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ABSTRACT
Data analysis in modern scientific research and practice has shifted from analysing a single
dataset to coupling several datasets. We propose and study a kernel regression method that
can handle the challenge of heterogeneous populations. It greatly extends the constrained ker-
nel regression [Dai, C.-S., & Shao, J. (2023). Kernel regression utilizing external information as
constraints. Statistica Sinica, 33, in press] that requires a homogeneous population of different
datasets. The asymptotic normality of proposed estimators is established under some conditions
and simulation results are presented to confirm our theory and to quantify the improvements
from datasets with heterogeneous populations.
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1. Introduction

With advanced technologies in data collection and storage, in modern statistical analyses we have not only a
primary random sample from a population of interest, which results in a dataset referred to as the internal
dataset, but also some independent external datasets from sources such as past investigations and publicly available
datasets. In this paper, we consider nonparametric kernel regression (Bierens, 1987;Wand& Jones, 1994, December;
Wasserman, 2006) between a univariate response Y and a covariate vector U from a sampled subject, using the
internal dataset with the help from independent external datasets. Specifically, we consider kernel estimation of the
conditional expectation (regression function) of Y given U = u under an internal data population,

μ1(u) = E(Y | U = u,D = 1), (1)

where D = 1 indicates internal population and u is a fixed point in U , the range of U . The indicator D can be
either random or deterministic. The subscript 1 inμ1(u) emphasizes that it is for internal data population (D = 1),
which may be different from μ(u) = E(Y | U = u), a mixture of quantities from the internal and external data
populations.

When external datasets also have measurements Y and U , we may simply combine the internal and external
datasets when the populations for internal and external data are identical (homogeneous). However, heterogeneity
typically exists among populations for different datasets, especially when there are multiple external datasets col-
lected in different ways and/or different time periods. In Section 2, we propose a method to handle heterogeneity
among different populations and derive a kernel regression more efficient than the one using internal data alone.
The result is also a crucial building block for themore complicated case in Section 3 where external datasets contain
fewer measured covariates as described next.

In applications, it often occurs that an external dataset has measured Y and X from each subject, where X is a
part of the vector U , i.e., some components of U are not measured due to high measurement cost or the progress
of technology and/or scientific relevance. With some unmeasured components of U , the external dataset cannot
be directly used to estimate μ1(u) in (1), since conditioning on the entire U is involved. To solve this problem, Dai
and Shao (2023) proposes a two-step kernel regression using external information as a constraint to improve kernel
regression based on internal data alone, following the idea of using constraints in Chatterjee et al. (2016) and H.
Zhang et al. (2020). However, these three cited papers mainly assume that the internal and external datasets share
the same population, which may be unrealistic. The challenge in dealing with the heterogeneity among different
populations is similar to the difficulty in handling nonignorable missing data if unmeasured components of U is
treated as missing data, although in missing data problems we usually want to estimate μ(u) = E(Y | U = u) �=
μ1(u) in (1).
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In Section 3, we develop a methodology to handle population heterogeneity for internal and external datasets,
which extends the procedure inDai and Shao (2023) to heterogeneous populations and greatlywidens its application
scope.

Under each scenario, we derive asymptotic normality in Section 4 for the proposed kernel estimators and obtain
explicitly the asymptotic variances, which is important for large sample inference. Some simulation results are pre-
sented in Section 5 to compare finite sample performance of several estimators. Discussions on extensions and
handling high dimension covariates are given in Section 6. All technical details are in the Appendix.

Our research fits into a general framework of data integration (Kim et al., 2021; Lohr & Raghunathan, 2017;
Merkouris, 2004; Rao, 2021; Yang & Kim, 2020; Y. Zhang et al., 2017).

2. Efficient kernel estimation by combining datasets

The internal dataset contains observations (Yi,U i), i = 1, . . . , n, independent and identically distributed (iid) from
P1, the internal population of (Y ,U), where Y is the response andU is a p-dimensional covariate vector associated
with Y. We are interested in the estimation of conditional expectation μ1(u) in (1). The standard kernel regression
estimator of μ1(u) based on the internal dataset alone is

μ̂1(u) =
n∑

i=1
Yi κb(u − U i)

/ n∑
i=1

κb(u − U i), (2)

where κb(a) = b−pκ(a/b), κ(·) is a given kernel function onU (the range of u), and b>0 is a bandwidth depend-
ing on n. We assume that U is standardized so that the same bandwidth b is used for every component of U in
kernel regression. Because of the well-known curse of dimensionality for kernel-type methods, we focus on a low
dimension p not varying with n. A discussion of handling a large dimensional U is given in Section 6.

We consider the case with one external dataset, independent of the internal dataset. Extension to multiple
external datasets is straightforward and discussed in Section 6.

In this section we consider the situation where the external dataset contains iid observations (Yi,U i), i = n +
1, . . . ,N, from P0, the external population of (Y ,U).

2.1. Combing data from homogeneous populations

If we assume that the two populations P1 and P0 are identical, then we can simply combine two datasets to obtain
the kernel estimator

μ̂E1
1 (u) =

N∑
i=1

Yi κb(u − U i)

/ N∑
i=1

κb(u − U i), (3)

which is obviously more efficient than μ̂1(u) in (2) as the sample size is increased to N>n. The estimator μ̂E1
1 (u)

in (3), however, is not correct (i.e., it is biased) when populations P1 and P0 are different, because E(Y | U = u,
D = 0) for external population may be different from μ1(u) = E(Y | U = u,D = 1) for internal population.

2.2. Combing data from heterogeneous populations

We now derive a kernel estimator using two datasets and is asymptotically correct regardless of whether P1 and
P0 are the same or not. Let f (y | u,D) be the conditional density of Y given U = u and D = 1 or 0 (for internal or
external population). Then

μ1(x) = E(Y |U = u,D = 1) = E
{
Y
f (Y | u,D = 1)
f (Y | u,D = 0)

∣∣∣∣ U = u,D = 0
}
. (4)

The ratio f (Y | u,D = 1)/f (Y | u,D = 0) links internal and external populations so that we can overcome the
difficulty in utilizing the external data under heterogeneous populations.

If we can construct an estimator f̂ (y | u,D) of f (y | u,D) for every y, u, and D = 0 or 1, then we can modify the
estimator in (3) by replacing everyYi with i>n by constructed response Ŷi = Yîf (Yi |U i,D = 1)/̂f (Yi |U i,D = 0).
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The resulting kernel estimator is

μ̂E2
1 (u) =

{ n∑
i=1

Yi κb(u − U i)+
N∑

i=n+1
Ŷi κb(u − U i)

}/ N∑
i=1

κb(u − U i). (5)

Note that we use internal data (Yi,U i), i = 1, . . . , n, to obtain estimator f̂ (Yi |U i,D = 1) and external data (Yi,U i),
i = n + 1, . . . ,N, to construct estimator f̂ (Yi |U i,D = 0). Applying kernel estimation, we obtain that

f̂ (y |U = u,= 1) =
n∑

i=1
κ̃̃b(y − Yi, u − U i)

/ n∑
i=1

κb(u − U i),

f̂ (y |U = u,D = 0) =
N∑

i=n+1
κ̃̃b(y − Yi, u − U i)

/ N∑
i=n+1

κb(u − U i),

(6)

where κ̃ and κ are kernels with dimensions p+ 1 and p and bandwidths b̃ and b, respectively. The estimator in (5)
is asymptotically valid under some regularity conditions for kernel and bandwidth, summarized in Theorem 4.1 of
Section 4.

2.3. Combing data from heterogeneous populations with additional information

If additional information exists, then the approach in Section 2.2 can be improved. Assume that the internal and
external datasets are formed according to a random binary indicator D such that (Yi,U i,Di), i = 1, . . . ,N, are iid
distributed as (Y ,U ,D), where Yi and U i are observed internal data when Di = 1, Yi and U i are observed external
data when Di = 0, and N is still the known total sample size for internal and external data. In this situation, the
internal and external sample sizes are n =∑N

i=1 Di and N−n, respectively, both of which are random. In most
applications, the assumption of random D is not substantial. From the identity

f (Y | u,D = 1)
f (Y | u,D = 0)

= P(D = 1 |U = u,Y)
P(D = 0 |U = u,Y)

P(D = 0 |U = u)
P(D = 1 |U = u)

, (7)

we just need to estimate P(D = 1 |U = u,Y) and P(D = 1 |U = u) for every u, constructed using for example the
nonparametric estimators in Fan et al. (1998) for binary response. For each estimator, both internal and external
data on (Y ,U) and the indicator D are used.

A further improvement can be made if the following semi-parametric model holds,

P(D = 0 | U ,Y)
P(D = 1 | U ,Y)

= exp{α(U)+ γY}, (8)

where α(·) is an unspecified unknown function and γ is an unknown parameter. From (7)–(8),

f (Y | u,D = 1)
f (Y | u,D = 0)

= e−γYE(eγY | U = u,D = 1). (9)

If γ = 0, then f (Y | u,D = 1) = f (Y | u,D = 0) and the estimator μ̂E1
1 (u) in (3) is correct. Under (9) with γ �= 0,

we just need to derive an estimator γ̂ of γ and apply kernel estimation to estimate E(eγ̂Y | U = u,D = 1) as a
function of u. Note that we do not need to estimate the unspecified function α(·) in (8), which is a nice feature of
semi-parametric model (8).

