) → 1, j = 1, 2, . . . ,m as n → ∞;
(2) asymptotic normality:

√
n
{[

I1(�01)− p′′(�01)

n

]
(�̂1 − �01)+ p′(�01)

n

}
d−→ N(0, I1(�01)),

where I1(�01) is the Fisher information computed under the true model with all zero effects removed.

Brief proofs of theorems are put in Appendix 1. Detailed proofs can be seen in the previous literature (see, for
example, Fan & Li, 2001; Khalili & Chen, 2007; Yin, Wu, & Dai, 2020).

5. Numerical computations

5.1. Maximization algorithm

In general, due to the unboundedness of the likelihood function, the maximum likelihood estimator of the mix-
ture distribution is often inconsistent in the context of finite mixture models. The alternative is to add a regular
term that prevents the likelihood function from tending to infinity to get a consistent maximum penalty likeli-
hood estimator, see, for example, Chen and Tan (2009), Chen (2017), including recent works, Chen et al. (2020),
He and Chen (2022a, 2022b). McLachlan and Peel (2004) proposed that the EM algorithm can calculate the
maximum likelihood estimation of arbitrary distribution in finite mixture model. We maximize the regularized
log-likelihood function by the EM algorithm. We define the latent component-indicators Z = (Z1, . . . ,Zn) with
Zi = (zi1, . . . , zim)�, i =, 1 . . . , n. Then Zi is anm-dimensional indicator vector with its j-th element given by

zij =
{
1, if (xi, yi) belongs to j-th component,
0, otherwise.

Since an observation cannot simultaneously belong to both components, we have
∑m

j=1 zij = 1. By assuming
the component-indicators Z1, . . . ,Zn to be independent, we obtain a conditional density of the multinomial
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distribution given the mixing probabilities

f (zi | ν) = ν
zi1
1 ν

zi2
2 · · · νzi,m−1

m−1

⎛⎝1 −
m∑
j=1

νj

⎞⎠zim

, (11)

which is denoted as Zi ∼ M(1; ν1, . . . , νm), and it will be used in combination with (3) to generate the following
hierarchical representation for the skew-normal mixtures, such that

Yi | (ri, zij = 1) ∼ N
(
μij + σjriδ(λk), σ 2

j (1 − δ2(λj))
)
,

Ri | zij = 1 ∼ TN(0, 1)I(τi > 0),

Zi ∼ M(1; ν1, ν2, . . . , νm). (12)

It deserves mentioning that the hierarchical representation of the finite skew-normal mixtures in (12) allows us
to address computational barriers of the parameter estimation when fitting the FMMeR model. Let Yobs = {yi}ni=1
be the observed data. For each Yi = yi, we use the latent variables Zi and Ri to form the complete data Ycom =
Yobs ∪ Ymis = {yi, zij, ri}, where Ymis denotes the missing data. From hierarchical representation (12), the complete
data log-likelihood function can be given by

�c(�) =
n∑

i=1

m∑
j=1

zij
{
log νj − 1

2
log

(
2πσ 2

j

)
− 1

2
log(1 − δ2(λj))

− 1
2σ 2

j (1 − δ2(λj))

[
e2ij − 2σjeijδ(λj)ri + σ 2

j r
2
i δ

2(λj)
] }

. (13)

Similar to the approach in Fan and Li (2001), p(�) is replaced by the following local quadratic function given the
value �(0),

p(�) ≈ p̃(�) = p(�(0))+ p′(�(0))

2�(0) (�
2 − �(0)2)

= n
m∑
j=1

νj

p∑
t=1

⎡⎣pτj(β(0)jt )+
p′
τj(β

(0)
jt )

2β(0)jt

(β2jt − β
(0)2
jt )

⎤⎦ .

This approximation is used in the M-step of the EM algorithm in each iteration. The complete penalized
log-likelihood function of (10) can be given by

Lc(�) = �c(�)− p(�). (14)

• E-step. The E-step computes the conditional expectation of the function Lc(�) with respect to zij. Given the
observed data {xi, yi}ni=1 from FMMeR model (8), �(k) is denoted as parameter estimation for k-th iteration. Let
θ = (β�, σ , λ)�. Then the surrogate function can be constructed as

Q(� | �(k)) = Q1(ν | �(k))+ Q2(θ | �(k))− p(� | �(k)), (15)

where

Q1(ν | �(k)) =
n∑
i=1

m∑
j=1

ω
(k)
ij log νj,
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Q2(θ | �(k)) =
n∑
i=1

m∑
j=1

ω
(k)
ij

[
−1
2
log

(
2πσ 2

j

)
− 1

2
log(1 − δ2(λj))

− 1
2σ 2

j (1 − δ2(λj))

(
e2ij − 2σjeijδ(λj)r

(k)
1i + σ 2

j δ
2(λj)r

(k)
2i

)]
.

The required conditional expectations are obtained as follows. First, the conditional expectation E�(k) (zij | yi, xi) is
given by

ω
(k)
ij =

ν
(k)
j SN(yi;μ

(k)
ij , σ 2(k)

j , λ(k)j )∑m
j=1 ν

(k)
j SN(yi;μ

(k)
ij , σ 2(k)

j , λ(k)j )
. (16)

Then, it can be easily shown that

r(k)1i = E(Ri | yi, xi, zij = 1,�(k)) =
e(k)ij δ(λ

(k)
j )

σ
(k)
j

+
δ(λ

(k)
j )

λ
(k)
j

φ(γ
(k)
ij )

�(γ
(k)
ij )

,

r(k)2i = E(R2i | yi, xi, zij = 1,�(k)) = 1

1 + λ
(k)2
j

+
e(k)ij δ(λ

(k)
j )
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[
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√
2
π
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(k)
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]
.

