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ABSTRACT
Modern scientific research and applications very often encounter ‘fragmentary data’ which
brings big challenges to imputation and prediction. By leveraging the structure of response pat-
terns, we propose a unified and flexible framework based on Generative Adversarial Nets (GAN)
to deal with fragmentary data imputation and label prediction at the same time. Unlike most of
theother generativemodel based imputationmethods that either haveno theoretical guarantee
or only consider Missing Completed At Random (MCAR), the proposed FragmGAN has theoret-
ical guarantees for imputation with data Missing At Random (MAR) while no hint mechanism
is needed. FragmGAN trains a predictor with the generator and discriminator simultaneously.
This linkage mechanism shows significant advantages for predictive performances in extensive
experiments.
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1. Introduction

Modern scientific research and applications very often encounter data frommultiple data sources, and for each data
source, various variables can be collected for data analysis. Such increasing data sources bring big opportunities for
predicting people’s behaviours with huge potential social and commercial benefits. However, these different data
sources usually can not be available for every sample, which leads to ‘fragmentary data’ and brings big challenges
to data imputation and label prediction. To be more specific, we introduce two motivating examples that represent
the most typically practical scenarios for fragmentary data.

Internet Loan: A leading company of wealth management is exploring its internet loan business and trying to
predict the applicants’ income for riskmanagement purpose. There are five possibly available data sources (Table 1).
(i) Card: the credit card information; (ii) Shopping: the shopping history at internet; (iii) Mobile: themonthly bill of
mobile phone; (iv) Bureau: the credit report from the Central Bank; (v) Fraud: the information from an anti-fraud
platform. However, some applicants are not willing to provide their shopping or mobile information, not all the
applicants have credit reports, and many of them are never included in the database of the anti-fraud platform. As
a result, there are 10 ‘response patterns’ in the Internet Loan data as shown in Table 1, where ‘

√
’ means the data

source is available for the applicants with the corresponding response pattern.
ADNI: The Alzheimer’s Disease Neuroimaging Initiative http://adni.loni.usc.edu is a widely used data by

researchers for the Alzheimer’s disease which has four data sources. (i) CSF: cerebrospinal fluid; (ii) PET: positron
emission tomography; (iii) MRI: magnetic resonance imaging; (iv) Gene: the gene expression. As show in Table 2,
it has 8 different response patterns corresponding to different data availability for each data source.

Such kind of fragmentary data, also known as ‘block-wise missing data’ in the statistics literature, are very com-
mon in the area of riskmanagement,marketing research, social sciences,medical studies and so on.Data imputation
and label prediction are two main goals for the analysis of such data. But the extremely high missing rate and
complicated missing patterns bring big challenges to the achievement of the goals.

Some work has been done to deal with fragmentary data in both areas of statistics and computer sciences in
recent years. From the statistics perspective, methods based on model averaging (Fang et al., 2019), factor models
(Zhang et al., 2020), generalized methods of moments (Xue & Qu, 2021), iterative least squares (Lin et al., 2021)
and integrative factor regression (Li & Li, 2021) are proposed. These statistical methods provide useful theoreti-
cal properties but exhibit notable shortcomings. (i) They depend on certain statistical models, for example, linear
regression models. (ii) They are not flexible in handling mixed data types that include continuous and categorical
variables. (iii) Only a couple of methods consider imputation and prediction at the same time.
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Table 1. The response patterns of the Internet Loan data.

Response Data source

Pattern Card Shopping Mobile Bureau Fraud

1
√ √ √ √ √

2
√ √ √ √

3
√ √ √

4
√ √ √ √

5
√ √ √

6
√ √

7
√ √

8
√ √ √

9
√ √

10
√

Table 2. The response patterns of the
ADNI data.

Response Data source

Pattern CSF PET MRI Gene

1
√ √ √ √

2
√ √ √

3
√ √ √

4
√ √ √

5
√ √

6
√ √

7
√

8
√

From the computer science perspective, GAIN (Yoon et al., 2018) first uses a Generative Adversarial Net (GAN)
to impute data Missing Completed At Random (MCAR), which means the missingness occurs entirely at random
without depending on any of the variables.MisGAN (Li et al., 2019) trains amask generator alongwith the data gen-
erator for imputation. GAMIN (Yoon & Sull, 2020) proposes a generative adversarial multiple imputation network
for highly missing data. HexaGAN (Hwang et al., 2019) deals with missing data imputation, conditional genera-
tion and semi-supervised learning together. GRAPE (You et al., 2020) proposes a graph-based framework for data
imputation and label prediction. MIWAE (Mattei & Frellsen, 2019) and Not-MIWAE (Ipsen et al., 2021) propose
imputation methods based on variational auto-encoding (VAE) framework instead of GAN. Ma and Chen (2019)
proposes a matrix completion algorithm when the data is missing not at random. However, these generative
methods have various drawbacks. For instance, some of them (Ipsen et al., 2021; Mattei & Frellsen, 2019; Yoon
& Sull, 2020; You et al., 2020) do not have the theoretical guarantee that the imputed data has the same distribution
as the original data. Some of them (Hwang et al., 2019; Li et al., 2019; Yoon et al., 2018) only have theoretical results
for data MCAR, which is highly unlikely in the practice. Most of them either consider data imputation and label
prediction separately or only consider data imputation.

In this paper, by leveraging the structure of response patterns, we propose a ‘FragmGAN’ for fragmentary data
imputation and prediction. The main contributions are as follows.

• FragmGAN is a unified framework based onGAN to deal with fragmentary data imputation and label prediction
at the same time. It’s flexible in the sense that (i) it’s applicable to both continuous and categorical data and label,
and (ii) users can adjust the relative importance of the task of imputation to prediction by an ‘adjusting factor’.

• FragmGAN has theoretical guarantees for imputation with data Missing At Random (MAR), which is much
more general than MCAR and will be defined in Section 3.2. Also, the theoretical results do not need a hint
mechanism that is required by GAIN.

• Using similar technical skills, we extend the theoretical results of GAIN to MAR.
• Other than the generator and discriminator, FragmGAN trains a predictor simultaneously. This linkage mech-

anism shows significant advantages for predictive performances in extensive experiments.