We now derive an estimator γ̂ . Applying (7)–(8) to (4), we obtain that

μ1(u) = E
{
Y
P(D = 1 |U = u,Y)
P(D = 0 |U = u,Y)

∣∣∣∣U = u,D = 0
}
P(D = 0 |U = u)
P(D = 1 |U = u)

= E
(
Ye−α(u)−γY |U = u,D = 0

) E{P(D = 0 |U = u,Y) |U = u}
P(D = 1 |U = u)
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= e−α(u)E
(
Ye−γY |U = u,D = 0

) E{eα(u)+γYP(D = 1|U = u,Y)|U = u}
P(D = 1 |U = u)

= E
(
Ye−γY |U = u,D = 0

) E{eγYE(D |U = u,Y) |U = u}
P(D = 1 |U = u)

= E
(
Ye−γY |U = u,D = 0

) E(eγYD |U = u)
P(D = 1 |U = u)

= E
(
Ye−γY |U = u,D = 0

)
E
(
eγY |U = u,D = 1

)
,

where the second and third equalities follow from (8) and the last equation follows from

E(eγYD |U = u) = E
(
eγYD |U = u,D = 1

)
P(D = 1 |U = u)

+ E
(
eγYD |U = u,D = 0

)
P(D = 0 |U = u)

= E
(
eγY |U = u,D = 1

)
P(D = 1 |U = u),

as E(eγYD |U = u,D = 0) = 0. For every real number t, define

h(u, t) = E(Ye−tY |U = u,D = 0)E(etY |U = u,D = 1).

Its estimator by kernel regression is

ĥ(u, t) =
∑N

i=1(1 − Di)κ̌b̌(u − U i)Yie−tYi∑N
i=1(1 − Di)κ̌b̌(u − U i)

∑N
i=1Diκ̌b̌(u − U i)etYi∑N
i=1Diκ̌b̌(u − U i)

(10)

where κ̌ is a kernel and b̌ is a bandwidth. Then, we estimate γ by

γ̂ = argmin
t

1
N

N∑
i=1

Di{Yi − ĥ(U i, t)}2, (11)

motivated by the fact that the objective function for minimization in (11) approximates E[D{Y − h(U , t)}2 |D = 1]
and, for any t,

E[D{Y − h(U , γ )}2 |D = 1] ≤ E[D{Y − h(U , t)}2 |D = 1]

because h(u, γ ) = μ1(u).
Once γ̂ is obtained, our estimator of μ1(u) is

μ̂E3
1 (u) =

{ N∑
i=1

DiYi κb(u − U i)+
N∑
i=1
(1 − Di)Ŷi κb(u − U i)

}/ N∑
i=1

κb(u − U i) (12)

with

Ŷi = Yi e−γ̂Yi
n∑
j=1

eγ̂Yj κ̌b̌(U i − U j)

/ n∑
j=1

κ̌b̌(U i − U j),

in view of (9).
In applications, we need to choose bandwidths with given sample sizes n andN−n.We can apply the k-fold cross-

validation as described in Györfi et al. (2002). Requirements on the rates of bandwidths are described in theorems
in Section 3.

3. Constrained kernel regression with unmeasured covariates

We still consider the case with one external dataset, independent of the internal dataset. In this section, the exter-
nal dataset contains iid observations (Yi,Xi), i = n + 1, . . . ,N, from the external population P0, where X is a
q-dimensional sub-vector of U with q<p.

Since the external dataset has only X, not the entire U , we cannot apply the method in Section 2 when q<p.
Instead, we consider kernel regression using external information in a constraint. First, we consider the estimation
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of the n-dimensional vector μ1 = (μ1(U1), . . . ,μ1(Un))
�, where A� denotes the transpose of vector or matrix A

throughout. Note that the standard kernel regression (2) estimates μ1 as

μ̂1 =
( n∑

i=1
Yi κb(U1 − U i)

/ n∑
i=1

κb(U1 − U i), . . . ,
n∑

i=1
Yi κb(Un − U i)

/ n∑
i=1

κb(Un − U i)

)�
.

Taking partial derivatives with respect to μi’s, we obtain that

μ̂1 = arg min
μ1,...,μn

n∑
i=1

n∑
j=1

κb(U i − U j)(Yj − μi)
2

/ n∑
k=1

κb(U i − Uk). (13)

We improve μ̂1 by the following constrained minimization,

μ̂
Cj
1 = arg min

μ1,...,μn

n∑
i=1

n∑
j=1

κl(U i − U j)(Yj − μi)
2

/ n∑
k=1

κl(U i − Uk) (14)

subject to
n∑

i=1
{μi − ĥEj1 (Xi)}g(Xi)

� = 0, (15)

where g(x)� = (1, x�), l in (14) is a bandwidth that may be different from b in (2) or (13), and ĥEj1 (x) is the kernel
estimator of h1(x) = E(Y | X = x,D = 1) using the jth of the three methods described in Section 2, j = 1, 2, 3.
Specifically, ĥE11 (x) is given by (3), ĥE21 (x) is given by (5), and ĥE31 (x) is given by (12), with u and U replaced by x
and X, respectively, and kernels and bandwidths suitably adjusted as dimensions ofU and X are different. Note that
ĥEj1 can be computed as both internal and external datasets have measured Xi’s.

It turns out that μ̂
Cj
1 in (14) has an explicit form μ̂

Cj
1 = μ̂1 + G(G�G)−1G�(̂hEj1 − μ̂1), where G is the n × n

matrix whose ith row is g(Xi)
� and ĥEj1 is the n-dimensional vector whose ith component is ĥEj1 (Xi). Constraint (15)

is an empirical analog of the theoretical constraint

E
[
{μ1(U)− h1(X)} g(X)� | D = 1

]
= 0

(based on internal data), as E{E(Y | U ,D = 1) | X,D = 1} = E(Y | X,D = 1) = h1(X). Thus, if ĥ
Ej
1 (·) is a good

estimator of h1(·), then μ̂
Cj
1 in (14) is more accurate than the unconstrained μ̂1 in (13).

To obtain an improved estimator of the entire regression function μ1(·) in (1), not just the function at u = U i,
i = 1, . . . , n, we apply the standard kernel regression with response vector (Y1, . . . ,Yn)

� replaced by μ̂
Cj
1 in (14),

which results in the following three estimators of μ1(u):

μ̂
Cj
1 (u) =

n∑
i=1

μ̂
Cj
i κb(u − U i)

/ n∑
i=1

κb(u − U i), j = 1, 2, 3, (16)

where μ̂Cj
i is the ith component of μ̂

Cj
1 in (14) and b is the same bandwidth in (2). The first estimator μ̂C1

i is sim-
ple, but can be incorrect when populations P1 and P0 are different. The asymptotic validity of μ̂C2

1 and μ̂C3
1 are

established in the next section.

4. Asymptotic normality

We now establish the asymptotic normality of μ̂Ej
1 (u) and μ̂

Cj
1 (u) for a fixed u, as the sample size of the internal

dataset increases to infinity. All technical proofs are given in the Appendix.
The first result is about μ̂E2

1 (u) in (5). The result is also applicable to μ̂E1
1 (u) in (3) with an added condition that

P1 = P0.

Theorem 4.1: Assume the following conditions.

(B1) The densities f1(u) and f0(u) for U , respectively under internal and external populations have continuous and
bounded first- and second-order partial derivatives.

(B2) μ2
1(u)fk(u), σ

2
k (u)fk(u), and the first- and second-order partial derivatives of μ1(u)fk(u) are continuous and

bounded, where σ 2
1 (u) = E[{Y − μ1(U)}2 | U = u,D = 1], σ 2

0 (u) = E[{Ỹ − μ1(U)}2 | U = u,D = 0], and
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Ỹ = Yf (Y |U ,D = 1)/f (Y |U ,D = 0). Also, E(|Y|s |U = u,D = 1)f1(u) and E(|Ỹ|s |U = u,D = 0)f0(u)
are bounded for a constant s>2.

(B3) The kernel κ is second order, i.e.,
∫
u κ(u) du = 0 and 0 <

∫
u�u κ(u) du < ∞.

(B4) The bandwidth b satisfies b → 0 and (a + 1)nbp+4 → c ∈ [0,∞), where a = limn→∞(N − n)/n (assumed to
exist without loss of generality).

(B5) The kernels κ̃ and κ in (6) have bounded supports and orders m̃ > 2 + 2/p and m > 2, respectively, as defined
by Bierens (1987), f (y, u |D = 1), f (y, u |D = 0) are m̃th-order continuously differentiable with bounded
partial derivatives, and f1(u) and f0(u) are mth-order continuously differentiable with bounded partial deriva-
tives. Functions f (y, u |D = 0) and f1(u) are bounded away from zero. The bandwidths b̃ and b satisfy
ñbp+1/ log(n) → ∞ and nb

p
/ log(n) → ∞.

Then, for any fixed u with f0(u) > 0 and f1(u) > 0 and μ̂E2
1 in (5),

√
nbp{μ̂E2

1 (u)− μ1(u)} d−→ N (Ba(u),Va(u)) , (17)

where d−→ denotes convergence in distribution as n → ∞,

Ba(u) = c1/2{f1(u)A1(u)+ af0(u)A0(u)}
(a + 1)1/2{f1(u)+ af0(u)} ,

A1(u) =
∫
κ(v)

{
1
2
v�∇2μ1(u)v + v�∇ log f1(u)∇μ1(u)�v

}
dv,

A0(u) =
∫
κ(v)

{
1
2
v�∇2μ1(u)v + v�∇ log f0(u)∇μ1(u)�v

}
dv,

Va(u) = f1(u)σ 2
1 (u)+ af0(u)σ 2

0 (u)
{f1(u)+ af0(u)}2

∫
κ(v)2 dv.