• M-step. The M-step calculates parameter vector �(k+1) via maximizing Q(� ;�(k)) with respect to � . Thus, on
the (k + 1)-th iteration of the EM algorithm, the mixing proportions are updated by

ν
(k+1)
j = 1

n

n∑
i=1

ω
(k)
ij , j = 1, 2, . . . ,m. (17)

It is worth noting that the mixing proportions modelling should be considered in mixture of experts regression
models, which can be found in Yin, Wu, Lu, et al. (2020). To improve the efficiency for selecting the number of
components in real data analysis for this article, we firstly applied a clustering method to determine the optimal
number of components in Subsection 5.3. By maximizing Q(� ;�(k)) with respect to � without νj, namely max-
imizing Q2(θ ;�(k)), we can compute θ

(k+1)
j . To obtain parameter estimation of FMMeR model without penalty,

start from an initial value θ (0) and given k as the current iteration. We use the following method to update

θ (k+1) = θ (k) + [−H(θ (k))]−1S(θ (k)), (18)

where

S(θ) = ∂Q2(θ ;�(k))

∂θ
= [S(β), S(σ ), S(λ)]�

is referred to as score function without penalty. H(θ (k)) is an observation information matrix defined as

H(θ) = ∂2Q2(θ ;�(k))

∂θ∂θ� .

Detailed derivation can be seen in Appendix 2. We iterate between the E-steps and M-steps until algorithm
converges, and the estimators β

(0)
j , σ (0)j , λ(0)j are obtained.

In order to find the non-significant variables and simplify the FMMeR model, we shrink the coefficients by the
penalty function. β(0)j is taken as the initial value of iteration and given k as the current iteration, update

β
(k+1)
j = β

(k)
j +

[
∂2Q2(θ ;�(k))

∂β j∂β
�
j

− n�τ (β
(k)
j )

]−1 [
n�τ (β

(k)
j )β

(k)
j − ∂Q2(θ ;�(k))

∂β j

]
,
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with

�τ (β
(k)
j ) = diag

⎧⎨⎩p′
τj(|β

(k)
j1 |)

|β(k)j1 |
,
p′
τj(|β

(k)
j2 |)

|β(k)j2 |
, . . . ,

p′
τj(|β

(k)
jp |)

|β(k)jp |

⎫⎬⎭ .

5.2. Choice of the tuning parameters

The degree of penalty is controlled by tuning parameters. When using the method introduced in this article, we
need to choose the tuning parameters. Various selection criteria, including cross-validation (CV), generalized cross-
validation (GCV), Akaike information criterion (AIC) (Akaike, 1973) and Bayesian Information Criterion (BIC)
(Schwarz, 1978), are often used for choosing tuning parameters. GCV has a non-negligible overfitting effect in
the final model selection. H. Wang et al. (2007) suggested using BIC for the SCAD estimator in linear models and
partially linearmodels and proved the consistency of the selectionmethod, that is, the optimal parameter chosen by
BIC can identify the true model with probability tending to 1. Considering the maximizer �n of the log-likelihood
function (13), we use the estimator�n to calculate the mixing proportions in (17). The mixing proportions remain
fixed throughout the tuning parameter selection process. For a given value of tuning parameter τj, let (β̂ j, σ̂j, λ̂j)
be the maximum regularized likelihood estimates of the parameters in the j-th component of the FMMeR model
fixing the remaining elements of � at �n. Denote the likelihood-based deviance statistics, evaluated at (β̂ j, σ̂j, λ̂j),
corresponding to the j-th component of FMMeR model as

Dj(β̂ j, σ̂j, λ̂j) =
n∑

i=1
ωij

[
log SN(yi | yi, μ̂ij, σ̂ 2

j , λ̂j)− log SN(yi | xiβ̂k, μ̂ij, σ̂ 2
j , λ̂j)

]
,

where μ̂ij = x�
i β̂ j − σ̂j

3 [m0(λ̂j)+ 2
√

2
π
δ(λ̂j)] and the weights ωij are given in (16). Then we define

BIC(τj) = 2Dj(β̂ j, σ̂j, λ̂j)+ N(τj) log(nj), j = 1, . . . ,m,

where N(τj) is the number of nonzero elements of the vector β̂ j and nj = ∑n
i=1 ωij. It is expected that the choice

of τjt should be such that the tuning parameter for a zero coefficient is larger than that for a nonzero coefficient.
Thus, we can simultaneously unbiasedly estimate the larger coefficient, and shrink the small coefficient towards
zero. Hence, similar to Wu et al. (2013), we suggest

τjt = τ̂j

|β(0)jt |
, j = 1, 2, . . . ,m, t = 1, 2, . . . , p,

whereβ(0)jt is theMLE ofβjt .βjt , τjt are the t-th component ofβ j and τj, respectively. Tuning parameters are obtained
via calculating

τ̂j = argmin
τj

BIC(τj).

5.3. Determining the number of components

Determining the number of components of an FMRmodel is a challenge. In the above discussion, we assume thatm
is known and processing methods are either based on prior information or pre-analysis of data. A feasible method
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implements reversible jump Markov chain Monte Carlo (RJMCMC) Richardson and Green (1997), since adding
skewness even complicates matters, we did not pursue RJMCMC.Moreover, the component posterior probabilities
evaluated inmixture modelling for Bayesian inference can be readily used as a soft clustering scheme. Alternatively,
the log-likelihood maximum and two information-based criteria, AIC and BIC, can be used to select the number
of components. Although some success has been shown using the model choice criteria, choosing the right number
of components for a mixture model is known to be difficult.

To improve the efficiency for selecting the number of components in this article, a productive nonparametric
clusteringmethod viamode identification is applied, see J. Li et al. (2007). It deservesmentioning that this approach
is robust in high dimensions and when clusters deviate substantially from Gaussian distributions. Specifically, a
cluster is formed by those sample points that ascend to the same local maximum of the density function, and a
pairwise separability measure for clusters is defined using the Ridgeline between the density bumps of two clusters.
In this process, the Modal EM (MEM) algorithm and Ridgeline EM (REM) algorithm are used. Numerical results
in Section 7 illustrated that this clustering procedure works well for determining the number of components in the
FMMeR model.