2. Related work

There are lots of discriminative and generative imputation methods that will be considered in our experiments,
including Expectation Maximization (García-Laencina et al., 2010), matrix completion (Mazumder et al., 2010),
MICE (van Buuren&Groothuis-Oudshoorn, 2011),MissForest (Stekhoven&Buhlmann, 2011) andAuto-Encoder
(Gondara &Wang, 2017).
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There are several other GAN based imputation methods. CollaGAN (Lee et al., 2019) proposes a collabora-
tive GAN for missing data imputation but it focuses on image data. WGAIN (Friedjungová et al., 2020), CGAIN
(Awan et al., 2021), PC-GAIN (Wang et al., 2021) and S-GAIN (Neves et al., 2021) extend GAIN in various ways.
IFGAN (Qiu et al., 2020) conducts missing data imputation using a feature-specific GAN and MCFlow (Richard-
son et al., 2020) proposes a Monte Carlo flow method for data imputation but no theoretical result is provided.
When all the variables are assumed to be categorical, theoretical results of GAN based methods are extended to an
uncommon concept of Extended Always Missing At Random (Deng et al., 2020).

Although they are not our main interest, we also mention some other VAE based imputation methods including
VAEAC (Ivanov et al., 2019), variational inference of deep subspaces (Dalca et al., 2019), iterative imputation using
AE dynamics (Smieja et al., 2020), VAE using pattern-set mixtures (Ghalebikesabi et al., 2021) and VSAE (Gong
et al., 2021). Some of them only focus on image data. A common disadvantage of VAE based methods is the lack of
theoretical guarantee for imputation. Some results of empirical comparison of GAN and VAE based methods are
presented in Camino et al. (2019).

3. GAN-Based fragmentary data imputation

We first formulate the problem and discuss the method and theory of fragmentary data imputation in this section.
The problem of label prediction will be addressed in Section 4.

Throughout the paper we usually use bold type letters to denote vectors and use the regular letters for scalars.
The upper-case letters are used for random variables and the corresponding lower-case letters are their realiza-
tions. Abusing notation slightly, we use a generic notation p(·) or p(·|·) to denote the distribution/probability or
conditional distribution/probability for various continuous/categorical variables as long as there is no ambiguity.

3.1. Imputationmethod

Let X = (X1, . . . ,Xd) be the d-dimensional data vector of interested variables that could take continuous or cate-
gorical values. Note that d is the number of variables but not the number of data sources since each data source may
have multiple variables.

Define the mask vectorM = (M1, . . . ,Md) ∈ {0, 1}d such thatMi = 1 means Xi is observed andMi = 0 means
Xi is missing, i = 1, . . . , d. So what we actually observe is

X̃ = M� X = (M1X1, . . . ,MdXd),

where� denotes element-wise multiplication.
Assume overall there are K (a fixed number) possible response patterns in the data and define W =

(W1, . . . ,WK) as the pattern indicator, whereWk = 1 if the sample belongs to the kth response pattern andWk = 0
otherwise, k = 1, . . . ,K. Note that

∑K
k=1Wk = 1. In the fragmentary data setting, M can actually only take K

(rather than 2d) different values and there is a one-to-one mapping between M and W. In the two motivating
examples, K = 10 and 8 respectively.

Generator
Let Z = (Z1, . . . ,Zd) be a d-dimensional noise vector that is independent of all other variables. It is typically

taken as Gaussian white noise. We then feed X̃ = M� X, Z andW into the generator G and obtain

X = G(M� X, (1−M)� Z,W),

where G is a function from R
d ×R

d × {W(1), . . . ,W(K)} to R
d, and {W(1), . . . ,W(K)} are the K possible values of

W. X is the generated data vector but we are only interested in the missing variables. So the complete data vector
after imputation is

X̂ = M� X̃+ (1−M)� X = M� X+ (1−M)� X.

Our target is to make sure the distribution of X̂ is the same as the distribution ofX, i.e., p(X̂) = p(X). The random-
ness of Z makes our method a random imputation method rather than fixed imputation. Although we focus on
single imputation in the paper, but bymodelling the distribution of the data, we are able tomakemultiple imputation
capture the uncertainty for the imputation value (Rubin, 2004; van Buuren & Groothuis-Oudshoorn, 2011).

Discriminator
The discriminatorD tries to figure out which part of X̂ is from the generator. The vanilla GAIN (Yoon et al., 2018)

aims to distinguish each component of X̂ is real (observed) or fake (imputed). It’s a hard task since d is usually a
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large number. Consequently, a hint mechanism, which reveals all but one of the components ofM to D, is required
for GAIN to solve the model identifiability problem and make sure the generated distribution is what we want.

In the fragmentary data setting, each sample should exactly belong to one of the K response patterns. By lever-
aging this informative structure, our discriminator D just needs to figure out which pattern X̂ belongs to. So D is a
function from R

d to [0, 1]K (instead of [0, 1]d in GAIN) such that

Ŵ = D(X̂) = (Ŵ1, . . . , ŴK)

is the predicted probability vector for W, where Ŵk is the predicted probability that X̂ is from the kth response
pattern and

∑K
k=1 Ŵk = 1. Note that the output layer of D has a softmax form.

We train the discriminator D to maximize the probability of correctly predicting W. On the other hand, the
generator G is trained tominimize the probability of D correctly predictingW. The objective function is defined to
be the negative cross-entropy loss

V(G,D) = E(X̂,W)

[ K∑
k=1

Wk logDk(X̂)

]
, (1)

where Dk(X̂) is just Ŵk. Note that the objective function depends on G through X̂. Then the minimax problem is
given by

min
G

max
D

V(G,D). (2)

Remark 3.1: The key difference of our imputation method to GAIN is that we use a different objective function by
taking the response patterns into consideration. This adjustment makes sure the model is identifiable even no hint
mechanism is used as we show in the next subsection.

3.2. Theoretical results

Most previous theoretical results for GAN-based imputationmethods includingGAIN (Yoon et al., 2018),MisGAN
(Li et al., 2019) and HexaGAN (Hwang et al., 2019) are established under the MCAR assumption, which means
the missingness occurs entirely at random without depending on any of the variables. This is a very restrictive
assumption and rarely satisfied in the real world. In contrast, our theoretical results will be established under the
MAR assumption.