Conditions (B1)–(B4) are typically assumed for kernel estimation (Bierens, 1987). Condition (B5) is a sufficient
condition for

max
i=n+1,...,N

∣∣∣∣∣ f̂ (Yi |U = U i,D = 1)
f̂ (Yi |U = U i,D = 0)

− f (Yi |U = U i,D = 1)
f (Yi |U = U i,D = 0)

∣∣∣∣∣ = op(1)√
nbp

(18)

(Lemma 8.10 in Newey & McFadden, 1994), where op(1) denotes a term tending to 0 in probability. Result (18)
implies that the estimation of ratio f (Y |U ,D = 1)/f (Y |U ,D = 0) does not affect the asymptotic distribution of
μ̂E2
1 (u) in (5).
Note that both the squared bias B2a(u) and variance Va(u) in (17) are decreasing in the limit a = limn→∞

(N − n)/n, a quantity reflecting how many external data we have. In the extreme case of a = 0, i.e., the size of
the external dataset is negligible compared with the size of the internal dataset, result (17) reduces to the well-
known asymptotic normality for the standard kernel estimator μ̂1(u) in (2) (Bierens, 1987). In the other extreme
case of a = ∞, on the other hand, Ba(u) = Va(u) = 0 and, hence, μ̂E2

1 (u) has a convergence rate tending to 0 faster
than 1/

√
nbp, the convergence rate of the standard kernel estimator μ̂1(u).

The next result is about μ̂C2
1 (u) in (16) as described in Section 3.

Theorem 4.2: Assume (B1)–(B5) withU and p replaced by X and q, respectively, and the following conditions, where
fk(u) and σ 2

k (u), k = 0, 1, are defined in (B1)–(B2).

(C1) The rangeU ofU is a compact set in the p-dimensional Euclidean space and f1(u) is bounded away from infinity
and zero on U ; f1(u) and f0(u) have continuous and bounded first- and second-order partial derivatives.

(C2) Functions μ1(u) = E(Y |U = u) and σ 2
1 (u) are Lipschitz continuous; μ1(u) has bounded third-order par-

tial derivatives; h1(x) = E(Y | X = x,D = 1) has bounded first- and second-order partial derivatives; and
E(|Y|s |U = u,D = 1) is bounded with s > 2 + p/2.

(C3) All kernel functions are positive, bounded, and Lipschitz continuous with mean zero and finite sixth moments.
(C4) a = limn→∞(N − n)/n > 0 and the bandwidths b in (2) and l in (14) satisfy b → 0, l → 0, l/b → r ∈ (0,∞),

nbp → ∞, and nb4+p → c ∈ [0,∞), as n → ∞.
(C5) The densities fX0(x) and fX1(x) for X, respectively under internal and external populations are bounded away

from zero. There exists a constant s>4 such that E(|Y|s | D = 1) and E(|Ỹ|s | D = 0) are finite, E(|Y|s |
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X = x,D = 1)fX1(x) and E(|Ỹ|s | X = x,D = 0)fX0(x) are bounded, and the bandwidth bh for ĥ1 satisfies
n1−2/sbqh/ log(n) → ∞.

Then, for any fixed u ∈ U and μ̂C2
1 (u) in (16),

√
nbp{μ̂C2

1 (u)− μ1(u)} d−→ N (Br(u),Vr(u)) , (19)

where

Br(u) = c1/2[(1 + r2)A1(u)− r2g(x)��−1
g E{g(X)A1(U) |D = 1}],

A1(u) =
∫
κ(v)

{
1
2
v�∇2μ1(u)v + v�∇ log f1(u)∇μ1(u)�v

}
dv,

Vr(u) = σ 2
1 (u)
f1(u)

∫ {∫
κ(v − rw)κ(w)dw

}2
dv,

and � = E{g(X)g(X)� | D = 1} is assumed to be positive definite without loss of generality.

The next result is about γ̂ in (11).

Theorem 4.3: Suppose that (8) holds for binary random D indicating internal and external data. Assume also the
following conditions.

(D1) The kernel κ̌ in (10) is Lipschitz continuous, satisfies
∫
κ̌(u) du = 1, has a bounded support, and has order

d > max{(p + 4)/2, p}.
(D2) The bandwidth b̌ in (10) satisfies Nb̌2q/(logN)2 → ∞ and Nb̌2d → 0 as the total sample size of internal and

external datasets N → ∞, where d is given in (D1).
(D3) γ in (8) is an interior point of a compact domain � and it is the unique solution to h1(·) = h(·, t), t ∈ �. For

any u, h(u, t) is second-order continuously differentiable in t, and h, ∇th, ∇2
t h are bounded over t and u. As

t → γ , h(·, t), ∇th(·, t), and ∇2
t h(·, t) converge uniformly.

(D4) supt∈� E‖Wt‖4 < ∞ and supt∈� E[‖Wt‖4 |U]fU(U) is bounded, where ‖a‖2 = a�a, Wt = (DetY , (1 − D)
Ye−tY ,D, (1 − D),DYetY , (1 − D)Y2 e−tY , DY2 etY , (1 − D)Y3 e−tY)�, and fU is the density of U . Further-
more, there is a function τ(Y ,D) with E{τ(Y ,D)} < ∞ such that ‖Wt − Wt′‖ < τ(Y ,D)|t − t′|.

(D5) The function ωt(u) = E(Wt |U = u)fU(u) is bounded away from zero, and it is dth-order continuously
differentiable with bounded partial derivatives on an open set containing the support of U . There is a
functional G(Y ,D,ω) linear in ω such that |G(Y ,D,ω)| ≤ ι(Y ,D)‖ω‖∞ and, for small enough ‖ω −
ωγ ‖∞, |ψ(Y ,D,ω)− ψ(Y ,D,ωγ )− G(Y ,D,ω − ωγ )| ≤ ι(Y ,D)‖ω − ωγ ‖2∞, where ι(Y ,D) is a function
with E{ι(Y ,D)} < ∞, ψ(Y ,D,ω) = −2D(Y − ω1ω2

ω3ω4
)(ω2ω5−ω1ω6

ω3ω4
), ωj is the jth component of ω, ‖ω‖∞ =

supx∈U ‖ω(u)‖, ‖ω − ωγ ‖∞ = supx∈U ‖ω(u)− ωγ (u)‖, and U is the range of U . Also, there exists an
almost everywhere continuous 8-dimensional function ν(U) with

∫ ‖ν(u)‖ du < ∞ and E{sup‖δ‖≤ε ‖ν(U +
δ)‖4} < ∞ for some ε > 0 such that E{G(Y ,D,ω)} = ∫ ν(u)�ω(u) du for all ‖ω‖∞ < ∞.

Then, as the total sample size of internal and external datasets N → ∞,
√
N(γ̂ − γ )

d−→ N(0, σ 2
γ ), (20)

where σ 2
γ = [2E{D∇γ h(U , γ )}2]−1Var[ψ(Y ,D,ωγ )+ ν(U)�Wγ − E{ν(U)�Wγ }].

Conditions (D1)–(D5) are technical assumptions discussed in Lemmas 8.11 and 8.12 in Newey and McFad-
den (1994). As discussed by Newey and McFadden (1994), the condition that κ̌ has a bounded support can be
relaxed, as it is imposed for a simple proof.

Combining Theorems 4.1–4.3, we obtain the following result for μ̂E3
1 (u) in (12) or μ̂C3

1 (u) in (16).

Corollary 4.1: Suppose that (8) holds for the binary random D indicating internal and external data.

(i) Under (B1)–(B4) and (D1)–(D5), result (17) holds with μ̂E2
1 (u) replaced by μ̂

E3
1 (u).

(ii) Under (C1)–(C4) and (D1)–(D5) with U and p replaced by X and q, respectively, result (19) holds with μ̂C2
1 (u)

replaced by μ̂C3
1 (u).
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5. Simulation results

5.1. The performance of μ̂Cj
1 given by (16)

We first present simulation results to examine and compare the performance of the standard kernel estima-
tor μ̂1 in (2) without using external information and our proposed estimator (16) with three variations, μ̂C1

1 ,
μ̂C2
1 , and μ̂C3

1 , as described in the end of Section 3. We consider U = (X,Z)� with univariate covariates X
and Z, where Z is unmeasured in the external dataset (p = 2 and q = 1). The covariates are generated in two
ways:

(i) normal covariates: (X,Z)� is bivariate normal with means 0, variances 1, and correlation 0.5;
(ii) bounded covariates: X = BW1 + (1 − B)W2 and Z = BW1 + (1 − B)W3, whereW1,W2, andW3 are identi-

cally distributed as uniform on [−1, 1], B is uniform on [0, 1], andW1,W2,W3, and B are independent.

Conditioned on (X,Z)�, the response Y is normal with mean μ(X,Z) and variance 1, where μ(X,Z) follows
one of the following four models:

(M1) μ(X,Z) = X/2 − Z2/4;
(M2) μ(X,Z) = cos(2X)/2 + sin(Z);
(M3) μ(X,Z) = cos(2XZ)/2 + sin(Z);
(M4) μ(X,Z) = X/2 − Z2/4 + cos(XZ)/4.

Note that all four models are nonlinear in (X,Z)�; (M1)-(M2) are additive models, while (M3)-(M4) are non-
additive.

A total of N = 1, 200 data are generated from the population of (Y ,X,Z) as previously described. A data
point is treated as internal or external according to a random binary D with conditional probability P(D = 1 |
Y ,X,Z) = 1/ exp(γ0 + 2|X| + γY), where γ = 0 or 1/2, and γ0 = 1 or −1.5. Under the setting γ0 = 1 or −1.5,
the unconditional P(D = 1) ≈ n/N is around 13% or 50%.

The simulation studies performance of kernel estimators in terms of mean integrated square error (MISE). The
following measure is calculated by simulation with S replications:

MISE(μ̂∗
1) = 1

S

S∑
s=1

1
T

T∑
t=1

{μ̂∗
1(U s,t)− μ1(U s,t)}2, (21)

where {U s,t : t = 1, . . . ,T} are test data for each simulation replication s, the simulation is repeated independently
for s = 1, . . . , S, and μ̂∗

1 is one of μ̂1, μ̂C1
1 , μ̂C2

1 , and μ̂C3
1 , independent of test data. We consider two ways of gen-

erating test data U s,t ’s. The first one is to use T = 121 fixed grid points on [−1, 1] × [−1, 1] with equal space. The
second one is to take a random sample of T = 121 without replacement from the covariate U ’s of the internal
dataset, for each fixed s = 1, . . . , S and independently across s.