6. Numerical experiments

In this section, we carry out simulation studies to investigate the finite sample performance of the proposedmethod-
ology. To be more specific, in Subsection 6.1, we conduct simulations to study the impact of the sample size on the
estimation quality, and in Subsection 6.2, we investigate the quality of the performance for variable selection over
different values of the skewness, and we compare the performance of the proposed FMMeRmodel andNMRmodel
used in Khalili and Chen (2007) in Subsection 6.3.

6.1. Experiments 1

The experiment works to observe the impact of the sample size on the estimation quality. In addition, we compare
the performance of different variable selection methods from a number of angles. We generated independently
samples of size n from the following FMMeR model with two components,

{
f (yi | �) = ν1SN(μi1, σ 2

1 , λ1)+ (1 − ν1)SN(μi2, σ 2
2 , λ2),

Median(yij) = x�
i β j, i = 1, 2, . . . , n, j = 1, 2,

(19)

where μi1 and μi2 are defined by (9), and � = (ν1,β�
1 ,β

�
2 , σ1, σ2, λ1, λ2)�. The components of the covariate x

in the simulation are generated from a uniform distribution U(−1, 1). The true values of parameters are set to be
β1(0) = (1, 0, 0,−1.5, 0)�,β2(0) = (−1, 0, 1, 0, 1.2)�, σ1(0) = σ2(0) = 2. To test the sensitivity of the FMMeRmodel
for positively or negatively skewed data, we set λ1(0) = 3 and λ2(0) = −3. A choice of mixing proportion ν1 = 0.5
and 0.35 is considered, and y is generated according tomodel (19). According to Karlis and Xekalaki (2003), a faster
convergence rate can be achieved by setting the true value of the parameter to the initial value of the iteration. The
performance of the estimators β̂ , σ̂ , λ̂ and ν̂ will be assessed using the Mean Squared Error (MSE), defined as

MSE(β̂ j) = E(β̂ j − β j(0))
�(β̂ j − β j(0)),

MSE(σ̂j) = E(σ̂j − σj(0))
2,

MSE(λ̂j) = E(λ̂j − λj(0))
2,

MSE(ν̂j) = E(ν̂j − νj(0))
2.

The average numbers of correctly (C) and incorrectly (IC) estimated zero coefficients and their standard deviation
(SD) based on 500 repetitions are presented in Table 1. The results are presented in terms of mixture components
1 and 2. In addition, we report the MSEs and SD of scale, skewness and mixing proportion for ν1 = 0.5 across the
repetitions in Table 2. Note that when the sample size n increases, as expected, the methods improve for a given
penalty. The MSEs of estimators β̂ , σ̂ , λ̂ and ν̂ tend to decrease by increasing the sample size, which illustrates the
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Table 1. Three penalty functions are used for variable selection procedure.

ν1 = 0.35 ν1 = 0.5

Penalty Com. n C(SD) IC(SD) MSE(β̂)(SD) C(SD) IC(SD) MSE(β̂)(SD)

LASSO Com. 1 200 2.6500(0.0750) 0.0650(0.1890) 0.1677(1.2661) 2.8250(0.0750) 0.0550(0.1313) 0.1556(1.0248)
400 2.8750(0.0500) 0.0250(0.0991) 0.0975(0.4506) 2.9500(0.0500) 0.0125(0.0770) 0.0849(0.3854)
800 2.9500(0.0000) 0.0025(0.0000) 0.0550(0.1240) 3.0000(0.0000) 0.0000(0.0000) 0.0406(0.0428)

Com. 2 200 1.7750(0.0500) 0.0500(0.1206) 0.1485(0.9960) 1.7760(0.0500) 0.0500(0.1204) 0.1484(0.9980)
400 1.9775(0.0000) 0.0150(0.0556) 0.0622(0.2210) 1.9975(0.0000) 0.0025(0.0701) 0.0833(0.3552)
800 2.0000(0.0000) 0.0000(0.0000) 0.0300(0.0728) 2.0000(0.0000) 0.0000(0.0000) 0.0443(0.0462)

HARD Com. 1 200 2.7500(0.0500) 0.0150(0.1210) 0.1335(0.3055) 2.8075(0.0500) 0.0010(0.0500) 0.1036(0.2840)
400 2.9975(0.0000) 0.0000(0.0000) 0.0712(0.0850) 3.0000(0.0000) 0.0000(0.0000) 0.0511(0.0701)
800 3.0000(0.0000) 0.0000(0.0000) 0.0441(0.0495) 3.0000(0.0000) 0.0000(0.0000) 0.0301(0.0320)

Com. 2 200 1.8750(0.0500) 0.0200(0.0500) 0.0623(0.2751) 1.8750(0.0500) 0.0100(0.0497) 0.0954(0.2700)
400 2.0000(0.0000) 0.0000(0.0000) 0.0371(0.0621) 2.0000(0.0000) 0.0050(0.0000) 0.0569(0.0602)
800 2.0000(0.0000) 0.0000(0.0000) 0.0202(0.0242) 2.0000(0.0000) 0.0000(0.0000) 0.0296(0.0313)

SCAD Com. 1 200 2.7650(0.0500) 0.0550(0.1313) 0.1389(0.3026) 2.7750(0.0500) 0.0175(0.0689) 0.0880(0.0901)
400 2.9240(0.0000) 0.0150(0.0000) 0.0712(0.0954) 3.0000(0.0000) 0.0025(0.0016) 0.0496(0.0550)
800 3.0000(0.0000) 0.0000(0.0000) 0.0366(0.0424) 3.0000(0.0000) 0.0000(0.0000) 0.0277(0.0297)

Com. 2 200 1.9550(0.0000) 0.0025(0.0500) 0.0717(0.2505) 1.9550(0.0000) 0.0100(0.0524) 0.0927(0.1023)
400 2.0000(0.0000) 0.0000(0.0000) 0.0454(0.0524) 2.0000(0.0000) 0.0000(0.0000) 0.0537(0.0689)
800 2.0000(0.0000) 0.0000(0.0000) 0.0197(0.0202) 2.0000(0.0000) 0.0000(0.0000) 0.0315(0.0350)

Note: The first column indicates the penalty function used for variable selection method and the second column indicates the component.