Assume X can be decomposed into (Xo,Xm), where Xo is an always observed subvector of X, and Xm could be
missing. The missing mechanism is characterized (Little & Rubin, 2014) into three types.

• Missing Completed At Random (MCAR):M is independent of X.
• Missing At Random (MAR): p(M|X) = p(M|Xo), or equivalently, M is conditionally independent of Xm given

Xo.
• Missing Not At Random (MNAR): p(M|X) depends on Xm.

Remark 3.2: For a random vector X, it could be ambiguous for the definition of MAR. Another way to define MAR is
p(M|X) = p(M|{Xi : Mi = 1, i = 1, . . . , d}). However, sinceM appears in both sides of the condition, there is no way
to generate a group of independently and identically distributed samples satisfying this equation, unless there exists
an always observed subvector Xo such that p(M|X) = p(M|Xo). This is the reason why we use the MAR definition as
above.

The complete data vector X̂ can be decomposed into (X̂o, X̂m) correspondingly. Note that X̂o = Xo. So

p(X̂) = p(X̂o)p(X̂m|X̂o) = p(Xo)p(X̂m|Xo).

To verify that the solution to the minimax problem (2) satisfies p(X̂) = p(X), we just need to show p(X̂m|Xo) =
p(Xm|Xo). First we present a lemma.

Lemma 3.1: Let x̂ is a realization of X̂ such that p(x̂) > 0. For a fixed generator G, the kth component of the optimal
discriminator D∗(x̂) to the minimax problem (2) is given by

D∗k(x̂) = p(W = w0
k|x̂)

for k = 1, . . . ,K, wherew0
k = (0, . . . , 1, . . . , 0) is a K-dimensional vector with only the kth element being 1, andW =

w0
k means that the sample belongs to the kth response pattern.
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Proof: All proofs are provided in A.1. �

We now rewrite (1) by substituting D∗ to obtain the objective function for G to minimize

C(G) = V(D∗,G)

= E(X̂,W)

[ K∑
k=1

Wk log p(W = w0
k|X̂)

]
.

Theorem 3.2: A global minimum for C(G) is achieved if and only if

p(x̂m|xo,W = w0
k) = p(x̂m|xo) (3)

for each k ∈ {1, . . . ,K} and x̂ = (xo, x̂m) such that p(x̂) > 0 and p(xo|W = w0
k) > 0.

It’s worthy to mention that Lemma 3.1 and Theorem 3.2 do not depend on the MAR assumption and they are
generally true even under MNAR.

Theorem 3.2 tells us that the optimal generator will generate data so that the conditional distributions of X̂m

given Xo across different response patterns are the same. But it does not guarantee p(X̂m|Xo) = p(Xm|Xo) yet.
To further explore, we assume the first response pattern is the case that all the variables are observed, i.e.,Mi = 1

for all i ∈ {1, . . . , d}. Note the first response patterns in the two motivating examples are exactly the case. Then
givenW = w0

1, there is no missing variable and we have X̂m = Xm. So following (3), we have

p(X̂m|Xo) = p(X̂m|Xo,W = w0
1) = p(Xm|Xo,W = w0

1). (4)

Under the MAR assumption,M is conditionally independent of Xm given Xo, and so isW since there is a one-
to-one mapping betweenM andW. Therefore

p(Xm|Xo,W = w0
1) = p(Xm|Xo). (5)

Combining (4) and (5) gives us the final theorem that provides theoretical guarantees for our proposed imputation
method.

Theorem 3.3: Under the MAR assumption, the density solution to (3) is unique and satisfies

p(x̂m|xo) = p(xm|xo).

So the distribution of X̂ is the same as the distribution of X.

This theorem tells us that the optimal solution is uniquely identified and it is the oneweneed. Compared toGAIN
(Yoon et al., 2018), our method does not need a hint mechanism for model identifiability. An intuitive explanation
is that we just need to classify each sample into one of the K response patterns. It requires much fewer model
parameters than GAIN, in which d binary classifiers need to be modelled if the hint mechanism is not applied.
Note that we only require K to be a fixed number and it could be as large as 2d. So theoretically FragmGAN can be
applied to any kind of dataset with arbitrarymissing patterns when the data vector is low-dimensional, for example,
d = 4, and the associated computation is not too heavy. However, FragmGAN is not necessary better than GAIN
in such cases. The most suitable scenario for FragmGAN is when K is relatively small compared to 2d.

Our theoretical results are established under MAR assumption while the vanilla GAIN (Yoon et al., 2018)
assumes MCAR. However, we find that GAIN (with hint) also guarantees that p(X̂) = p(X) under the MAR
assumption, which is consistent to a recent theoretical result (Deng et al., 2020) considering a special case that
all the variables are categorical. We provide a direct proof of this conclusion of GAIN in A.2.

4. A unified framework for imputation and prediction

Many previousmethods includingGAIN (Yoon et al., 2018) consider label prediction as a post-imputation problem,
that is, they first impute the data and then develop a prediction model as if the data were fully observed. The
disconnection between imputation and prediction mostly likely damages the accuracy of prediction. In this section
we propose a unified framework that considers data imputation and label prediction together. The key idea is to
train a predictor P with the generator and discriminator simultaneously.
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Algorithm 1 Pseudo Code for FragmGAN
repeat
(1) Discriminator optimization.
Draw kD samples {x̃(j),w(j)}kDj=1 and random noises {z(j)}kDj=1;
for j = 1 to kD do

X(j)← G(x̃(j), (1−m(j))� z(j),w(j));
x̂(j)← m(j)� x̃(j)+ (1−m(j))� X(j);
Generate hint h(j).

end for
Update D using stochastic gradient ascent
∇D

∑kD
j=1

∑K
k=1 wk(j) logDk(x̂(j),h(j)).

