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ABSTRACT
We propose a multiply robust estimator for the Average Treatment Effect Among the Treated
(ATT). The proposed estimation procedure can simultaneously accommodate multiple working
models for both the propensity score and the conditional mean of the counterfactual outcome
given covariates. In addition, it can explicitly balance a set of user-specified moments of the
covariate distributions between the treatment groups. The resulting estimator is consistent if
any working model is correctly specified. With the data generating process typically unknown
for observational studies, the proposed method provides substantial robustness against possi-
blemodelmisspecifications compared to existing estimators of the ATT. Simulation results show
the excellent finite sample performance of the proposed estimator.
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1. Introduction

In causal inference, since we only observe what happens to an individual under the treatment condition they
actually receive, it is generally impossible to estimate the causal effects for individuals. The causal effects one typi-
cally considers involve summary statistics of the individual effects across populations or sub-populations of interest.
Two widely considered causal summaries are the average treatment effect (ATE) and the average treatment effect
among the treated (ATT). The ATE of a treatment relative to a control is the comparison of the mean outcome
which had the entire population been treated versus had the entire population been the control. The ATT is the
comparison of the mean outcome under treatment among those who are treated with the mean outcome which
had the treated subjects received control instead. A study can estimate both ATE and ATT, but one or the other
may be better suited for a particular situation. The ATEmay be of more interest if each treatment can potentially be
offered to every member of the population. Conversely, if the research question focuses on the effectiveness of an
alternative treatment were it to replace the standard treatment, and then the ATT may be of more interest because
it measures the relative effectiveness of the two treatment options on the population that is receiving the standard
treatment.

There has been a large literature on estimating the ATE and the ATT for observational studies, where a typical
consideration is confounding in the sense that individual characteristics are related to both the treatment assign-
ment and the outcome of interest. Propensity score (PS) basedmethods, where the PS is the probability of receiving
a treatment given covariates (Rosenbaum & Rubin, 1983), are commonly used to deal with confounding and to
achieve balance of covariate distributions between different treatment groups. Such methods include PS matching
(e.g., Abadie & Imbens, 2006; Rosenbaum& Rubin, 1985) and weighting (e.g., Hirano et al., 2003). Refer to Imbens
and Rubin (2015) andHernán and Robins (2018) formore details. Parametricmodelling of the PS is common, espe-
cially when the dimension of covariates is moderate to large. Misspecification of the PS model is usually a major
concern as it may lead to substantial estimation bias.

Tomitigate the impact of misspecification of the PSmodel, substantial interests have been given to doubly robust
estimators, which involve models for both the PS and the conditional mean of the counterfactual outcome, or
outcome regression (OR), and remain consistent if either model is correctly specified. The original doubly robust
estimator was constructed through augmented inverse probability weighting (AIPW) in the missing data context
(Robins et al., 1994). Since then, a large number of doubly robust estimators have been proposed in both missing
data and causal inference settings (e.g., Bang & Robins, 2005; Cao et al., 2009; Han, 2012; Kang & Schafer, 2007;
Qin et al., 2008; Qin & Zhang, 2007; Rotnitzky et al., 2012; Tan, 2010; van der Laan & Gruber, 2010). When both
the PS model and the OR model are wrong, these estimators are in general no longer consistent.
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As an improvement over double robustness, in the missing data context, Han andWang (2013) proposed a mul-
tiply robust estimation procedure that can simultaneously accommodate multiple working models for both PS and
OR, and the resulting estimators are consistent if any of thesemodels is correctly specified. Since the data generating
process for observational studies is typically unknown, it is common that several candidate models all seem reason-
able yet none rules out the possibility of others, especially when the dimension of covariates is moderate to large. In
such a case, the multiply robust method in Han andWang (2013) provides a useful tool for data analysis with more
protection on estimation consistency. Such a method has attracted considerable interest in both missing data and
causal inference research (e.g., Chan & Yam, 2014; Chan et al., 2016; S. Chen & Haziza, 2017; Duan & Yin, 2017;
Han, 2014a, 2014b, 2016a, 2016b; Han et al., 2019; Li et al., 2020). Especially, Wang (2019) extended the multiply
robust method to the estimation of the ATE. It is worth pointing out that the term “ multiply robust” has also been
used by other authors in different settings with different meanings. For example, in Molina et al. (2017), it refers
to estimation consistency when various combinations of the components of a factorized likelihood are correctly
modelled, while in Wang and Tchetgen Tchetgen (2018) and Shi et al. (2020) it refers to estimation consistency
being achieved across the union of three different observed data models. We use “ multiply robust” to refer to the
property that estimation consistency is achieved if one of the multiple working models for the same quantity is
correctly specified.