Table 2. Simulation results of the parameters of scale, skewness and mixing
proportion for ν1 = 0.5.

Parameters Com. n MSE(σ̂ )(SD) MSE(λ̂)(SD) MSE(ν̂)(SD)

LASSO Com. 1 200 0.0209(0.1656) 0.0350(0.1202) 0.0014(0.0045)
400 0.0098(0.0650) 0.0149(0.0455) 0.0006(0.0031)
800 0.0054(0.0075) 0.0040(0.0069) 0.0002(0.0014)

Com. 2 200 0.0221(0.1705) 0.0342(0.1351) 0.0014(0.0046)
400 0.0104(0.0655) 0.0140(0.0459) 0.0006(0.0031)
800 0.0060(0.0081) 0.0042(0.0077) 0.0003(0.0012)

HARD Com. 1 200 0.0081(0.0765) 0.0120(0.0153) 0.0012(0.0035)
400 0.0030(0.0089) 0.0041(0.0058) 0.0006(0.0016)
800 0.0015(0.0017) 0.0027(0.0035) 0.0003(0.0006)

Com. 2 200 0.0090(0.0790) 0.0130(0.0147) 0.0012(0.0031)
400 0.0035(0.0087) 0.0049(0.0055) 0.0006(0.0017)
800 0.0018(0.0021) 0.0028(0.0031) 0.0003(0.0008)

SCAD Com. 1 200 0.0087(0.0924) 0.0113(0.0255) 0.0013(0.0040)
400 0.0038(0.0209) 0.0042(0.0097) 0.0006(0.0029)
800 0.0017(0.0025) 0.0030(0.0046) 0.0003(0.0010)

Com. 2 200 0.0091(0.0889) 0.0130(0.0270) 0.0013(0.0037)
400 0.0034(0.0224) 0.0052(0.0104) 0.0007(0.0024)
800 0.0018(0.0020) 0.0031(0.0049) 0.0003(0.0009)

convergence property of the maximum penalized likelihood estimator of FMMeR model. For a given n, the per-
formances of SCAD and HARDmethods are similar for model complexity and better than LASSO method. When
mixing proportion ν1 reduces, and the sample size for component 1 decreases, all procedures for the component 1
of the FMMeR model become less satisfactory. Furthermore, the performances of component 1 and component 2
are similar for ν1 = 0.5, which indicates that FMMeR model is insensitive to positively or negatively skewed data.

6.2. Experiments 2

To investigate how the estimation quality is changed over different skewness, in this section, we set mixing propo-
sition ν1 = 0.5 and the number of observations n = 400. Observations are generated in the same way as in Experi-
ment 1. Table 3 shows C, IC,MSE(β̂) and their SD for different penalty function with λ = −3,−1.5,−0.5, 0.5, 1.5, 3
for 500 repetitions. Notice that the variable selection procedures perform similarly in all three cases for a given
penalty function, but a larger SD is obtained by LASSO. When combined with the relevant conclusions of Exper-
iment 1, the result indicates that the performance of the variable selection method is not affected by the choice of
skewness of data.
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Table 3. Varying skewness with n = 400 and ν1 = 0.5.

Penalty Com. λ C IC MSE(β̂)

LASSO Com. 1 0.5 2.9975(0.0000) 0.0025(0.0557) 0.0851(0.3558)
1.5 2.9550(0.0500) 0.0175(0.0721) 0.0902(0.3506)
3 2.9500(0.0000) 0.0125(0.0770) 0.0849(0.3854)

Com. 2 −0.5 1.9750(0.0500) 0.0225(0.0725) 0.0803(0.3724)
−1.5 1.9975(0.0000) 0.0125(0.0750) 0.0770(0.3550)
−3 1.9975(0.0000) 0.0025(0.0701) 0.0833(0.3552)

HARD Com. 1 0.5 3.0000(0.0000) 0.0000(0.0015) 0.0547(0.0684)
1.5 3.0000(0.0000) 0.0000(0.0000) 0.0676(0.0778)
3 3.0000(0.0000) 0.0000(0.0000) 0.0511(0.0701)

Com. 2 −0.5 2.0000(0.0000) 0.0000(0.0050) 0.0604(0.0599)
−1.5 2.0000(0.0000) 0.0000(0.0000) 0.0685(0.0619)
−3 2.0000(0.0000) 0.0050(0.0000) 0.0569(0.0602)

SCAD Com. 1 0.5 3.0000(0.0000) 0.0000(0.0025) 0.0536(0.0511)
1.5 3.0000(0.0000) 0.0000(0.0000) 0.0512(0.0504)
3 3.0000(0.0000) 0.0025(0.0016) 0.0496(0.0550)

Com. 2 −0.5 2.0000(0.0000) 0.0000(0.0000) 0.0509(0.0661)
−1.5 2.0000(0.0000) 0.0000(0.0019) 0.0632(0.0604)
−3. 2.0000(0.0000) 0.0000(0.0000) 0.0537(0.0689)

Table 4. Varying sample size nwith λ1 = 3, λ2 = −3 and ν = 0.5.