(2) Generator optimization.
Draw kG samples {x̃(j),w(j), y(j)}kGj=1 and random noises {z(j)}kGj=1;
Generate hint {h(j)}kGj=1;
Update G using SGD (D and P are fixed)
∇G

∑kG
j=1{γ [

∑K
k=1 wk(j) logDk(x̂(j), h(j))+ LM(m(j), x̃(j),X(j))]

+(1− γ )L(y(j),P(x̂(j)))}.
(3) Predictor optimization.
Draw kP samples {x̃(j),w(j), y(j)}kPj=1 and random noises {z(j)}kPj=1;
for j = 1 to kP do

X(j)← G(x̃(j), (1−m(j))� z(j),w(j));
x̂(j)← m(j)� x̃(j)+ (1−m(j))� X(j).

end for
Update P using SGD (G is fixed)

∇P
∑kP

j=1 L(y(j),P(x̂(j))).
until training loss has converged.

Predictor
Let Y be the interested q-dimensional label that could be continuous or categorical. Unlike the semi-supervised

learning, the label Y is assumed to be available for all the training samples. A predictor P is a function from R
d to

R
q such that Ŷ = P(X̂) is a predicted value of Y.
To evaluate the prediction performance of P, we define a loss function L(Y,P(X̂)) where L is from R

d ×R
d to

R. The explicit form of L depends on the data type of Y and is very flexible. For example, if Y is continuous, we may
use L(Y,P(X̂)) = ‖Y− P(X̂)‖2. If Y ∈ {0, 1} is a binary scalar and the predicted value is the probability of being 1,
then we may use L(Y,P(X̂)) = −Y log P(X̂)− (1− Y) log(1− P(X̂)).

To train G, D and P together, define the linked objective function as

U(G,D,P) = γV(G,D)+ (1− γ )E(Y,X̂)L(Y,P(X̂)), (6)

where V(G,D) is from (1) and γ ∈ [0, 1] is an ‘adjusting factor’ that controls the relative importance of data
imputation to label prediction.

The second part of (6) does not involve D, so the target of D is still to maximize V(G,D). The first part of (6)
does not involve P, so the target of P is to minimize the predictive loss E(Y,X̂)L(Y,P(X̂)). Both parts of (6) involve
G, but fortunately they both require G tominimize. So the minimax optimization problem is given by

min
P

min
G

max
D

U(G,D,P). (7)

The choice of γ is quite flexible. If the user is just interested in data imputation, he can take γ = 1 andU(G,D,P)

is reduced to V(G,D). If the user is mainly interested in label prediction, he may use a cross-validation procedure
to choose an appropriate γ or simply take γ = 0.5 which works quite well as shown in the experiments. Note that
γ = 0 is not a good choice since it will lead to overfitting. If the user cares about both imputation and prediction,
he may decide γ by the relative importance of the two tasks in his mind.

The pseudo code to implement (7) is given in Algorithm 1. Several issues are discussed as follows.
First, although the hint mechanism is not required for our theoretical results, it is still empirically helpful. So

we also use the same hint mechanism as Yoon et al. (2018) in implementation. The impact of including the hint
mechanism or not will be checked in the experiments.
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Table 3. Imputation performance for UCI datasets in terms of RMSE (Average± Std) of imputation error.

Algorithm Breast Spam Letter Credit News

MCAR, miss rate= 20%

FragmGAN 0.0599± .0021 0.0537± .0014 0.1251± .0026 0.1781± .0057 0.1484± .0008
FragmGAN no hint 0.0715± .0022 0.0545± .0007 0.1313± .0078 0.1833± .0020 0.1595± .0049
GAIN 0.0658± .0030 0.0544± .0005 0.1295± .0032 0.1814± .0033 0.1580± .0063
GAIN no hint 0.0736± .0036 0.0574± .0004 0.1338± .0058 0.1899± .0056 0.1606± .0051
MICE 0.0872± .0019 0.0715± .0011 0.1611± .0045 0.1875± .0051 0.2152± .0095
MissForest 0.0608± .0012 0.0594± .0003 0.1371± .0012 0.2033± .0080 0.1932± .0049
Matrix 0.1148± .0021 0.0562± .0012 0.1530± .0035 0.2449± .0033 0.2291± .0061
AE 0.0727± .0011 0.0620± .0007 0.1361± .0020 0.2137± .0026 0.1963± .0004
EM 0.0754± .0027 0.0680± .0002 0.1679± .0005 0.2312± .0008 0.2687± .0003
MisGAN 0.0707± .0016 0.0582± .0004 0.1347± .0020 0.1913± .0008 0.1746± .0034

MAR, miss rate= 20%
FragmGAN 0.0667± .0084 0.0512± .0007 0.1364± .0072 0.1844± .0029 0.1630± .0043
FragmGAN no hint 0.0730± .0063 0.0519± .0007 0.1495± .0052 0.1966± .0046 0.1737± .0060
GAIN 0.0671± .0092 0.0526± .0008 0.1457± .0084 0.1909± .0040 0.1690± .0047
GAIN no hint 0.0756± .0099 0.0526± 0010 0.1505± .0055 0.1901± .0040 0.1747± .0097
MICE 0.0931± .0060 0.0705± .0008 0.1531± .0059 0.2487± .0078 0.2159± .0096
MissForest 0.0625± .0003 0.0576± .0004 0.1331± .0059 0.2626± .0025 0.1977± .0086
Matrix 0.1146± .0031 0.0556± .0008 0.1488± .0048 0.2268± .0056 0.2337± .0086
AE 0.0843± .0038 0.0618± .0017 0.1427± .0018 0.2110± .0024 0.2048± .0008
EM 0.0869± .0016 0.0678± .0030 0.1784± .0050 0.2412± .0006 0.2659± .0010
MisGAN 0.0713± .0014 0.0577± .0007 0.1428± .0037 0.2014± .0046 0.1883± .0035

Second, the generator also generates data even for the observed variables, which can be used to check the gener-
ation performance. An extra loss functionLM : {0, 1}d ×R

d ×R
d → R defined as α

∑d
i=1MiLM(X̃i,Xi) is added

to V(G,D) for training G, where LM : R×R→ R is a user-specified loss function depending on the variable type
of Xi. The algorithm result is not sensitive to the choice of hyper-parameter α. Actually, as long as α is relatively
large (α = 10 in the experiments), its main effect is to force Xi = Xi for the variable withMi = 1.

Third, when γ = 1, Algorithm 1 actually implements (2) and the post-imputation prediction.