Despite the success in dealing with missing data problems and in estimating the ATE, multiply robust estimators
have not been developed for estimating the ATT. In this paper, we construct such a desirable estimator for ATT. In
addition to being multiply robust, the proposed estimator can easily achieve certain level of balancing of covariate
distributions between treatment groups. Covariate balancing is a highly desired property for causal effect estima-
tion. For the estimation of ATT, Hainmueller (2012) proposed the entropy balancing (EB) method by imposing a
set of balance constraints so that certain moments of covariate distributions for different treatment groups match
exactly. Zhao and Percival (2017) found that EB implicitly fits a logistic linear regression model for the PS and a
linear regressionmodel for the OR, and when either model is correctly specified the EB estimator is consistent. The
estimator we propose preserves the same balance of covariate distributions as EB, and in addition it accounts for
multiple models for PS and OR simultaneously so that consistency of the resulting estimator is guaranteed if any
one model is correctly specified.

The rest of the paper is organized as follows. Section 2 gives the setup and a brief review of some existingmethods.
Section 3 presents our proposedmultiply robust estimator for theATT. Simulation studies are provided in Section 4,
followed by some discussion in Section 5.

2. Setup and some existingmethods

Let A denote the treatment indicator, where A = 1 for the treatment of interest and A = 0 for control. Let Y1 and
Y0 denote the counterfactual outcomes under treatment and under control, respectively. Let Y denote the observed
outcome in the data, for which we make the consistency assumption that Y = AY1 + (1 − A)Y0. Let X denote the
pre-treatment covariates in the dataset, including potential confounders. The potential full data is (A,Y1,Y0,X)

whereas the observed data is (A,Y ,X). The causal effect we are interested in is the ATT τ = E(Y1 − Y0 | A = 1),
which is also τ1,1 − τ1,0, where τa,b is the mean outcome for subjects who receive treatment a had they instead
received treatment b, i.e., τa,b = E[Yb|A = a].

To ensure the identifiability of τ from the observed data, wemake some assumptions following themain literature
(e.g., Rosenbaum & Rubin, 1983). First, we assume that all potential confounders are included in X, or in other
words, the treatment assignment process and the counterfactual outcome are independent given all the covariates
measured. Second, we assume that every subject has a positive probability of being assigned to either the treatment
or the control group. These two assumptions are formalized as follows.

Assumption 2.1 (no unmeasured confounders assumption): A ⊥ (Y0,Y1) | X.
Assumption 2.2 (strict positivity): 0 < σ1 < P(A = 1 | X) < σ2 < 1 with probability one for some positive con-
stants σ1 and σ2.

Let π(X) = P(A = 1 | X) denote the PS for treatment assignment. In the following we give a brief review of some
widely used estimators of the ATT. Note that τ1,1 = E(Y1 | A = 1) can be consistently estimated by the sample
average τ̂1,1 = (

∑n
i=1 AiYi)/(

∑n
i=1 Ai) over the treatment group. Therefore, the estimation of the ATT reduces to

the estimation of τ1,0 = E(Y0 | A = 1), where the counterfactual outcome Y0 is not observable for individuals in
the A = 1 group.