FMMeRmodel NMRmodel

Penalty Com. n C(SD) IC(SD) C(SD) IC(SD)

LASSO Com. 1 200 2.8250(0.0750) 0.0550(0.1313) 2.8540(0.3550) 0.0500(0.0250)
400 2.9500(0.0500) 0.0125(0.0770) 2.9200(0.0224) 0.0250(0.0000)

Com. 2 200 1.7760(0.0500) 0.0500(0.1204) 1.7750(0.3395) 0.0650(0.0300)
400 1.9975(0.0000) 0.0025(0.0701) 1.9240(0.0206) 0.0100(0.0000)

HARD Com. 1 200 2.8075(0.0500) 0.0010(0.0500) 2.8200(0.1192) 0.0025(0.0575)
400 3.0000(0.0000) 0.0000(0.0000) 3.0000(0.0000) 0.0000(0.0000)

Com. 2 200 1.8750(0.0500) 0.0100(0.0497) 1.7550(0.0097) 0.0150(0.0596)
400 2.0000(0.0000) 0.0050(0.0000) 1.9975(0.0000) 0.0000(0.0000)

SCAD Com. 1 200 2.7750(0.0500) 0.0175(0.0689) 2.8065(0.1428) 0.0155(0.0775)
400 3.0000(0.0000) 0.0025(0.0016) 2.9750(0.0042) 0.0025(0.0000)

Com. 2 200 1.9550(0.0000) 0.0100(0.0524) 1.7500(0.1300) 0.0200(0.0790)
400 2.0000(0.0000) 0.0000(0.0000) 1.9950(0.0000) 0.0000(0.0000)

6.3. Experiments 3

To demonstrate the ability of the proposed variable selection method at selecting important variables, we compare
the performance of the proposed FMMeR model and NMR model used in Khalili and Chen (2007) for a varying
sample size n = 200, 400 and ν1 = 0.5. The data are generated exactly in the same way as in Experiment 1, and
each of the two models is considered for the inference. The simulated results are reported in Table 4 based on 500
repetitions. From Table 4, it is clear that the performance of the variable selection procedure based on the FMMeR
model is better than that based on the NMRmodel in some settings. This confirms that the FMMeR model clearly
outperforms the NMR model at identifying important variables when there is skewness in the data. As expected,
the MSEs indicate the convergence property of the maximum penalized likelihood estimator of FMMeR and NMR
models.

7. A real-data example

FMRmodels have been used in the fields of biomedicine. To further demonstrate the ability of the proposed FMMeR
model and variable selection method at identifying significant variables, we use a real-data example to illustrate the
practical application of the proposed method of the FMMeR model in this section. The data set, analysed by Cook
and Weisberg (1994), focused on the body mass index (BMI) for 102 male and 100 female athletes collected at
Australian Institute of Sport. We are interested in the relationship between BMI and the 10 performance measures
given as red cell count (x1), white cell count (x2), haematocrit (x3), haemoglobin (x4), plasma ferritin concentration
(x5), sum of skin folds (x6), body fat percentage (x7), lean body mass (x8), height (x9) and weight (x10).

It can be seen from the histogram of the BMI in Figure 1 that the response is right-skewed, indicating the prefer-
ence of the model with the skew-normal random errors. We determine the number of components via the method
in Subsection 5.3. The clustering results are shown in Figure 2. At the level 3, 4 clusters are formed, as shown by
different symbols in Figure 2(a). The 4 modes identified at level 3 are merged into 2 modes at level 4, as shown in
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Figure 1. Histogram of the BMI.

Figure 2. Clustering results for the BMI data obtained. (a) The 4 clusters at level 3. (b) The ascending paths from the modes at level
3 to those at level 4 and the contours of the density estimate at level 4. (c) The 2 clusters at level 4. (d) The ascending paths from the
modes at level 4 to the next level and the contours of the density estimate at the next level.

Figure 2(b,d). Compared with level 4, two influential observations were excluded in cluster 1 and cluster 2 of level
3. Thus, it seems reasonable to use the following FMMeR model with two components to fit the BMI data,

{
f (yi | �) = ν1SN(μi1, σ 2

1 , λ1)+ (1 − ν1)SN(μi2, σ 2
2 , λ2),

Median(yij) = x�
i β j, i = 1, 2, . . . , 202, j = 1, 2,

(20)

where μi1 and μi2 are defined by (9), and � = (ν1,β�
1 ,β

�
2 , σ1, σ2, λ1, λ2)�. xi is a 10 × 1 vector consisting of all

10 potential variables. Three penalty functions are used to select significant variables.
We compare the variable selection results of the three models, including the proposed FMMeR model in this

article, finite mixture of modal liner regression model and NMR model, where modal liner regression (MODLR)
model was proposed by Yao and Li (2014). The results of variable selection for three models are given in Tables 5–7.
In this data example, three variable selection procedures for a givenmodel perform very similarly in terms of select-
ing significant variables. For FMMeR model and finite mixture of MODLR model, the same variables are removed
for a given penalty function. NMR model, however, reserves more variables, resulting in a failure to select signifi-
cant variables. Thus, the true structure of the model is not identified. When there is a situation of skewed data, the
performances of HARD and SCAD are better than LASSO for identifying the authentic structure of the model. In
FMMeR model, seven significant variables, including x1, x4, x5, x7, x8, x9, x10, are identified in component 1. Also
seven x4, x5, x6, x7, x8, x9, x10 are contained in component 2. This indicates that these variables have a significant
effect for BMI of athletes. We also find that there are some variables having different effects on parts one and two.
For instance, red cell count (x1) and sum of skin folds (x6) are another factors affecting athletes’ BMI in component
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Table 5. Variable selection for BMI data set via FMMeR model.

LASSO HARD SCAD

Covariates Com.1 Com.2 Com.1 Com.2 Com.1 Com.2

x1 −0.7386 −0.7224
x2 0.0674
x3
x4 0.8752 0.7071 1.0808 0.7490 1.0726 0.7358
x5 0.0032 0.0069 0.0027 0.0027 0.0034 0.0016
x6 0.0501 0.0468 0.0424
x7 0.2773 0.5750 0.7060 0.6165 0.6848 0.5997
x8 0.2087 1.1808 0.6887 1.1974 0.6666 1.1324
x9 −0.0446 −0.1054 −0.0668 −0.1067 −0.0656 −0.1003
x10 −0.7357 −0.4254 −0.7508 −0.4060 −0.7007

Table 6. Variable selection for BMI data set via finite mixture of MODLR model.