5. Experiments

In this section we check the imputation and prediction performance of FragmGAN in multiple datasets.
First we consider five UCI datasets (Lichman, 2013) used in GAIN (Yoon et al., 2018): Breast, Spam, Letter,

Credit and News. Since the original datasets do not have any missing value, we randomly remove part of data by
variable groups to make it fragmentary. Unless otherwise stated, the miss rate is 20%. By designing the removing
strategy, we can make it MCAR or MAR. Specifically, we manually set several response patterns in advance. For
MCAR, each sample is assigned to the patterns totally at random. For MAR, the probability of each sample being
assigned to each pattern depends on the always observed covariate vectorXo. For this group of datasets, we are able
to check the performance of data imputation along with label prediction since the true data values are known.

Then we consider two datasets Internet Loan and ADNI for the motivating examples introduced in Section 1.
The miss rates of them are 46.6% and 22.3%, respectively. More details of these two datasets are provided in A.3.
Since the missing values are unknown, we can only check the label prediction performance for these two datasets.

For the purpose of comparison,we considerMICE,MissForest,matrix completion (Matrix), Auto-Encoder (AE),
Expectation Maximization (EM) and MisGAN that have been mentioned in Section 1. For the prediction task for
Internet Loan and ADNI, we also consider two statistical methods: Model Averaging (Fang et al., 2019) and FR-FI
(Zhang et al., 2020).

The hyperparameters of FragmGAN and some implementation details are provided in A.3.
For each dataset, we randomly split it into a training set (80%) and a test set (20%) by response patterns. All the

methods are fitted in the training set and then applied to the test set. The imputation and prediction performances
are evaluated at the test set. We repeat this experiment 10 times and report the averages and standard deviations of
the evaluation criteria (RMSE or AUC). In each table, the best result for each dataset is marked in bold type.

5.1. Results for the UCI datasets

Imputation Performance. Table 3 reports the RMSEs of the imputation errors for the UCI datasets. We take γ = 1
for FragmGAN since imputation is the focus here. For both FragmGAN and GAIN, we consider two versions with
or without the hint mechanism.



22 F. FANG AND S. BAO

Figure 1. RMSE of imputation error of the Credit data under different miss rates. Left: MCAR. Right: MAR.

Table 4. Prediction performance for UCI datasets in terms of AUC (Average± Std).

Algorithm Breast Spam Credit News

MCAR, miss rate= 20%

FragmGAN γ = 0.5 0.9932± .0035 0.9534± .0029 0.7643± .0034 0.9709± .0020
FragmGAN γ = 1 0.9920± .0056 0.9528± .0030 0.7557± .0021 0.9620± .0017
GAIN 0.9912± .0055 0.9513± .0037 0.7521± .0022 0.9607± .0026
MICE 0.9809± .0045 0.9444± .0032 0.7492± .0038 0.9294± .0021
MissForest 0.9892± .0060 0.9466± .0069 0.7495± .0026 0.9409± .0029
Matrix 0.9827± .0062 0.9021± .0057 0.7273± .0074 0.8438± .0054
AE 0.9850± .0078 0.9392± .0053 0.7463± .0044 0.9211± .0025
EM 0.9853± .0029 0.9172± .0059 0.7418± .0068 0.8754± .0028
MisGAN 0.9858± .0025 0.9485± .0042 0.7488± .0017 0.9505± .0012

MAR, miss rate= 20%
FragmGAN γ = 0.5 0.9936± .0056 0.9530± .0034 0.7622± .0027 0.9696± .0024
FragmGAN γ = 1 0.9928± .0045 0.9521± .0029 0.7518± .0015 0.9598± .0017
GAIN 0.9914± .0040 0.9511± .0032 0.7505± .0021 0.9592± .0023
MICE 0.9878± .0063 0.9375± .0036 0.7366± .0033 0.9325± .0040
MissForest 0.9839± .0035 0.9519± .0042 0.7355± .0026 0.9405± .0026
Matrix 0.9815± .0083 0.9033± .0045 0.7342± .0028 0.8596± .0036
AE 0.9895± .0056 0.9347± .0041 0.7485± .0056 0.9291± .0041
EM 0.9892± .0064 0.9134± .0036 0.7427± .0063 0.8828± .0061
MisGAN 0.9863± .0023 0.9499± .0050 0.7483± .0021 0.9492± .0020

As we can see from Table 3, FragmGAN outperforms all the other methods in most cases. For the two cases that
FragmGAN is not the best (Breast and Letter with MAR, in which MissForest performs the best), it performs the
second best. Both FragmGAN andGAIN perform better than their corresponding versions without hint, indicating
that the hint mechanism really helps empirically. This is expected since the hint mechanism provides useful infor-
mation to the discriminator. Note that the results here can not be directly compared to the results in the paper of
GAIN (Yoon et al., 2018) since here we consider fragmentary data with certain response patterns while the missing
data in GAIN is generated totally at random.

To check the imputation performance under different miss rates, we take the dataset Credit and generate missing
data with miss rate from 10% to 80%. Figure 1 presents the RMSEs of imputation errors under different miss rates.
We can see that FragmGAN consistently performs the best. Again, both FragmGAN andGAIN perform better than
their corresponding versions without hint. FragmGAN outperforms GAIN in both versions with or without hint.

Overall speaking, FragmGAN performs quite well in data imputation in the sense that it has smaller RMSE of
imputation error compared to the competitors. Specifically it is better than GAIN, indicating that considering the
structure of response patterns in the algorithm is really useful.

Prediction Performance. Table 4 reports the AUCs for the prediction performance in the datasets Breast, Spam,
Credit and News. The dataset Letter is not considered here since it does not have a binary label. We include hint
for both FragmGAN and GAIN. The adjusting factor γ is taken as 1 or 0.5 for FragmGAN. Note that when γ = 1,
FragmGAN first imputes data and then makes the prediction as if the data were fully observed. When γ = 0.5, the
imputation and prediction are considered simultaneously.
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Table 5. Prediction performance for the two motivation examples (Average± Std).