To show the benefit of using external information, we calculate the improvement in efficiency defined as follows:

IMP = 1 − min{MISE(μ̂∗
1)}

MISE(μ̂1)
, (22)

where the minimum is over μ̂∗
1 = one of μ̂1, μ̂C1

1 , μ̂C2
1 , and μ̂C3

1 .
In all cases, we use the Gaussian kernel. The bandwidths b and l affect the performance of kernel methods. We

consider two types of bandwidths in the simulation. The first one is ‘the best bandwidth’; for each method, we
evaluate MISE in a pool of bandwidths and display the one that has the minimal MISE. This shows the best we can
achieve in terms of bandwidth, but it cannot be used in applications. The second one is to select bandwidth from a
pool of bandwidths via 10-fold cross validation (Györfi et al., 2002), which produces a decent bandwidth that can
be applied to real data.

The simulated MISE values based on S = 200 replications are shown in Tables 1–4.
Consider first the results in Tables 1–2. Since γ = 0, all three estimators, μ̂C1

1 , μ̂C2
1 , and μ̂C3

1 , are correct and
more efficient than the standard estimator μ̂1 in (2) without using external information. The estimator μ̂C1

1 is the
best, as it uses the correct information that populations are homogeneous (γ = 0) and is simpler than μ̂C2

1 and μ̂C3
1 .

Next, the results in Tables 3–4 for γ = 1/2 indicate that the estimator μ̂C2
1 or μ̂C3

1 using a correct constraint is
better than the estimator μ̂C1

1 using an incorrect constraint or the estimator μ̂1 without using external information.
Since μ̂C3

1 uses more information, it is in general better than μ̂C2
1 . Furthermore, with an incorrect constraint, μ̂C1

1
can be much worse than μ̂1 without using external information.
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Table 1. Simulated MISE (21) and IMP (22) when the external dataset contains only X, with S = 200 under γ = 0, n/N ≈ 13%.

Estimator

Covariate Model Test data b, l μ̂1 μ̂C1
1 μ̂C2

1 μ̂C3
1 IMP % Mean of γ̂

Normal M1 Sample Best 0.040 0.017 0.020 0.022 56.96 −0.003
CV 0.057 0.043 0.042 0.051 27.16 −0.007

Grid Best 0.026 0.009 0.013 0.014 66.49 −0.012
CV 0.037 0.022 0.022 0.028 40.53 −0.003

M2 Sample Best 0.042 0.021 0.027 0.026 50.58 −0.042
CV 0.074 0.056 0.061 0.060 23.52 −0.039

Grid Best 0.030 0.015 0.025 0.023 50.36 −0.026
CV 0.051 0.033 0.040 0.036 35.62 −0.035

M3 Sample Best 0.039 0.020 0.025 0.023 48.55 −0.023
CV 0.063 0.050 0.053 0.055 21.16 −0.020

Grid Best 0.028 0.014 0.020 0.021 51.73 −0.010
CV 0.046 0.029 0.033 0.033 36.33 −0.024

M4 Sample Best 0.041 0.018 0.020 0.023 56.28 −0.007
CV 0.064 0.050 0.047 0.056 25.83 −0.017

Grid Best 0.026 0.009 0.014 0.015 65.54 −0.006
CV 0.036 0.021 0.020 0.026 44.18 −0.007

Bounded M1 Sample Best 0.010 0.002 0.006 0.007 79.58 −0.007
CV 0.016 0.006 0.007 0.010 63.65 0.001

Grid Best 0.013 0.002 0.006 0.007 82.93 −0.000
CV 0.041 0.012 0.013 0.017 70.86 0.009

M2 Sample Best 0.011 0.003 0.007 0.008 74.88 −0.031
CV 0.037 0.008 0.011 0.013 77.46 −0.018

Grid Best 0.016 0.004 0.009 0.010 74.00 −0.023
CV 0.086 0.018 0.019 0.021 79.20 −0.019

M3 Sample Best 0.011 0.003 0.006 0.007 73.85 −0.003
CV 0.037 0.009 0.011 0.014 76.48 −0.008

Grid Best 0.016 0.004 0.008 0.009 73.94 −0.004
CV 0.083 0.018 0.020 0.023 78.46 0.004

M4 Sample Best 0.009 0.002 0.005 0.006 77.43 −0.007
CV 0.018 0.006 0.008 0.011 68.73 0.002

Grid Best 0.013 0.002 0.006 0.007 82.23 −0.007
CV 0.036 0.010 0.011 0.015 71.59 0.003

Note: Simulation standard deviations of γ̂ for all cases are between 0.005 and 0.006.

Table 2. Simulated MISE (21) and IMP (22) when the external dataset contains only X, with S = 200 under γ = 0, n/N ≈ 50%.

Estimator

Covariate Model Test data b, l μ̂1 μ̂C1
1 μ̂C2

1 μ̂C3
1 IMP % Mean of γ̂

Normal M1 Sample Best 0.012 0.007 0.006 0.007 44.75 −0.017
CV 0.033 0.027 0.021 0.028 36.37 −0.005

Grid Best 0.006 0.004 0.005 0.005 34.29 −0.009
CV 0.017 0.012 0.008 0.012 53.01 −0.007

M2 Sample Best 0.013 0.008 0.010 0.009 36.08 −0.057
CV 0.052 0.027 0.027 0.026 48.95 −0.062

Grid Best 0.010 0.005 0.007 0.006 45.83 −0.058
CV 0.036 0.016 0.018 0.016 57.27 −0.063

M3 Sample Best 0.014 0.009 0.010 0.010 37.36 −0.032
CV 0.050 0.027 0.027 0.027 46.48 −0.041

Grid Best 0.008 0.005 0.006 0.005 43.13 −0.027
CV 0.030 0.013 0.015 0.014 55.91 −0.031

M4 Sample Best 0.014 0.009 0.008 0.009 44.00 −0.020
CV 0.041 0.033 0.026 0.033 36.63 −0.014

Grid Best 0.006 0.004 0.005 0.005 37.33 −0.008
CV 0.017 0.012 0.008 0.013 53.05 −0.023

Bounded M1 Sample Best 0.002 0.001 0.001 0.002 40.67 −0.008
CV 0.009 0.005 0.004 0.005 52.83 0.009

Grid Best 0.004 0.002 0.002 0.002 55.17 −0.010
CV 0.021 0.008 0.007 0.008 67.74 −0.000

M2 Sample Best 0.004 0.002 0.002 0.002 58.55 −0.035
CV 0.027 0.007 0.006 0.007 77.51 −0.039

Grid Best 0.006 0.002 0.003 0.003 64.61 −0.033
CV 0.056 0.011 0.011 0.011 80.27 −0.036

M3 Sample Best 0.004 0.002 0.002 0.002 60.82 −0.006
CV 0.024 0.006 0.006 0.006 76.60 −0.008

Grid Best 0.006 0.002 0.002 0.003 66.02 −0.011
CV 0.050 0.011 0.011 0.011 78.56 −0.010

M4 Sample Best 0.002 0.001 0.001 0.002 43.16 −0.011
CV 0.010 0.005 0.005 0.005 54.67 −0.003

Grid Best 0.004 0.002 0.002 0.002 53.45 −0.007
CV 0.024 0.009 0.008 0.009 68.53 −0.002

Note: Simulation standard deviations of γ̂ for all cases are between 0.004 and 0.005.
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Table 3. Simulated MISE (21) and IMP (22) when the external dataset contains only X, with S = 200 under γ = 0.5, n/N ≈ 13%.

Estimator

Covariate Model Test data b, l μ̂1 μ̂C1
1 μ̂C2

1 μ̂C3
1 IMP % Mean of γ̂

Normal M1 Sample Best 0.042 0.181 0.033 0.028 32.15 0.449
CV 0.055 0.193 0.061 0.055 −0.91 0.449

Grid Best 0.022 0.164 0.019 0.013 40.36 0.453
CV 0.030 0.193 0.048 0.030 2.13 0.435

M2 Sample Best 0.041 0.295 0.047 0.026 37.01 0.429
CV 0.077 0.324 0.103 0.066 15.26 0.424

Grid Best 0.030 0.279 0.040 0.022 27.11 0.428
CV 0.059 0.315 0.087 0.043 28.20 0.421

M3 Sample Best 0.048 0.335 0.047 0.028 40.81 0.452
CV 0.076 0.370 0.104 0.066 12.50 0.448

Grid Best 0.031 0.300 0.035 0.021 31.59 0.441
CV 0.053 0.355 0.082 0.041 23.25 0.447

M4 Sample Best 0.048 0.193 0.035 0.030 37.27 0.452
CV 0.067 0.205 0.067 0.061 8.73 0.433

Grid Best 0.023 0.177 0.023 0.014 39.42 0.437
CV 0.036 0.204 0.049 0.031 15.80 0.452

Bounded M1 Sample Best 0.009 0.146 0.011 0.007 23.90 0.482
CV 0.017 0.150 0.026 0.011 35.66 0.483

Grid Best 0.013 0.152 0.016 0.007 44.41 0.470
CV 0.037 0.159 0.030 0.017 52.24 0.485

M2 Sample Best 0.012 0.196 0.018 0.008 33.06 0.468
CV 0.044 0.206 0.036 0.017 60.76 0.468

Grid Best 0.016 0.205 0.022 0.010 39.95 0.463
CV 0.088 0.214 0.043 0.024 72.45 0.469

M3 Sample Best 0.011 0.209 0.016 0.007 34.46 0.479
CV 0.040 0.216 0.034 0.016 60.92 0.475

Grid Best 0.018 0.218 0.019 0.011 39.73 0.486
CV 0.089 0.228 0.042 0.026 70.77 0.483

M4 Sample Best 0.010 0.152 0.012 0.007 28.69 0.484
CV 0.019 0.157 0.025 0.012 36.41 0.485

Grid Best 0.014 0.164 0.015 0.007 46.99 0.485
CV 0.040 0.170 0.029 0.019 52.63 0.492

Note: Simulation standard deviations of γ̂ for all cases are between 0.005 and 0.006.