LASSO HARD SCAD

Covariates Com.1 Com.2 Com.1 Com.2 Com.1 Com.2

x1 −0.7244 −0.7226
x2 0.0709
x3
x4 0.8790 0.6873 1.0554 0.7283 1.0496 0.7153
x5 0.0038 0.0070 0.0033 0.0026 0.0032 0.0019
x6 0.0486 0.0447 0.0410
x7 0.2690 0.6033 0.7884 0.6480 0.7628 0.6284
x8 0.2062 1.2133 0.7931 1.2285 0.7621 1.1663
x9 −0.0454 −0.1079 −0.0714 −0.1089 −0.0687 −0.1027
x10 −0.7595 −0.5188 −0.7734 −0.4929 −0.7256

Table 7. Variable selection for BMI data set via NMRmodel.

LASSO HARD SCAD

Covariates Com.1 Com.2 Com.1 Com.2 Com.1 Com.2

x1 −0.9520 −0.9582
x2 −0.0457 0.0824 −0.0451 0.0824
x3 0.0754 0.0759
x4 0.9064 0.6228 0.9067 0.6227 0.0794 0.0693
x5 0.0049 0.0081 0.0049 0.0081 0.0003 0.0003
x6 −0.019 0.0438 −0.0189 0.0437 0.0038
x7 0.8690 0.6757 0.8703 0.6761 0.0244 0.0634
x8 0.7615 1.2918 0.7639 1.2921 0.0195 0.1164
x9 −0.0729 −0.1134 −0.0731 −0.1134 0.0068 0.0008
x10 −0.4855 −0.8169 −0.4876 −0.8172 −0.0137 −0.0884

1 and component 2, respectively. Furthermore, x4, x5, x7 and x8 are helpful for achieving a high BMI in two con-
ponents. In addition, the performance of the variable selection procedure via the FMMeR model is different from
that of the variable selection procedure via the NMR model.

8. Conclusions remarks and future works

In this paper, by utilizing the skew-normal distribution as a component density to overcome the potential inappro-
priateness of normal mixtures in some context, we have developed a novel finite mixture of the median regression
(FMMeR) model to explore asymmetrical data that arise from several subpopulations. Thanks to the stochastic
representation for the skew-normal distribution, we have constructed a hierarchical representation of the finite
skew-normal mixtures to address computational barriers of the parameter estimation and variable selection when
fitting the FMMeR model. In addition, in order to determine the number of components, we applied a cluster-
ing method via mode identification proposed by J. Li et al. (2007) and a good performance is shown. Numerical
results from simulation studies and a real-data example illustrated that the proposed FMMeR model methodology
performs well in general, even when the data exhibit symmetrical behaviour.

It is worth noting that we only considered the procedures of parameter estimation and variable selection for
the FMMeR model based on a mixture of the skew-normal distributions. Meanwhile, the scenario of p>n has not
been considered in this paper. A natural extension of the proposed methodology is to consider other skewed dis-
tributions, such as the skew-t and skew-Laplace distributions, and high-dimensional settings. In addition, another
research direction is to model the mixing proportions ν, which extends the proposed model to the framework of
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mixture of expertsmodels. Finally, it will also be of interest to consider Bayesian variable selection, semi-parametric
and nonparametric methods for the FMMeR model, which are currently under investigation and will be reported
elsewhere.
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Appendices

Appendix 1. Regularity conditions and proofs

Regularity conditions R1–R4 on the joint distribution of h = (x,Y) are needed for proving the asymptotic properties of the pro-
posed method. Let f (h | �) be the joint density function of hwith the parameter space� ∈ �. We write� = (ψ1,ψ2, . . . ,ψs)
and s is the total number of parameters in the FMMeR model. The regularity conditions are as follows.

R1: The density f (h | �) has common support in h for all � ∈ �, and f (h | �) is identifiable in � up to a permutation of the
components of the mixture.

R2: There exists an open subset �∗ ∈ � containing the true parameter �0 such that for almost all h, the density f (h | �)

admits third partial derivatives with respect to � ∈ �∗.
R3: For each �0 ∈ � and t, l, g = 1, 2, . . . , s, there exist functions B1(h) and B2(h) (possibly depending on �0) such that for

� in a neighbourhood of N(�0),∣∣∣∣∂f (h | �)

∂ψt

∣∣∣∣ ≤ B1(h),
∣∣∣∣∂2f (h | �)

∂ψt∂ψl

∣∣∣∣ ≤ B1(h),
∣∣∣∣∂3 log f (h | �)

∂ψt∂ψl∂ψg

∣∣∣∣ ≤ B2(h),

where
∫
B1(h) dh < ∞ and

∫
B2(h)f (h | �) dh < ∞.

R4: The Fisher information matrix,

I(�) = E

{[
∂

∂�
log f (h | �)

] [
∂

∂�
log f (h | �)

]�}
,

is finite and positive definite for each � ∈ �.

Proof of Theorem 4.1: Let ξn = n−1/2(1 + an). We just have to specify that for any given ε > 0, there exists a large constant C
such that

lim
n→∞P

{
sup

‖u‖=C
L(�0 + ξnu) < L(�0)

}
≥ 1 − ε. (A1)

This indicates that for sufficiently large n, with large probability namely 1 − ε, there is a localmaximum in the ball {�0 + ξnu :
‖u‖ ≤ C}. This localmaximizer, say �̂ , satisfies ‖�̂ − �0‖ = Op(ξn).