Algorithm Internet Loan (RMSE) ADNI (RMSE) ADNI (AUC)

FragmGAN γcv 0.8865± .0015 0.0851± .0019 0.7823± .0026
FragmGAN γ = 1 0.9267± .0036 0.0897± .0022 0.7701± .0036
FragmGAN γ = 0.75 0.9151± .0029 0.0883± .0023 0.7721± .0028
FragmGAN γ = 0.5 0.8928± .0026 0.0871± .0020 0.7773± .0023
FragmGAN γ = 0.25 0.9286± .0044 0.0895± .0028 0.7719± .0018
GAIN 0.9246± .0034 0.0921± .0014 0.7622± .0028
MICE 0.9934± .0036 0.1034± .0029 0.6587± .0029
MissForest 0.9982± .0041 0.1124± .0019 0.7583± .0022
Matrix 0.9913± .0039 0.1134± .0016 0.7343± .0018
AE 0.9884± .0035 0.0994± .0017 0.7400± .0036
EM 0.9896± .0034 0.1042± .0023 0.7020± .0048
MisGAN 0.9889± .0021 0.0997± .0024 0.7384± .0026
Model Averaging 0.9831± .0071 0.1000± .0095 not applicable
FR-FI 1.0560± .0112 0.1057± .0087 not applicable

As we can see, FragmGAN with γ = 0.5 outperforms the other methods in all the cases. This result shows that
the linkage mechanism of training generator and predictor together can improve the prediction performance as we
expected. Also note that although FragmGAN with γ = 1 performs worse than FragmGAN with γ = 0.5, it still
performs better than all the other methods.

5.2. Results for themotivating examples

For the dataset Internet Loan, the original label is the applicant’s income, which is a continuous variable. In the
analysis we use log(income) as the label Y. For the dataset ADNI, the original label Y is the score of Mini-Mental
State Examination (MMSE) taking value from 0 to 30, in which higher score means better cognitive function. In the
real analysis, we consider two labels. (i) The normalized MMSE which can be considered as a continuous variable.
(ii) A binary label Y = 1 if MMSE≥28 and Y = 0 otherwise.

Prediction Performance. Table 5 reports the RMSEs for the continuous label prediction and AUCs for the binary
label prediction. The last twomethods (Model Averaging and FR-FI) rely on linear regressionmodels so they are not
applicable to the binary label prediction. For the proposed FragmGAN, we take γ =1, 0.75, 0.5 and 0.25, indicating
different relative importance of imputation to prediction. Also, we use a 5-fold cross-validation to select the best (for
label prediction) γ . The CV criterion is defined as the averaged prediction performance in the leave-out samples.

Table 5 shows that FragmGAN with the γcv selected by cross-validation outperforms all the other methods in
all the three cases, indicating that cross-validation is a good way to choose γ . FragmGAN with γ = 0.5 always
performs the second best. Note that γ controls the relative importance of data imputation to label prediction. As
γ decreases from 1 to 0.25, the prediction performances first increase and then decrease. This result confirms two
points that we have made: first, the linkage mechanism of training generator and predictor together can improve
the prediction performance; second, a small γ close to 0 will lead to overfitting and damage the label prediction
performance at the test data. Base on the results, we believe γ = 0.5 is a reasonable choice if the users are not willing
to apply cross validation to choose the best γ due to the computational burden.

6. Concluding remarks

Fragmentary data is becoming more and more popular in many areas and it is not easy to handle. By leveraging
the structure in the response patterns, we propose a unified and flexible GAN based framework to deal with data
imputation and label prediction simultaneously. An adjusting factor γ is used to adjust the relative importance of
imputation to prediction. Theoretical guarantees for imputation are provided under the MAR assumption. Exten-
sive experiments confirm the superiority of our proposed FragmGAN. It has wide application prospects especially
in personal internet credit investigation, individual patient data (IPD) meta analysis in medical research and so on.

Based on the theoretical explorations and results of the experiments, we provide several practical suggestions for
implementing FragmGAN in the practice.

• Always use the hint mechanism although it is not required for the theoretical results.
• Use γ = 1 if there is no label in the analysis or you are only interested in data imputation.
• If you are interested in label prediction, use cross-validation to select the best γ or simply use γ = 0.5.
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Possible future work includes the following. (i) We find that the best performances of data imputation (requires
γ = 1) and label prediction (requires a γ between 0 and 1) are not achieved at the same time. This is an interesting
phenomenon and further investigation may lead to some thought-provoking results. (ii) In this paper we assume
that the label is always available in the training data.Wemay explore FragmGANunder a semi-supervised setting in
which some labels are not available. A naivemethod is to consider the label as part of the data vector and applyGAIN
or FragmGAN directly. But this method is trying to recover the distribution of X and the conditional distribution
of Y|X, which may not be desirable as we just mentioned in the first point. (iii) In this paper we assume that data
are MAR. The extension of the results to the more general case of MNAR is a difficult but interesting task.
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Appendices

Appendix 1.

A.1 Proofs of the proposed FragmGAN

1.1. Proof of Lemma 3.1

Proof: Let πk = P(W = w0
k).

V(G,D) = E(X̂,W)

[ K∑
k=1

Wk logDk(X̂)

]

=
K∑

k=1
P(W = w0

k)

∫
x̂
p(x̂|W = w0

k) logDk(x̂)dx̂

=
∫
x̂

[ K∑
k=1

πkp(x̂|W = w0
k) logDk(x̂)

]
dx̂. (A1)

Note that
∑K

k=1 Dk(x̂) = 1. By the fact that
∑K

k=1 ck log xk with
∑K

k=1 xk = 1 achieving its maximumwhen xk = ck∑K
k=1 ck

, (A1)
is maximized (for fixed G) when

Dk(x̂) =
πkp(x̂|W = w0

k)∑K
k=1 πkp(x̂|W = w0

k)
= p(W = w0

k|x̂) := D∗k(x̂)

for the x̂ such that p(x̂) > 0. �

1.2. Proof of Theorem 3.2

Proof:

C(G) = V(D∗,G)

= E(X̂,W)

[ K∑
k=1

Wk log p(W = w0
k|X̂)

]