Table 4. Simulated MISE (21) and IMP (22) when the external dataset contains only X, with S = 200 under γ = 0.5, n/N ≈ 50%.

Estimator

Covariate Model Test data b, l μ̂1 μ̂C1
1 μ̂C2

1 μ̂C3
1 IMP % Mean of γ̂

Normal M1 Sample Best 0.013 0.035 0.008 0.009 39.89 0.431
CV 0.037 0.055 0.027 0.034 25.63 0.434

Grid Best 0.007 0.032 0.005 0.004 34.86 0.439
CV 0.014 0.046 0.014 0.012 14.98 0.437

M2 Sample Best 0.015 0.061 0.014 0.010 33.07 0.408
CV 0.063 0.086 0.041 0.030 52.47 0.406

Grid Best 0.009 0.061 0.011 0.007 28.26 0.406
CV 0.043 0.078 0.032 0.018 59.17 0.400

M3 Sample Best 0.015 0.070 0.014 0.010 33.24 0.441
CV 0.056 0.093 0.037 0.029 48.27 0.440

Grid Best 0.008 0.070 0.011 0.006 30.34 0.439
CV 0.034 0.095 0.032 0.017 51.53 0.438

M4 Sample Best 0.015 0.041 0.010 0.010 35.19 0.423
CV 0.048 0.063 0.033 0.040 31.52 0.414

Grid Best 0.006 0.033 0.005 0.005 21.67 0.422
CV 0.017 0.054 0.016 0.014 17.89 0.423

Bounded M1 Sample Best 0.003 0.022 0.003 0.002 20.26 0.477
CV 0.010 0.027 0.008 0.006 39.55 0.474

Grid Best 0.004 0.024 0.003 0.002 37.63 0.480
CV 0.022 0.029 0.009 0.009 57.30 0.480

M2 Sample Best 0.004 0.034 0.004 0.002 45.43 0.462
CV 0.030 0.042 0.011 0.008 72.70 0.462

Grid Best 0.007 0.037 0.006 0.003 56.85 0.457
CV 0.057 0.041 0.014 0.012 78.52 0.468

M3 Sample Best 0.004 0.037 0.004 0.002 47.13 0.474
CV 0.026 0.045 0.010 0.007 73.40 0.487

Grid Best 0.006 0.043 0.005 0.002 56.60 0.476
CV 0.050 0.046 0.014 0.011 77.10 0.483

M4 Sample Best 0.003 0.024 0.002 0.002 26.50 0.483
CV 0.010 0.030 0.007 0.006 43.47 0.475

Grid Best 0.004 0.027 0.003 0.002 45.69 0.480
CV 0.023 0.032 0.009 0.009 61.42 0.485

Note: Simulation standard deviations of γ̂ for all cases are between 0.004 and 0.005.
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5.2. The performance of μ̂Ej
1 given by (3), (5), or (12)

Under the same simulation setting as described in Section 5.1 but with covariate Z measured in both internal and
external datasets, we compare the performance of three estimators, μ̂E1

1 , μ̂E2
1 , and μ̂E3

1 given by (3), (5), and (12),
respectively, with the standard kernel estimator μ̂1 in (2) without using external information. The mean integrated
squared error (MISE) and improvement (IMP) are calculated using formulas (21) and (22), respectively, with μ̂∗

1 =
one of μ̂1, μ̂E1

1 , μ̂E2
1 , and μ̂E3

1 .
Tables 5–9 present the simulation results. The relative performance of μ̂E1

1 , μ̂E2
1 , μ̂E3

1 , and μ̂1 follows the same
pattern as μ̂C1

1 , μ̂C2
1 , μ̂C3

1 , and μ̂1 in Section 5.1.
The only difference between the results here and those in Section 5.1 is that the use of more external data

(a smaller n/N) results in a better performance of μ̂E2
1 or μ̂E3

1 (or μ̂E1
1 when it is correct). This is actually con-

sistent with our theoretical result Theorem 4.1 in Section 4, which shows that both the squared bias B2a(u) and
varianceVa(u) in (17) are decreasing in the limit a = limn→∞(N − n)/n. On the other hand, the simulation results
in Section 5.1 and Theorem 4.2 in Section 4 do not show a clear indication of using more external data produces
better estimators. The main reason for this is that, when Z is not observed in the external dataset, the estimator μ̂Cj

1
relies more on internal data to recover the loss of Z from external dataset in a complicated way.

5.3. The performance of μ̂Cj
1 given by (16) with q = 2

We re-consider the simulation in Section 5.1 but with the dimension of X to be q = 2, i.e., U = (X1,X2,Z)�. We
only consider normally distributed covariates with means 0, variances 1, and the correlations in (X1,Z), (X2,Z),
and (X1,X2) being 0.5, 0.5, and 0.25, respectively. Given U , the response variable Y is normally distributed with
mean μ(X1,X2,Z) = X1/2 + X2/4 − Z2/4 and variance 1. Moreover, P(D = 1 |Y ,X,Z) = 1/ exp(γ0 + 2|X1| +
γY), while the remaining settings are the same as in Section 5.1. In calculating MISE (21), we only a random U s,t

with T = 121, not fixed grid points. Also, we consider only evaluating the performance of estimators μ̂Cj
1 , since

estimators μ̂Ej
1 are simpler.

Table 5. SimulatedMISE (21) and IMP (22)when the external dataset contains both X and Z, with S = 200underγ = 0,n/N ≈ 13%.

Estimator

Covariate Model Test data b, l μ̂1 μ̂E1
1 μ̂E2

1 μ̂E3
1 IMP % Mean of γ̂

Normal M1 Sample Best 0.055 0.020 0.035 0.025 64.46 0.020
CV 0.072 0.032 0.052 0.036 55.51 0.015

Grid Best 0.047 0.010 0.027 0.017 78.44 0.013
CV 0.060 0.019 0.034 0.024 68.49 0.014

M2 Sample Best 0.066 0.026 0.044 0.032 60.99 −0.054
CV 0.088 0.035 0.052 0.040 60.73 −0.058

Grid Best 0.072 0.019 0.032 0.025 74.04 −0.051
CV 0.091 0.027 0.041 0.034 70.63 −0.058

M3 Sample Best 0.065 0.027 0.047 0.033 58.73 −0.014
CV 0.078 0.035 0.053 0.041 54.98 −0.009

Grid Best 0.055 0.016 0.031 0.023 70.04 −0.004
CV 0.067 0.026 0.038 0.033 60.79 0.002

M4 Sample Best 0.055 0.020 0.037 0.025 63.83 0.018
CV 0.075 0.034 0.053 0.040 54.39 0.012

Grid Best 0.045 0.010 0.026 0.019 77.21 0.015
CV 0.057 0.017 0.031 0.023 71.13 0.012

Bounded M1 Sample Best 0.016 0.005 0.009 0.009 69.52 0.003
CV 0.023 0.011 0.015 0.015 53.87 −0.003

Grid Best 0.036 0.017 0.023 0.022 54.15 0.009
CV 0.075 0.043 0.050 0.050 42.12 0.005

M2 Sample Best 0.026 0.006 0.011 0.010 78.31 −0.024
CV 0.030 0.015 0.020 0.018 49.71 −0.027

Grid Best 0.084 0.018 0.028 0.025 77.95 −0.021
CV 0.100 0.055 0.064 0.059 44.75 −0.016

M3 Sample Best 0.025 0.006 0.011 0.011 78.40 0.000
CV 0.037 0.014 0.022 0.019 63.38 0.010

Grid Best 0.073 0.017 0.024 0.023 76.96 0.006
CV 0.107 0.048 0.060 0.061 55.27 0.004

M4 Sample Best 0.016 0.005 0.009 0.010 69.74 0.002
CV 0.027 0.011 0.017 0.015 59.30 0.001

Grid Best 0.038 0.016 0.021 0.021 59.45 0.011
CV 0.063 0.042 0.048 0.044 33.36 0.011

Note: Simulation standard deviations of γ̂ for all cases are between 0.005 and 0.007.
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Table 6. SimulatedMISE (21) and IMP (22)when the external dataset contains both X and Z, with S = 200underγ = 0,n/N ≈ 50%.