Let ζn(u) = L(�0 + ξnu)− L(�0). Using pτj(0) = 0 and the definition of L(·), we have
ζn(u) = [�(�0 + ξnu)− �(�0)] − [p(�0 + ξnu)− p(�0)]

≤ [�(�0 + ξnu)− �(�0)] − [p(�01 + ξnuI)− p(�01)]

≤ �(�0 + ξnu)− �(�0)− n
m∑
j=1

νj

dj∑
t=1

[pτj(β
0
jt + ξnuI)− pτj(β

0
jt)],

where dj is the number of nonzero elements of the vector β0j . �01 is the parameter vector with zero regression coefficients
removed and uI is a subvector of u with corresponding components. By Taylor’s expansion and the triangular inequality

ζn(u) ≤ ξn{�(� ′
0)}�u − 1

2
u�I(�0)unξ 2n {1 + op(1)}
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−
m∑
j=1

νj

dj∑
t=1

[nξnp′
τj(β

0
jt)uI + nξ 2np

′′
τjuI

2{1 + o(1)}]

= q1 + q2 + q3. (A2)

Regularity conditions imply that n−1/2�′(�0) = Op(1) and Fisher informationmatrix I(�0) is positive definite. Thus, q1 is of
the order Op(n1/2ξn) = Op(nξ 2n ). By choosing a sufficiently large C, q1 is controlled uniformly by q2 in ‖u‖ = C. Note that the
q3 is bounded by

m∑
j=1

νj{
√
dnξnan‖u‖ + nξ 2nbn‖u‖2} =

√
dnξnan‖u‖ + nξ 2nbn‖u‖2,

where d = maxj dj. By condition C1 for the penalty functions, bn = o(1), this is also dominated by the q2. Hence, by choosing
a sufficiently large C, (A1) holds. This completes the proof. �

Proof of Theorem 4.2: To prove part (a), consider the partition � = (�1,�2) for any � in the neighbourhood ‖� − �0‖ =
O(n−1/2). By the definition of L(·), we obtain

L(�1,�2)− L(�1, 0) = [�(�1,�2)− �(�1, 0)] − [p(�1,�2)− p(�1, 0)].

By the mean value theorem,

�(�1,�2)− �(�1, 0) =
[
∂�(�1, η)
∂�2

]�
�2 (A3)

with ‖η‖ ≤ ‖�2‖ = O(n−1/2). Furthermore, by using regularity condition R3 and the mean value theorem, we have∥∥∥∥∂�(�1, η)
∂�2

− ∂�(�01, 0)
∂�2

∥∥∥∥ ≤
∥∥∥∥∂�(�1, η)

∂�2
− ∂�(�1, 0)

∂�2

∥∥∥∥ +
∥∥∥∥∂�(�1, 0)

∂�2
− ∂�(�01, 0)

∂�2

∥∥∥∥
≤

[ n∑
i=1

B1(hi)

]
‖η‖ +

[ n∑
i=1

B1(hi)

]
‖�1 − �01‖

= {‖η‖ + ‖�1 − �01‖}Op(n) = Op(n1/2).

By the regularity conditions R1–R4, ∂�(�01, 0)/∂�2 = Op(n1/2). Thus, ∂�(�1, η)/∂�2 = Op(n1/2). Applying these order
assessments to (A3), we obtain

�(�1,�2)− �(�1, 0) = Op(n1/2)
m∑
j=1

p∑
t=dj+1

|βjt|,

for large n. On the other hand,

p(�1,�2)− p(�1, 0) = n
m∑
j=1

p∑
t=dj+1

νjpτj(βjt).

Thus,

L(�1,�2)− L(�1, 0) =
m∑
j=1

p∑
t=dj+1

{|βjt|Op(n1/2)− nνjpτj(βjt)}.

In a shrinking neighbourhood of 0, |βjt|Op(n1/2) < nνjpτj(βjt) in probability by condition C2. This completes the proof of
part (a).

To prove sparsity in part (b(1)), we consider the partition� = L(�1,�2). Let (�̂1, 0) be themaximizer of the penalized log-
likelihood function L(� , 0), which is considered as a function of�1. It suffices to show that in the neighbourhood ‖� − �0‖ =
Op{n−1/2}, L(�1,�2)− L(�̂1, 0) < 0 with probability tending to 1 as n → ∞. By the result in part (a), we obtain that

L(�1,�2)− L(�̂1, 0) = [L(�1,�2)− L(�1, 0)] + [L(�1, 0)− L(�̂1, 0)]

≤ [L(�1,�2)− L(�1, 0)] < 0.

To prove asymptotic normality in part (b(2)), we consider L(� , 0) as a function of�1. Using the same argument as in Theorem
4.1, there exists a

√
n-consistent local maximizer of this function, denoted by �̂1, that satisfies

∂L(�̂)
∂�1

=
{
∂�(�)

∂�1
− ∂p(�)

∂�1

}
�̂=(�̂1,0)

= 0.

By substituting the first-order Taylor’s expansions of ∂�(�)/∂�1 and ∂p(�)/∂�1 into the above expression, we have{
∂2�(�01)

∂�1∂�
�
1

− p′′(�01)+ op(n)

}
(�̂1 − �01) = ∂�(�01)

∂�1
− p′(�01).
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On the other hand, under the regularity conditions, we obtain

∂2�(�01)

∂�1∂�
�
1

= I1(�01)+ op(1),

and
1√
n
∂�(�01)

∂�1

d−→ N(0, I1(�01)).

Using the foregoing facts and Slutsky’s theorem, we have

√
n
{[

I1(�01)− p′′(�01)

n

]
(�̂1 − �01)+ p′(�01)

n

}
d−→ N(0, I1(�01)),

which is the result in part (b(2)). �

Appendix 2. Some technical derivations

In (5.9), the score function of j-th component is expressed as

S(β j) = −
n∑
i=1

ω
(k)
ij
(1 + λ2j )

σ 2
j

(
eijE1 − σjr

(k)
1i δ(λj)E1

)
,

S(σj) = − 1
σj

n∑
i=1

ω
(k)
ij +

(1 + λ2j )

σ 2
j

n∑
i=1

ω
(k)
ij

[
e2ij
σj

− eijr
(k)
1i δ(λj)

− eijE2 + σjr
(k)
1i δ(λj)E2

]
,

S(λj) =
n∑
i=1

ω
(k)
ij
δ2(λj)

λj
−

n∑
i=1

ω
(k)
ij

[
e2ijλj
σ 2
j

+
eij(1 + λ2j )

σ 2
j

E3

− r(k)1i
σj

(
eijδ(λj)
λj

+ 2eijλjδ(λj)+
λ2j

δ(λj)
E3

)
+ λjr(k)2i

]
.