One straightforward way to estimate τ1,0 is to imputeY0 for those individuals in theA = 1 group. Suppose d0(γ )

is a parametric regression model for E(Y0 | X) that is parametrized by γ . Because E(Y0 | X) = E(Y0 | X,A = 0)
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from Assumption 1 and Y0 is fully observed in the A = 0 group, γ can be estimated by γ̂ based on individuals in
the control group alone. Also fromAssumption 1, we have E(Y0 | X) = E(Y0 | X,A = 1), and thus the unobserved
Y0 in the treatment group can be imputed by d0(γ̂ ). Therefore, an outcome regression estimator of τ1,0 is τ̂1,0reg =∑n

i=1 Aid0i(γ̂ )/(
∑n

i=1 Ai).
A widely used alternative method is inverse probability weighting (IPW). From Assumption 1, since

f (Y1,Y0,X | A = 1) = π(X)f (Y1,Y0,X)

P(A = 1)
and f (Y1,Y0,X | A = 0) = {1 − π(X)}f (Y1,Y0,X)

P(A = 0)
,

where f (·) is a generic notation for a probability density function, we have

f (Y1,Y0,X | A = 1) = π(X)

1 − π(X)

P(A = 0)
P(A = 1)

f (Y1,Y0,X | A = 0). (1)

Therefore, an estimator of τ1,0 = E(Y0 | A = 1) can be constructed by properly weighting the observed Y0 in the
A = 0 group, and this leads to an IPW estimator

τ̂1,0ipw = 1∑n
s=1 (1 − As)

∑
{i:Ai=0}

π̂(Xi)

1 − π̂(Xi)

∑n
s=1 (1 − As) /n∑n

s=1 As/n
Yi = 1∑n

s=1 As

∑
{i:Ai=0}

π̂(Xi)

1 − π̂(Xi)
Yi, (2)

where π̂(X) is the estimated value of π(X).
Consistency of τ̂1,0reg and τ̂1,0ipw requires correct modelling of E(Y0 | X) and π(X), respectively. To improve the

robustness against possible model misspecifications, the AIPW method combines the models for E(Y0 | X) and
π(X) so that estimation consistency is guaranteed if either model is correctly specified but not necessarily both.
The AIPW estimator for τ1,0 is given as

τ̂1,0aipw = τ̂1,0reg + 1∑n
s=1 As

∑
{i:Ai=0}

π̂(Xi)

1 − π̂(Xi)
{Yi − d0i(γ̂ )}.

To achieve certain covariate balancing, the EBmethod (Hainmueller, 2012) considers matching covariate moments
between the treatment and the control groups. Specifically, let wi be a set of positive weights assigned to the control
subjects {i : Ai = 0}. The EB method imposes covariate balancing constraints

wi > 0,
∑

{i:Ai=0}
wi = 1,

∑
{i:Ai=0}

wih(Xi) = 1∑n
s=1 As

∑
{i:Ai=1}

h(Xi) (3)

on wi, where h(X) contains some user-specified moments of X. These constraints ensure that certain moments of
X exactly match between the two groups. The EB estimator of τ1,0 is τ̂1,0eb = ∑

{i:Ai=0} ŵeb,iYi where ŵeb,i mini-
mizes

∑
{i:Ai=0} wi logwi subject to the constraints in (3). Although no parametric models are explicitly fitted by

the EB method, Zhao and Percival (2017) showed that, implicitly, the EB method fits linear regression models for
logit{π(X)} and E(Y0 | X) with components of h(X) as regressors. The EB estimator τ̂1,0eb is consistent if either
model is correctly specified, and thus is doubly robust.

3. The proposedmultiply robust estimator for ATT

Our goal is to construct an easy-to-implement estimator of the ATT that is multiply robust and achieves explicit
covariate balancing as the EB estimator. LetP = {π(j)(α(j)) : j = 1, . . . , J} denote a set ofmultiple parametricmod-
els forπ(X) andD0 = {d(k)

0 (γ (k)) : k = 1, . . . ,K} a set ofmultiple parametricmodels for E(Y0 | X), where α(j) and
γ (k) are the corresponding parameters. α(j) is typically estimated by α̂

(j) that maximizes the binomial likelihood

n∏
i=1

{π(j)
i (α(j))}Ai{1 − π

(j)
i (α(j))}1−Ai , (4)

and γ (k) is typically estimated by γ̂
(k) based on individuals in the control group because E(Y0 | X) = E(Y0 | X,