Estimator

Covariate Model Test data b, l μ̂1 μ̂E1
1 μ̂E2

1 μ̂E3
1 IMP % Mean of γ̂

Normal M1 Sample Best 0.027 0.017 0.026 0.017 36.71 0.024
CV 0.033 0.020 0.024 0.020 39.59 0.023

Grid Best 0.017 0.007 0.013 0.008 57.00 0.021
CV 0.019 0.010 0.014 0.011 46.34 0.023

M2 Sample Best 0.041 0.022 0.025 0.023 46.91 −0.089
CV 0.043 0.023 0.025 0.024 46.51 −0.093

Grid Best 0.022 0.013 0.016 0.014 42.47 −0.095
CV 0.027 0.013 0.016 0.015 49.76 −0.090

M3 Sample Best 0.039 0.022 0.025 0.023 43.14 −0.034
CV 0.042 0.022 0.025 0.023 48.01 −0.026

Grid Best 0.023 0.013 0.016 0.014 43.63 −0.032
CV 0.024 0.013 0.015 0.014 44.94 −0.028

M4 Sample Best 0.029 0.017 0.026 0.018 40.57 0.014
CV 0.039 0.021 0.026 0.022 45.54 0.013

Grid Best 0.018 0.008 0.013 0.009 54.08 0.005
CV 0.020 0.011 0.014 0.011 46.79 0.015

Bounded M1 Sample Best 0.006 0.004 0.005 0.005 31.24 0.007
CV 0.008 0.005 0.006 0.006 28.27 0.008

Grid Best 0.019 0.012 0.012 0.012 39.18 −0.003
CV 0.025 0.017 0.018 0.017 30.05 0.004

M2 Sample Best 0.007 0.005 0.006 0.006 32.97 −0.035
CV 0.012 0.012 0.013 0.012 2.38 −0.040

Grid Best 0.021 0.013 0.015 0.014 38.04 −0.036
CV 0.042 0.036 0.040 0.036 14.28 −0.030

M3 Sample Best 0.007 0.005 0.006 0.005 31.15 −0.006
CV 0.010 0.010 0.011 0.010 6.03 −0.010

Grid Best 0.022 0.013 0.015 0.015 37.83 −0.007
CV 0.032 0.027 0.030 0.029 13.81 −0.002

M4 Sample Best 0.007 0.004 0.005 0.005 32.99 −0.004
CV 0.008 0.006 0.007 0.006 26.81 −0.004

Grid Best 0.019 0.012 0.012 0.013 36.25 0.007
CV 0.025 0.017 0.019 0.018 32.72 0.001

Note: Simulation standard deviations of γ̂ for all cases are between 0.004 and 0.006.

Table 7. Simulated MISE (21) and IMP (22) when the external dataset contains both X and Z, with S = 200 under γ = 0.5, n/N ≈
13%.

Estimator

Covariate Model Test data b, l μ̂1 μ̂E1
1 μ̂E2

1 μ̂E3
1 IMP % Mean of γ̂

M1 Sample Best 0.055 0.180 0.060 0.034 37.57 0.436
CV 0.064 0.184 0.064 0.039 38.64 0.434

Grid Best 0.040 0.177 0.035 0.018 54.10 0.431
CV 0.053 0.196 0.045 0.022 59.51 0.432

M2 Sample Best 0.076 0.170 0.064 0.041 46.31 0.380
CV 0.092 0.177 0.071 0.045 51.02 0.377

Grid Best 0.071 0.179 0.050 0.032 54.78 0.386
CV 0.082 0.190 0.056 0.038 53.31 0.385

M3 Sample Best 0.072 0.188 0.064 0.043 39.63 0.425
CV 0.091 0.192 0.067 0.049 45.96 0.421

Grid Best 0.053 0.191 0.042 0.033 38.08 0.436
CV 0.074 0.202 0.048 0.035 52.56 0.425

M4 Sample Best 0.060 0.187 0.066 0.033 44.90 0.435
CV 0.070 0.197 0.070 0.040 42.84 0.427

Grid Best 0.041 0.180 0.037 0.018 57.34 0.421
CV 0.059 0.197 0.041 0.021 64.72 0.430

Bounded M1 Sample Best 0.016 0.155 0.019 0.010 39.49 0.478
CV 0.022 0.160 0.022 0.013 41.00 0.494

Grid Best 0.037 0.193 0.036 0.021 44.14 0.478
CV 0.061 0.212 0.047 0.037 38.34 0.489

M2 Sample Best 0.030 0.162 0.022 0.015 48.90 0.460
CV 0.036 0.164 0.031 0.022 37.67 0.464

Grid Best 0.087 0.202 0.040 0.049 53.27 0.473
CV 0.105 0.228 0.086 0.083 20.55 0.471

M3 Sample Best 0.029 0.171 0.020 0.015 48.81 0.485
CV 0.039 0.174 0.029 0.022 43.49 0.492

Grid Best 0.076 0.205 0.036 0.045 52.75 0.490
CV 0.107 0.240 0.076 0.073 31.97 0.492

M4 Sample Best 0.016 0.163 0.019 0.009 39.27 0.479
CV 0.025 0.169 0.025 0.015 37.49 0.479

Grid Best 0.039 0.193 0.034 0.023 41.60 0.484
CV 0.072 0.230 0.062 0.052 27.74 0.483

Note: Simulation standard deviations of γ̂ for all cases are between 0.005 and 0.007.
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Table 8. Simulated MISE (21) and IMP (22) when the external dataset contains both X and Z, with S = 200 under γ = 0.5, n/N ≈
50%.

Estimator

Covariate Model Test data b, l μ̂1 μ̂E1
1 μ̂E2

1 μ̂E3
1 IMP % Mean of γ̂

Normal M1 Sample Best 0.027 0.061 0.032 0.019 29.74 0.430
CV 0.034 0.061 0.033 0.022 36.98 0.422

Grid Best 0.015 0.041 0.015 0.008 47.14 0.423
CV 0.018 0.049 0.018 0.010 45.47 0.417

M2 Sample Best 0.043 0.060 0.033 0.027 36.46 0.353
CV 0.044 0.062 0.035 0.030 33.60 0.360

Grid Best 0.023 0.053 0.022 0.016 27.23 0.367
CV 0.024 0.052 0.022 0.016 31.83 0.353

M3 Sample Best 0.043 0.068 0.031 0.029 32.86 0.417
CV 0.042 0.067 0.030 0.029 30.68 0.424

Grid Best 0.022 0.058 0.018 0.015 30.01 0.416
CV 0.023 0.059 0.019 0.017 27.17 0.417

M4 Sample Best 0.033 0.062 0.034 0.022 34.75 0.413
CV 0.039 0.064 0.033 0.023 40.31 0.414

Grid Best 0.017 0.046 0.017 0.010 42.46 0.409
CV 0.020 0.056 0.018 0.011 44.86 0.421

Bounded M1 Sample Best 0.006 0.028 0.007 0.006 8.96 0.481
CV 0.007 0.029 0.008 0.006 13.22 0.482

Grid Best 0.018 0.047 0.016 0.017 13.08 0.482
CV 0.023 0.054 0.023 0.021 8.56 0.478

M2 Sample Best 0.008 0.033 0.008 0.006 20.59 0.465
CV 0.015 0.040 0.017 0.013 14.82 0.465

Grid Best 0.023 0.059 0.021 0.020 12.38 0.460
CV 0.045 0.081 0.050 0.048 -6.84 0.473

M3 Sample Best 0.008 0.037 0.008 0.006 16.16 0.493
CV 0.010 0.040 0.012 0.009 2.05 0.497

Grid Best 0.022 0.060 0.018 0.020 17.75 0.495
CV 0.033 0.078 0.041 0.040 -21.18 0.498

M4 Sample Best 0.007 0.032 0.007 0.005 21.96 0.476
CV 0.008 0.032 0.008 0.006 21.82 0.489

Grid Best 0.019 0.052 0.016 0.019 14.56 0.481
CV 0.023 0.059 0.022 0.023 2.61 0.485

Note: Simulation standard deviations of γ̂ for all cases are between 0.004 and 0.006.

Table 9. Simulated MISE (21) and IMP (22) when the external dataset contains only normally distributed (X1, X2), with S = 200.

Estimator

Test data γ n/N b, l μ̂1 μ̂C1
1 μ̂C2

1 μ̂C3
1 IMP % Mean of γ̂

Sample 0 13% Best 0.090 0.046 0.054 0.051 49.496 −0.006
CV 0.080 0.056 0.063 0.062 29.115 0.007

50% Best 0.027 0.020 0.023 0.020 25.701 −0.006
CV 0.031 0.025 0.027 0.026 20.040 −0.008

0.5 13% Best 0.085 0.198 0.067 0.055 35.178 0.421
CV 0.070 0.190 0.072 0.062 11.429 0.406

50% Best 0.025 0.049 0.025 0.021 17.000 0.389
CV 0.031 0.052 0.031 0.026 15.798 0.391

Note: Simulation standard deviations of γ̂ for all cases are between 0.004 and 0.006.

The results are shown in Table 9. Compared with results in Tables 1–4 for the case of q = 1, the MISEs in this
case are larger due to the fact of having more covariates (q = 2). But the relative performances of estimators are the
same as those shown in Tables 1–4.

6. Discussion

Curse of dimensionality is a well-known problem for nonparametric methods. Thus, the proposed method in
Section 2 is intended for low dimensional covariate U , i.e., p is small. If p is not small, then we should reduce
the dimension of U prior to applying the CK, or any kernel methods. For example, consider a single index model
assumption (K.-C. Li, 1991), i.e., μ1(U) in (1) is assumed to be

μ1(U) = μ1(η
�U), (23)

where η is an unknown p-dimensional vector. The well-known SIR technique (K.-C. Li, 1991) can be applied to
obtain a consistent and asymptotically normal estimator η̂ of η in (23). Once η is replaced by η̂, the kernel method
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can be applied withU replaced by the one-dimensional ‘covariate’ η̂�U . We can also apply other dimension reduc-
tion techniques developed under assumptions weaker than (23) (Cook &Weisberg, 1991; B. Li & Wang, 2007; Ma
& Zhu, 2012; Y. Shao et al., 2007; Xia et al., 2002).

We turn to the dimension of X in the external dataset. When the dimension of X is high, we may consider the
following approach. Instead of using constraint (15), we use component-wise constraints

n∑
i=1

{μi − ĥ(k)1 (X
(k)
i )}gk(X(k)i )� = 0, k = 1, . . . , q, (24)

where X(k)i is the kth component of Xi, gk(X
(k)) = (1,X(k))�, and ĥ(k)1 (X

(k)
i ) is an estimator of h(k)1 (X

(k)) = E(Y |
X(k),D = 1) using methods described in Section 2. More constraints are involved in (24), but estimation only
involves one dimensional X(k), k = 1, . . . , q.