H(θ) is defined as

H(θ) = ∂2Q2(θ ;�(k))

∂θ∂θ� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2Q2(θ ;�(k))

∂β j∂β
�
j

∂2Q2(θ ;�(k))

∂β j∂σj

∂2Q2(θ ;�(k))

∂β j∂λj

∗ ∂2Q2(θ ;�(k))

∂σj∂σj

∂2Q2(θ ;�(k))

∂σj∂λj

∗ ∗ ∂2Q2(θ ;�(k))

∂λj∂λj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

∂2Q2(θ ;�(k))

∂β j∂β
�
j

=
n∑
i=1

ω
(k)
ij
(1 + λ2j )

σ 2
j

E1E�
1 ,

∂2Q2(θ ;�(k))

∂β j∂σj
=

n∑
i=1

ω
(k)
ij
(1 + λ2j )

σ 2
j

[
(δ(λj)+ 2eij − 2σjr

(k)
1i δ(λj)

]
E1,

∂2Q2(θ ;�(k))

∂β j∂λj
= −

n∑
i=1

ω
(k)
ij

[
2λjeij + (1 + λ2j )E3

σ 2
j

+ r(k)1i
σj

[
2λjδ(λj)+ δ(λj)

λj

]
E1

]
,

∂2Q2(θ ;�(k))

∂σj∂σj
= 1
σ 2
j

n∑
i=1

ω
(k)
ij +

n∑
i=1

ω
(k)
ij
(1 + λ2j )

σ 2
j

[
2eij(2E2 + r(k)1i δ(λj))

σj
−

3e2ij
σ 2
j

− 2r(k)1i δ(λj)E2 − eijE22 + σjδ(λj)r
(k)
1i E22 − E22

]
,

∂2Q2(θ ;�(k))

∂σj∂λj
=

n∑
i=1

ω
(k)
ij

2λjeij
σ 2
j

[
eij
σj

− r(k)1i δ(λj)+ σjr
(k)
1i δ(λj)E2

eij
− r(k)1i δ(λj)

2λ2j
− E2

]
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−
n∑

i=1
ω
(k)
ij
(1 + λ2j )

σ 2
j

[
r(k)1i δ(λj)+ eijE23

E3
− 2eijE3

σj
+ E2

]
,

∂2Q2(θ ;�(k))

∂λj∂λj
=

n∑
i=1

ω
(k)
ij

1 − λ2j

(1 + λ2j )
2 −

n∑
i=1

ω
(k)
ij

[
eij
σ 2
j
(eij + 4λjE3)+

(1 + λ2j )

σ 2
j

(E23 + eijE33)

− r(k)1i
σj

(
eijδ(λj)
1 + λ2j

+ 2δ(λj)(eij + λjE3)+
√
1 + λ2j (λjE33 + 2E3)

)
+ r(k)2i

]
,

with eij = yi − x�
i β j − σj

3 [m0(λj)+ 2
√

2
π
δ(λj)]. Thus, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 = ∂eij
∂β j

= −xi,

E2 = ∂eij
∂σj

= 1
3

[
m0(λj)+ 2

√
2
π
δ(λj)

]
,

E3 = ∂eij
∂λj

= σj

3

[
M1 +

√
2
π

2
(1 + λ2j )

3/2

]
,

E11 = ∂2eij
∂β j∂β

�
j

= 0,

E12 = E21 = ∂2eij
∂β j∂σj

= ∂2eij
∂σj∂β

�
j

= 0,

E13 = E31 = ∂2eij
∂β j∂λj

= ∂2eij
∂λj∂β

�
j

= 0,

E22 = ∂2eij
∂σj∂σj

= 0,

E23 = E32 = ∂2eij
∂σj∂σj

= 1
3

[
M1 +

√
2
π

2
(1 + λ2j )

3/2

]
,

E33 = ∂2eij
∂λj∂λj

= σj

3

[
M2 −

√
2
π

6λj
(1 + λ2j )

5/2

]
,

and

M1 = ∂m0(λj)

∂λj
=

√
2
π

1
(1 + λ2j )

3/2 − T1σ0(λj)+ S1t0(λj)
2

− π sign2(λj)
λ2j

exp
(

− 2π
|λj|

)
,

M2 = ∂2m0(λj)

∂λj∂λj
= −

√
2
π

− 3λj
(1 + λ2j )

5/2 − T2σ0(λj)+ 2T1S1 + S2t0(λj)
2

− 2π[π sign(λj)− λj sign2(λj)]
λ4j

exp
(

− 2π
|λj|

)
,

S1 = ∂σ0(λj)

∂λj
= −

√
2
π

μ0(λj)

σ0(λj)(1 + λ2j )
3/2 ,

S2 = ∂2σ0(λj)

∂λj∂λj
= 1
σ0(λj)(1 + λ2j )

3

[
3λjμ0(λj)

√
1 + λ2j − 2

πσ0(λj)

]
,

T1 = ∂t0(λj)
∂λj

= 3(4 − π)

2σ 4
0 (λj)

[√
2
π

μ2
0(λj)σ0(λj)

(1 + λ2j )
3/2 − μ3

0(λj)S1

]
,

T2 = ∂2t0(λj)
∂λj∂λj

= 3(4 − π)

2σ 5
0 (λj)

[
4μ0(λj)σ

2
0 (λj)

π(1 + λ2j )
3/2 −

√
2
π

3λjμ2
0(λj)σ

2
0 (λj)

(1 + λ2j )
5/2

−
√

2
π

6μ2
0(λj)σ0(λj)S1
(1 + λ2j )

3/2 − S2μ3
0(λj)σ0(λj)+ 4μ3

0(λj)S
2
1

]
.
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