=
K∑

k=1
πk

∫
x̂
p(x̂|W = w0

k) log p(W = w0
k|x̂)dx̂
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=
K∑

k=1
πk

∫
x̂
p(x̂|W = w0

k) log
p(x̂|W = w0

k)πk

p(x̂)
dx̂

=
K∑

k=1
πk

∫
x̂
p(x̂|W = w0

k) log
p(x̂|W = w0

k)

p(x̂)
dx̂ +

K∑
k=1

πk

∫
x̂
p(x̂|W = w0

k) logπkdx̂

∝
K∑

k=1
πk

∫
x̂
p(x̂m|xo,W=w0

k)p(x
o|W = w0

k) log
p(x̂m|xo,W=w0

k)p(x
o|W = w0

k)

p(x̂m|xo)p(xo) dx̂ (A2)

=
K∑

k=1
πk

∫
xo
p(xo|W = w0

k)

[∫
x̂m

p(x̂m|xo,W = w0
k) log

p(x̂m|xo,W = w0
k)

p(x̂m|xo) dx̂m
]
dxo

+
K∑

k=1
πk

∫
xo
p(xo|W = w0

k)

[∫
x̂m
p(x̂m|xo,W = w0

k) log
p(xo|W = w0

k)

p(xo)
dx̂m

]
dxo, (A3)

where ‘∝’ means equation holds by ignoring terms unrelated to G, and (A2) holds since
∫
x̂ p(x̂|W = w0

k)dx̂ = 1 is a constant

and x̂ = (xo, x̂m). Note that log p(xo|W=wo
k)

p(xo) is unrelated to x̂m and
∫
x̂m p(x̂m|xo,W = w0

k)dx̂
m = 1, so the second term of (A3)

is unrelated to G. Following (A3), we have

C(G) ∝
K∑

k=1
πk

∫
xo
p(xo|W = w0

k)KL
(
p(x̂m|xo,W = w0

k)||p(x̂m|xo)
)
dxo,

whereKL(·||·)denotes theKLdivergence. Itsminimum is achievedwhen p(x̂m|xo,W = w0
k) = p(x̂m|xo) for each k ∈ {1, . . . ,K}

and (almost) every x such that p(x̂) > 0 and p(xo|W = w0
k) > 0. �

1.3. Proof of Theorem 3.3

Proof: Actually we have proved this theorem in the statements between Theorem 3.2 and Theorem 3.3 in Section 3.2. �

A.2 Extend theoretical results of GAIN (Yoon et al., 2018) tomissing at random

Wefirst rewrite the formulation of GAIN underMARwith our notation (just a little bit different from the original GAIN paper).
The original data X = (Xo,Xm) ∈ R

d, dim(Xo) = do, dim(Xm) = dm and do + dm = d. Denote M ∈ {0, 1}dm as the
response indicator for Xm. We assume Xm is missing at random, i.e., p(M|X) = p(M|Xo). Let Z = (Z1, . . . ,Zdm) be a
dm-dimensional noise vector. Denote

Xm = G(Xo,M� Xm, (1−M)� Z,M) ∈ R
dm ,

X̂m = M� Xm + (1−M)� Xm ∈ R
dm ,

and X̂ = (Xo, X̂m) ∈ R
d is the complete data after imputation. LetH ∈ R

dm be the hint vector. The discriminatorD is a function
from R

d ×R
dm to [0, 1]d

m
such that

M̂ = D(X̂,H) = (M̂1, . . . , M̂dm)

is the predicted probability vector forM. The minimax problem is

min
G

max
D

V(G,D) = min
G

max
D

E(X̂,M,H)

[
M� logD(X̂,H)+(1−M)� log(1−D(X̂,H))

]
, (A4)

where log is element-wise logarithm and dependence on G is through X̂.
The proof of Lemma 1 in GAIN (Yoon et al., 2018) does not depend on the decomposition ofX. So the result still holds: the

optimal D for given G is given by
D∗i (x̂, h) = p(Mi = 1|x̂, h)

for i ∈ {1, . . . , dm}.
Denote Hi

t = {h : p(h|mi = t) > 0} for t ∈ {0, 1} and i ∈ {1, . . . , dm}. Substituting D∗ = (D∗1, . . . ,D
∗
dm) into V(G,D)

in (A4), we have the objective function for G (to minimize):

C(G) = E(X̂,M,H)

⎡⎣ ∑
i:Mi=1

log p(mi = 1|X̂,H)+
∑

i:Mi=0
log p(mi = 0|X̂,H)

⎤⎦
=

∫
x̂

∫
h

dm∑
i=1

[
p(x̂, h,mi = 1) log p(mi = 1|x̂, h)+p(x̂, h,mi = 0) log p(mi = 0|x̂, h)

]
dhdx̂

=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

∫
x̂
p(x̂, h,mi = t) log p(mi = t|x̂, h)dhdx̂
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=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

∫
x̂
p(x̂, h,mi = t) log

p(x̂,mi = t|h)

p(x̂|h)
dhdx̂

=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

∫
x̂
p(x̂, h,mi = t) log

p(x̂,mi = t|h)p(mi = t|h)

p(x̂|h)p(mi = t|h)
dhdx̂

=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

∫
x̂
p(x̂, h,mi = t) log

p(x̂|h,mi = t)p(mi = t|h)

p(x̂|h)
dhdx̂

=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

∫
x̂
p(x̂, h,mi = t) log

p(x̂|h,mi = t)
p(x̂|h)

dhdx̂

+
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

∫
x̂
p(x̂, h,mi = t) log p(mi = t|h)dhdx̂. (A5)

Note that log p(mi = t|h) and
∫
x̂ p(x̂, h,mi = t)dx̂ = p(h,mi = t) are not related to x̂. So the second term of (A5) is not related

to G and hence

C(G) ∝
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

∫
x̂
p(x̂, h,mi = t) log

p(x̂|h,mi = t)
p(x̂|h)

dhdx̂

=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

p(h,mi = t)
[∫

x̂
p(x̂|h,mi = t) log

p(x̂|h,mi = t)
p(x̂|h)

dx̂
]
dh

=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

p(h,mi = t)
[∫

x̂
p(x̂m|xo, h,mi = t)p(xo|h,mi = t) log

p(x̂m|xo, h,mi = t)p(xo|h,mi = t)
p(x̂m|xo, h)p(xo|h)

dx̂
]
dh

=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

p(h,mi = t)
∫
xo
p(xo|h,mi = t)