The kernel κ we adopted in (2) and (16) is the second-order kernel so that the convergence rate of μ̂E
1(u)− μ1(u)

is n−2/(4+p). An mth-order kernel with m>2 as defined by Bierens (1987) may be used to achieve conver-
gence rate n−m/(2m+p). Alternatively, we may apply other nonparametric smoothing techniques such as the local
polynomial (Fan et al., 1997) to achieve convergence rate n−m/(2m+p) withm ≥ 2.

Our results can be extended to the scenarios where several external datasets are available. Since each external
source may provide different covariate variables, we may need to apply component-wise constraints (24) by esti-
mating ĥ(k)1 via combining all the external sources that collects covariate X(k). If populations of external datasets are
different, then we may have to apply a combination of the methods described in Section 2.
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Appendix

Proof of Theorem 4.1.: Let μ̃1(u) = p̂(u)μ̂1(u)+ {1 − p̂(u)}μ̂0(u), where μ̂1(u) =∑n
i=1 κb(u − U i)Yi/

∑n
i=1 κb(u − U i),

μ̂0(u) =∑N
i=n+1 κb(u − U i)Ỹi/

∑N
i=n+1 κb(u − U i), and p̂(u) =∑n

i=1 κb(u − U i)/
∑N

i=1 κb(u − U i). Under (B3)–(B4),
Theorem 2 in Nadaraya (1964) shows that p̂(u) converges to P(D = 1 |U = u) in probability. Under (B1)–(B4),

√
nbp{μ̂1(u)−

μ1(u)} d−→ N(B1(u),V1(u)), B1(u) = c1/2A1(u), V1(u) = σ 21 (u)
f1(u)

∫
κ(v)2 dv, and

√
n/(N − n)

√
(N − n)bp{μ̂0(u)− μ1(u)} d−→

N(B0(u),V0(u)), B0(u) = c1/2A0(u), V0(u) = σ 20 (u)
af0(u)

∫
κ(v)2 dv. Then (17) holds for μ̃1(u), by Slutsky’s theorem, the indepen-

dence between μ̂1 and μ̂0, and the definition of a. The desired result (17) follows from the fact that |μ̂E2
1 (u)− μ̃1(u)| is bounded

by

{1 − p̂(u)}max
i>n

∣∣∣∣∣ f̂ (Yi |U = U i,D = 1)
f̂ (Yi |U = U i,D = 0)

− f (Yi |U = U i,D = 1)
f (Yi |U = U i,D = 0)

∣∣∣∣∣
∑N

i=n+1 |Yi|κb(u − U i)∑N
i=n+1 κb(u − U i)

, (A1)

which is op(1/
√
nbp) by result (18) under condition (B5). �

Proof of Theorem 4.2.: Write
√
nbp{μ̂C2

1 (u)− μ1(u)} = T1 + · · · + T6, (A2)

where T1 = n−1/2bp/2δb(u)�(In −P)B−1
l �lε/̂fb(u), T2 = n−1/2bp/2δb(u)�{μ1 −μ1(u)1n}/̂fb(u), T3 = n−1/2bp/2δb(u)�(B−1

l
�lμ1 − μ1)/̂fb(u), T4 =−n−1/2bp/2δb(u)�P(B−1

l �lμ1 −μ1)/̂fb(u), T5 = n−1/2bp/2δb(u)�P(̂h1 − h1)/̂fb(u), T6 = n−1/2bp/2

δb(u)�P(h1 − μ1)/̂fb(u), f̂b(u) =∑n
i=1 κb(u − U i)/n, δb(u) = (κb(u − U1), . . . , κb(u − Un))

�, In is the identity matrix of
order n, 1n is the n-vector with all components being 1, Bl is the n × n diagonal matrix whose ith diagonal element is f̂l(U i),
�l is the n × nmatrix whose (i, j)th entry is κl(U i − U j)/n, ε = (ε1, . . . , εn)� with εi = Yi − μ1(U i), h1 is the n-dimensional
vector whose ith component is h1(Xi), P = G(G�G)−1G�, and G, ĥ1, and μ1 are defined in Section 2.

We first show that T1 in (A2) is asymptotically normal with mean 0 and variance Vr(u) defined in Theorem 4.2. Consider a
further decomposition T1 = √

nV + T11 + T12 + T13, where

V = 1
n2

n∑
j=1

n∑
i=1

S(U i, εi,U j, εj)

is a V-statistic with

S(U i, εi,U j, εj) = bp/2

2f1(u)

{
κb(u − U i)κl(U i − U j)εj

f1(U i)
+ κb(u − U j)κl(U j − U i)εi

f1(U j)

}
,

T11 = bp/2

n3/2

n∑
i=1

κb(u − U i)κl(0)εi
f1(u)f1(U i)

,

T12 = bp/2

n3/2

n∑
j=1

n∑
i=1

κb(u − U i)κl(U i − U j)

f1(u)f1(U i)

{
f1(u)f1(U i)

f̂b(u)̂fl(U i)
− 1
}
εj,
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and T13 = −n−1/2bp/2δb(u)�PB−1
l �lε/̂fb(u). Note that

S1(U1, ε1) = E{S(U1, ε1,U2, ε2) | U1, ε1} = bp/2

2f1(u)

{∫
κl(u2 − U1)κb(u − u2) du2

}
ε1

having variance

Var{S1(U1, ε1)} = bp/2

4f 21 (u)

∫
f1(u1)σ 2

1 (u1)
{∫

κl(u2 − u1)κb(u − u2) du2
}2

du1

= bp/2

4f 21 (u)

∫
f1(u1)σ 2

1 (u1)
{∫

κl(v)κb(u − u1 − lν) dν
}2

du1

= 1
4f 21 (u)

∫
f1(u − bw)σ 2

1 (u − bw)
{∫

κ(v)κ
(
w − ν

l
b

)
dν
}2

dw,

where σ 2
1 (·) is given in condition (C2), the second and third equalities follow from changing variables u2 − u1 = lν and u −

u1 = bw, respectively. From the continuity of f1(·) and σ 2
1 (·), Var{S1(u1, ε1)} converges to Vr(u). Therefore, by the theory for

asymptotic normality of V-statistics (e.g., Theorem 3.16 in J. Shao, 2003),
√
nV d−→ N(0,Vr(u)).

Conditioned on U1, . . . ,Un, T11 has mean 0 and variance

Var(T11 |U1, . . . ,Un) = bp

4f 21 (u)n3

n∑
i=1

κb(u − U i)
2κl(0)2σ 2

1 (U i)

f1(U i)

≤ supu∈U κ(u)3

4f 21 (u)n3b2p

n∑
i=1

κb(u − U i)σ
2
1 (U i)

f1(U i)
= op(1).

This proves that T11 = op(1). Note that E(T12 | U1, . . . ,Un) = 0 and Var(T12 | U1, . . . ,Un) is bounded by

max

{
1

f 21 (u)
,

1
f̂ 2b (u)

}
max

i=1,...,n

∣∣∣∣ f1(U i)

f̂l(U i)
− 1
∣∣∣∣2 Var(√nV + T11 |U1, . . . ,Un).

Therefore, under the assumed condition that f1 is bounded away from zero, Lemma 3 in Dai and Shao (2023) implies T12 =
op(1). Note that

T13 = bp/2

n1/2

n∑
j=1

Wj(u)εj, Wj(u) = 1
n

n∑
i=1

κb(u − U i)g(Xi)
�

f̂b(u)
(G�G)−1

n∑
i=1

κl(U i − U j)g(Xi)

f̂l(U i)
.

Conditioned on U1, . . . ,Un, T13 has mean 0 and variance

Var(T13 | U1, . . . ,Un) = bp

n

n∑
j=1

W2
j (u)σ

2
1 (U j) = Op(bp) = op(1),

because, under the assumed condition that f1 is bounded away from zero, Lemma 3 in Dai and Shao (2023) implies
maxj=1,...,n |Wj(u)− g(u)��−1

g g(Xj)| = op(1). Thus, T13 = op(1). Consequently, T1 has the same asymptotic distribution as√
nV , the claimed result.
From Lemma 4 in Dai and Shao (2023) and (C4), T2 = √

cA1(u){1 + op(1)}. Note that

T3 =
√
nbpl2

n̂fb(u)

n∑
j=1

κb(u − U j)

[
1

nl2̂fb(U j)

n∑
i=1

κl(u − U i){μ1(U i)− μ1(U j)}
]

=
⎧⎨⎩

√
cr2

n̂fb(u)

n∑
j=1

κb(u − U j)A1(U j)

⎫⎬⎭ {1 + op(1)} = √
cr2A1(u){1 + op(1)},

where the second equality follows from (A4) and Lemmas 3–4 in Dai and Shao (2023), and the last equality follows from
Lemma 2 in Dai and Shao (2023) and continuity of A1(·). Also,

−n1/2T4

bp/2
= 1

n

n∑
i=1

κb(u − U i)g(Xi)
�

f̂b(u)
(G�G)−1

n∑
j=1

g(Xj)

n̂fb(U j)

n∑
i=1

κl(u − U i){μ1(U i)− μ1(U j)}

=
⎧⎨⎩g(x)��−1

g
1
n

n∑
j=1

g(Xj)

n̂fb(U j)

n∑
i=1

κl(u − U i){μ1(U i)− μ1(U j)}
⎫⎬⎭ {1 + op(1)}

=
⎧⎨⎩g(x)��−1

g
l2/p

n

n∑
j=1

g(Xj)A1(U j)