A = 0) from Assumption 1 and Y0 is fully observed in the control group.
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From (1) it is easy to see that, for any function b(X), we have

E {b(X) | A = 1} = E
{

π(X)

1 − π(X)
b(X) | A = 0

}
P(A = 0)
P(A = 1)

. (5)

In particular, taking b(X) ≡ 1 gives

1 = E
{

π(X)

1 − π(X)
| A = 0

}
P(A = 0)
P(A = 1)

,

and thus

E {b(X) | A = 1} = E {b(X) | A = 1}E
{

π(X)

1 − π(X)
| A = 0

}
P(A = 0)
P(A = 1)

= E
{

π(X)

1 − π(X)
E {b(X) | A = 1} | A = 0

}
P(A = 0)
P(A = 1)

. (6)

Subtracting (6) from (5) leads to

E
{

π(X)

1 − π(X)
[b(X) − E{b(X) | A = 1}] | A = 0

}
= 0. (7)

Our method starts by constructing an empirical version of (7). Let wi be a set of positive weights assigned on the
control subjects with Ai = 0 such that

∑
{i:Ai=0} wi = 1, and then an empirical version of (7) is

∑
{i:Ai=0}

wi

{
b(Xi) − 1∑n

s=1 As

n∑
s=1

Asb(Xs)

}
= 0.

To achieve multiple robustness so that τ1,0 is consistently estimated when any one model is correctly specified, we
take b(X) to be 1/π(j)(α(j)), j = 1, . . . , J, and d(k)

0 (γ (k)), k = 1, . . . ,K, and consider the constraints on the wi as

wi > 0,
∑

{i:Ai=0}
wi = 1,

∑
{i:Ai=0}

wiĝ i(α̂, γ̂ ) = 0, (8)

where α̂ = (α̂
(1), . . . , α̂(J)

), γ̂ = (γ̂
(1), . . . , γ̂ (J)

) and

ĝ(α̂, γ̂ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
π(1)(α̂(1)

)
− 1∑n

s=1 As

∑n
s=1 As

1

π
(1)
s (α̂

(1)
)

...
1

π(J)(α̂(J)
)

− 1∑n
s=1 As

∑n
s=1 As

1

π
(J)
s (α̂

(J)
)

d(1)
0 (γ̂

(1)
) − 1∑n

s=1 As

∑n
s=1 Asd

(1)
0s (γ̂

(1)
)

...

d(K)
0 (γ̂

(K)
) − 1∑n

s=1 As

∑n
s=1 Asd

(K)
0s (γ̂

(K)
)

h(X) − 1∑n
s=1 As

∑n
s=1 Ash(Xs)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that here ĝ(α̂, γ̂ ) can also contain components based on taking b(X) to be h(X), a vector of user-specified
moments of X. This can be used to achieve certain degree of covariate balancing between the treatment and control
groups, similar to the EB method.

Subject to the constraints in (8), we consider the weights ŵmr,i on the subjects in the control group {i : Ai = 0}
that maximize the empirical likelihood

∏
{i:Ai=0} wi and propose to estimate τ1,0 by τ̂1,0mr = ∑

{i:Ai=0} ŵmr,iYi.
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Following the standard empirical likelihood technique (e.g., Qin & Lawless, 1994), we have

ŵmr,i = 1∑n
i=1(1 − Ai)

1
1 + ρ̂

�ĝ i(α̂, γ̂ )
, for i satisfying Ai = 0,

where ρ̂ solves ∑
{i:Ai=0}

ĝ i(α̂, γ̂ )

1 + ρ�ĝ i(α̂, γ̂ )
= 0. (9)

For implementation, directly solving (9) for ρ̂ is not the ideal way because, as pointed out in Han (2014a), (9) typi-
cally has multiple roots but only one of themmakes the ŵmr,i positive.We recommend calculating ρ̂ byminimizing
F(ρ) ≡ −∑

{i:Ai=0} log{1 + ρ�ĝ i(α̂, γ̂ )}, which is the negative antiderivative of the left-hand side of (9). As shown
in Han (2014a), this is a convex minimization that always has a unique minimizer when 0 is inside the convex hull
of {ĝ i(α̂, γ̂ ) : Ai = 0}, which indeed holds at least when n is large because of the moment equality (7) and (8)
being an empirical version of (7). The unique minimizer of F(ρ) is ρ̂ needed for calculating ŵmr,i and can be easily
found by a Newton-Raphson-type algorithm. Refer to J. Chen et al. (2002) and Han (2014a) for such an algorithm.