[∫
x̂m

p(x̂m|xo, h,mi = t) log
p(x̂m|xo, h,mi = t)

p(x̂m|xo, h)
dx̂m

]
dxodh

+
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

p(h,mi = t)
∫
xo
p(xo|h,mi = t)

[∫
x̂m

p(x̂m|xo, h,mi = t) log
p(xo|h,mi = t)

p(xo|h)
dx̂m

]
dxodh

∝
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

p(h,mi = t)
∫
xo
p(xo|h,mi = t)

[∫
x̂m

p(x̂m|xo, h,mi = t) log
p(x̂m|xo, h,mi = t)

p(x̂m|xo, h)
dx̂m

]
dxodh

=
dm∑
i=1

∑
t∈{0,1}

∫
Hi

t

p(h,Mi = t)
∫
xo
p(xo|h,mi = t)KL

(
p(x̂m|xo,h,mi = t)||p(x̂m|xo,h)

)
dxodh,

which achieves its minimum when

p(x̂m|xo, h,mi = t) = p(x̂m|xo, h) (A6)
for t ∈ {0, 1} and i ∈ {1, . . . , dm}.

Let B = (B1, . . . ,Bdm) ∈ {0, 1}dm be a random vector taking value b0i with probability 1
dm , where b

0
i = (1, . . . , 1, 0, 1, . . . , 1)

is a dm-dimensional vector with only the ith element being 0, i = 1, . . . , dm. The hint vector H = B�M+ 0.5(1− B). Note
thatHi = tmeansMi = t for t ∈ {0, 1} andHi = 0.5 implies nothing aboutMi. With thisH,D∗i (x̂, h) = t for h such that hi = t
and t ∈ {0, 1}.

For anym = (m1, . . . ,mdm) ∈ {0, 1}dm and i ∈ {1, . . . , dm}, letm0,m1 ∈ {0, 1}dm be any two vectors such that they are the
same as m on the jth element for j 
= i, and the ith components of m0 and m1 are 0 and 1, respectively. So m = m0 if mi = 0
and m = m1 if mi = 1. Define a realization of the hint vector H as h such that hj = mj if j 
= i and hj = 0.5 if j = i. Since
p(h|mi = t) > 0, by (A6) we have

p(x̂m|xo, h,mi = 0) = p(x̂m|xo, h,mi = 1). (A7)
Note

p(x̂m|xo, h,mi = t) = p(x̂m|xo,B = b0i ,m = mt) = p(x̂m|xo,m = mt), (A8)
where the first equation holds since {h,mi = t} is equivalent to {B = b0i ,m = mt}, and the second equality holds due to the
independence of B to the other variables. Combing (A7) and (A8), we have p(x̂m|xo,m0) = p(x̂m|xo,m1).

Let 1 = (1, . . . , 1) and m be any vector in {0, 1}dm . There exists a sequence of vectors m′1, . . . ,m′L such that m′l and m′l+1
only differ on one component andm′1 = m andm′L = 1. By the arguments above, we have

p(x̂m|xo,m) = p(x̂m|xo,m′1) = · · · = p(x̂m|xo,m′L) = p(x̂m|xo, 1).



28 F. FANG AND S. BAO

Table A1. The number of variables at each data source and sample size of each
response pattern for the Internet Loan data.

Response Data source Sample

Pattern Card (5) Shopping (4) Mobile (5) Bureau (7) Fraud (4) Size

1
√ √ √ √ √

115
2

√ √ √ √
29

3
√ √ √

220
4

√ √ √ √
232

5
√ √ √

113
6

√ √
222

7
√ √

11
8

√ √ √
38

9
√ √

102
10

√
302

Total 1384

Table A2. The number of variables at each data source and
sample size of each response pattern for the ADNI data.

Response Data source Sample

Pattern CSF (3) PET (10) MRI (10) Gene (10) Size

1
√ √ √ √

413
2

√ √ √
367

3
√ √ √

34
4

√ √ √
109

5
√ √

81
6

√ √
54

7
√

51
8

√
58

Total 1167

Note that p(x̂m|xo, 1) = p(xm|xo, 1). And by the MAR assumption we have p(xm|xo, 1) = p(xm|xo). So
p(x̂m|xo) =

∑
m∈{0,1}dm

p(M = m)p(x̂m|xo,m) =
∑

m∈{0,1}dm
p(M = m)p(xm|xo) = p(xm|xo),

which implies p(X̂) = p(X) as we need.

A.3 Dataset details and hyper-parameters

The details of the five UCI datasets can be found in UCI machine learning repository (Lichman, 2013) and the paper of GAIN
(Yoon et al., 2018).

For the datasets Internet Loan and ADNI, the number of variables at each data source and sample size of each response
pattern are presented in below tables.

The original ADNI data is available at http://adni.loni.usc.edu. The number of variables from the last three sources in the
original data is larger. We use feature screen methods (Fan & Lv, 2008) to screen out the 10 most important variables for each
source for our experiment.

In all experiments, the depth of generator, discriminator and predictor in FragmGAN, GAIN and Auto-Encoder is set to be
3. The number of hidden nodes in each layer for generator and discriminator is 2d, d and d, respectively. The number of hidden
nodes in each layer for predictor is d, d/2 and 1, respectively. The activation function is ReLu except for the output layer that
uses sigmoid. The training batch sizes kG, kD and kP are all 64. The α in LM is 10. For the cross-validation of FragmGAN, we
search the value of γ on the grid of {0.40, 0.41, . . . , 0.59, 0.60}.

We use PyTorch to implement FragmGAN, GAIN, Auto-Encoder and MisGAN. We use Python to implement
MICE (package ‘fancyimpute’, https://github.com/iskandr/fancyimpute),
MissForest (package ‘missingpy’, https://github.com/softmechanics/missingpy),
EM (package ‘impyute’, https://github.com/eltonlaw/impyute), andMatrix (https://www.cnblogs.com/wuliytTaotao/p/1081

4770.html).
We use R to implement Model Averaging and FR-FI.

http://adni.loni.usc.edu
https://github.com/iskandr/fancyimpute
https://github.com/softmechanics/missingpy
https://github.com/eltonlaw/impyute
https://www.cnblogs.com/wuliytTaotao/p/10814770.html
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