⎫⎬⎭ {1 + op(1)}

= √
cr2g(x)��−1

g E{g(X)A1(U)}{1 + op(1)},
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where the first equality follows from Lemma 3 in Dai and Shao (2023) and the law of large numbers, the second equality follows
from Lemma 4 in Dai and Shao (2023), and the last equality follows from the law of large numbers. Similarly,

n1/2T5

bp/2
= 1

n

n∑
i=1

κb(u − U i)g(Xi)
�

f̂b(u)
(G�G)−1

n∑
i=1

g(Xi){̂h1(Xi)− h1(Xi)}

=
[
g(x)��−1

g
1
n

n∑
i=1

g(Xi){̂h1(Xi)− h1(Xi)}
]

{1 + op(1)}

≤ {1 + op(1)}Op(1) max
j=1,...,n

|̂h1(Xj)− h1(Xj)|,

where the second equality follows from Lemma 3 in Dai and Shao (2023). Under (B1)–(B5) with U and p replaced by X and q,
and (C5), Lemma 8.10 in Newey and McFadden (1994) implies that

max |̂h1(Xi)− h1(X1)| = Op(
√
log(n)n−2/(q+4)), (A3)

which is op(1/
√
nbp) = op(n−2/(p+4)) and, hence, T5 = op(1). From Lemma 3 in Dai and Shao (2023) and the Central Limit

Theorem,

T6 = bp/2

n1/2

n∑
i=1

κb(u − U i)g(Xi)
�

f̂b(u)
(G�G)−1

n∑
i=1

g(Xi){h1(Xi)− μ1(U i)} = Op(bp/2) = op(1).

Combining these results, we obtain that T2 + · · · + T6 = Br(u)+ op(1). This completes the proof. �

Proof of Theorem 4.3.: Define

ω̂t1 = 1
N

N∑
i=1

Riκ̌b(u − U i) etYi , ω̂t2 = 1
N

N∑
i=1
(1 − Ri)κ̌b(u − U i)Yi e−tYi ,

ω̂t3 = 1
N

N∑
i=1

Riκ̌b(u − U i), ω̂t4 = 1
N

N∑
i=1
(1 − Ri)κ̌b(u − U i),

ω̂t5 = 1
N

N∑
i=1

Riκ̌b(u − U i)Yi etYi , ω̂t6 = 1
N

N∑
i=1
(1 − Ri)κ̌b(u − U i)Y2

i e
−tYi ,

ω̂t7 = 1
N

N∑
i=1

Riκ̌b(u − U i)Y2
i e

tYi , ω̂t8 = 1
N

N∑
i=1
(1 − Ri)κ̌b(u − U i)Y3

i e
−tYi .

Then, ĥ(u, t) = ω̂t1ω̂t2/ω̂t3ω̂t4,∇t̂h(u, t) = (ω̂t2ω̂t5 − ω̂t1ω̂t6)/ω̂t3ω̂t4, and∇2
t ĥ(u, t) = (ω̂t1ω̂t8 − 2ω̂t5ω̂t6 + ω̂t2ω̂t7)/ω̂t3ω̂t4.

Let L(t) = E[R{Y − h(U , t)}2], L̂n(t) = N−1∑N
i=1 Ri{Yi − ĥ(U i, t)}2, and Ln(t) = N−1∑N

i=1 Ri{Yi − h(U i, t)}2. Taking
derivatives with respect to t, we obtain

∇t L̂n(t) = 1
N

N∑
i=1

−2Ri{Yi − ĥ(U i, t)}∇t̂h(U i, t) = 1
N

N∑
i=1

ψ{Yi,Ri, ω̂t(U i)},

∇tLn(t) = 1
N

N∑
i=1

−2Ri{Yi − h(U i, t)}∇th(U i, t) = 1
N

N∑
i=1

ψ{Yi,Ri,ωt(U i)},

and
∇tL(t) = −2E[R{Y − h(u, t)}∇th(u, t)] = E[ψ{Y ,R,ωt(U)}],

where ψ is given in (D5). Note that ∇tL(γ ) = 0 and ∇2
t L(γ ) = 2E[{∇th(U , γ )}2R] = νγ ≥ 0. We establish the asymptotic

normality of γ̂ in the following four steps.
Step 1: Since γ is the unique minimizer of L(t), from Theorem 2.1 in Newey and McFadden (1994), it suffices to prove that

supt∈� |∇t L̂n(t)− ∇tL(t)| p−→ 0. Note that

sup
t∈�

|∇t L̂n(t)− ∇tL(t)| ≤ sup
t∈�

|∇tLn(t)− ∇tL(t)| + sup
t∈�

|∇t L̂n(t)− ∇tLn(t)|

≤ sup
t∈�

|∇tLn(t)− ∇tL(t)|

+ 2
n

n∑
i=1

Ri|Yi|
{

sup
t∈�,x∈U

|∇t̂h(u, t)− ∇th(u, t)|

+ sup
t∈�,u∈U

|̂h(u, t)∇t̂h(u, t)− h(u, t)∇th(u, t)|
}

From (D3), |2R{Y − h(u, t)}∇th(U , t)| is bounded by c|Y| for a constant c andhence Lemma2.4 inNewey andMcFadden (1994)
implies that supt∈� |∇tLn(t)− ∇tL(t)| = op(1). Based on Lemma B.3 in Newey (1994), conditions (D1)–(D4) imply that
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supu∈U |ω̂t(u)− ωt(u)| → 0 for all t ∈ �. As a result, by a similar argument of the proof of Lemma B.3 in Newey (1994), we

obtain that supt∈�,u∈U |ω̂t(u)− ωt(u)| p−→ 0. Since ωt is bounded away from zero and h(·, t) and ∇th(·, t) are Lipschitz con-
tinuous functions with respect to ωt , supt∈�,u∈U |̂h(u, t)− h(u, t)| p−→ 0 and supt∈�,u∈U |∇t̂h(u, t)− ∇th(u, t)| p−→ 0. These

results together with the previous inequality implies that γ̂
p−→ γ .

Step 2: Conditions (D1)–(D5) ensure that Lemma 8.11 in Newey and McFadden (1994) holds and hence
√
N∇t L̂n(γ )

d−→
N(0, σ 2

L ) with σ
2
L = Var{m(Y ,R,U ,ωγ )+ τ(Y ,R,U , γ )}.

Step 3: Note that ∇2
t Ln(t) = N−1∑N

i=1 −2Ri{Yi − h(U i, t)}∇2
t h(U i, t)+ 2Ri{∇th(U i, t)}2 and sup|t−γ |≤|γ̂−γ | |∇2

t L̂n(t)−
∇2
t L(γ )| ≤ A1 + A2 + A3, where A1 = |∇2

t Ln(γ )− ∇2
t L(γ )|, A2 = supt∈� |∇2

t L̂n(t)− ∇2
t Ln(t)|, and the last term A3 =

sup|t−γ |≤|γ̂−γ | |∇2
t Ln(t)− ∇2

t Ln(γ )|. The law of large numbers guarantees thatA1 = op(1). A similar argument in Step 1 shows
that A2 = op(1). For A3, we have

|∇2
t Ln(t)− ∇2

t Ln(γ )| ≤ 2
N

N∑
i=1

|{∇th(U i, t)}2 − {∇th(U i, γ )}2|

+ 2
N

N∑
i=1

|Yi||∇2
t h(U i, t)− ∇2

t h(U i, γ )|

+ 2
N

N∑
i=1

|h(U i, t)∇2
t h(U i, t)− h(U i, γ )∇2

t h(U i, γ )|.

Under (D3), h(·, t),∇h(·, t), and∇h(·, t) converge uniformly for all x as t → γ and, thus, the A3 = op(1) because γ̂
p−→ γ . This

shows that sup|t−γ |≤|γ̂−γ | |∇2
t L̂n(t)− ∇2

t L(γ )|
p−→ 0.

Step 4:ByTaylor’s expansion, L̂n(γ̂ )− L̂n(γ ) = 0 − L̂n(γ ) = ∇t L̂n(ξ)(γ̂ − γ ) for some ξ ∈ (γ , γ̂ ). From the results in Steps

1-3,
√
N(γ̂ − γ )

d−→ N(0, [2E{R∇γ h(U , γ )}2]−1σ 2
L ). This completes the proof of (20). �

Proof of Corollary 4.1.: (i) From Theorem 4.3, (20) shows that γ̂ − γ = Op(1/
√
N). Furthermore, Lemma 8.10 in Newey

and McFadden (1994) shows that

max
i

∣∣∣∣∣e
−γYi∑n

j=1 eγYj κ̌b̌(U i − U j)∑n
j=1 κ̌b̌(U i − U j)

− f (Yi |U = U i,D = 1)
f (Yi |U = U i,D = 0)

∣∣∣∣∣ = Op

(√
logN

Nb̌p
+ b̌d

)
, (A4)

which is op(N−2/(p+4)) = op(1)/
√
nbp under the assumed condition d > max{(p + 4)/2, p} and Nb̌2d → 0. Since γ̂ −

γ converges faster than (A4), (18) holds. As a result, (17) holds with μE2
1 (u) replaced by μE3

1 (u) under (B1)–(B4) and
(D1)–(D5).

(ii) Under (D1)–(D5) with U replaced by X and p replaced by q, Lemma 8.10 in Newey and McFadden (1994) implies that

sup
x∈X

|̂h(x, γ )− h1(x)| = Op

(
(logN)1/2(Nb̌q)−1/2 + b̌d

)
= op(n−2/(p+4)).

From the asymptotic normality of γ̂ , γ̂ − γ =Op(1/
√
N), which converges to 0 faster than supx∈X |̂h(x, γ )− h1(x)| → 0.

Hence (A3) holds while ĥ1 is estimated by ĥ(X, γ̂ ). Then, the rest of proof of the second claims follows the argument in
the proof of Theorem 4.2.

�
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