In the following we provide arguments and explanations for the multiple robustness of τ̂1,0mr. We do not include
detailed technical conditions andmathematical proofs for these arguments so that themain ideas are easier to follow.
To see the consistency of τ̂1,0mr when P contains a correctly specified model for π(X), say π(1)(α(1)) without loss
of generality, let

ϑ̂ = 1∑n
s=1 As

n∑
i=1

Ai
1

π
(1)
i (α̂

(1)
)

and define λ̂ in such a way that ρ̂1 = (λ̂1 + 1)/(ϑ̂ − 1) and ρ̂−1 = λ̂−1/(ϑ̂ − 1), where ρ̂1 and λ̂1 are the first
component of ρ̂ and λ̂, respectively, and ρ̂−1 and λ̂−1 are vectors of the rest components. Then some simple algebra
shows that

ŵmr,i = ϑ̂ − 1∑n
s=1 (1 − As)

π
(1)
i (α̂

(1)
)

1 − π
(1)
i (α̂

(1)
)

1

1 + λ̂
� π

(1)
i (α̂(1)

)

1−π
(1)
i (α̂(1)

)
ĝ i(α̂, γ̂ )

, for i satisfying Ai = 0

and (9) becomes an equation for λ̂

∑
{i:Ai=0}

π
(1)
i (α̂(1)

)

1−π
(1)
i (α̂(1)

)
ĝ i(α̂, γ̂ )

1 + λ̂
� π

(1)
i (α̂(1)

)

1−π
(1)
i (α̂(1)

)
ĝ i(α̂, γ̂ )

= 0.

From the Z-estimator theory (e.g., van der Vaart, 1998) and because of the moment equality (7), we must have
λ̂ = Op(n−1/2), which leads to

ŵmr,i = ϑ̂ − 1∑n
s=1 (1 − As)

π
(1)
i (α̂

(1)
)

1 − π
(1)
i (α̂

(1)
)
{1 + Op(n−1/2)}, for i satisfying Ai = 0.

In other words, when P contains a correctly specified model for π(X), this correct model is implicitly accounted
for by the empirical likelihood procedure to make ŵmr,i the form of the IPW weight as used in (2), and this leads
to the consistency of τ̂1,0mr:

τ̂1,0mr =
∑

{i:Ai=0}
ŵmr,iYi

p−→ E
[(

E
{

1
π(X)

| A = 1
}

− 1
)

π(X)

1 − π(X)
Y | A = 0

]

= E
[

π(X)

1 − π(X)
Y0 | A = 0

]
P (A = 0)
P (A = 1)

= E(Y0 | A = 1),

where the second last equality follows from

E
[
1 − π(X)

π(X)
| A = 1

]
= P (A = 0)

P (A = 1)

that can be shown by taking b(X) = {1 − π(X)}/π(X) in (5), and the last equality follows from (1).
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Adifference between the constraints (8) and those used byHan andWang (2013) andWang (2019) for estimating
ATE is that in (8) it is 1/π(j)(α(j)) to be balanced whereas in Han andWang (2013) andWang (2019) it is π(j)(α(j)).
The reason for this difference is that, for consistent estimation of ATT, the calibration weight ŵmr needs to implicitly
be of the form π(X)/{1 − π(X)} as in (2) whereas, for consistent estimation of ATE, the calibration weight needs
to implicitly be of the IPW form 1/π(X). From the above algebra it is seen that balancing 1/π(j)(α(j)) in (8) ensures
π(X)/{1 − π(X)} implicitly appear, whereas the algebra in Han and Wang (2013) shows that balancing π(j)(α(j))

ensures 1/π(X) implicitly appear. Thus, consistency of our estimator for ATT would not hold if in (8) 1/π(j)(α(j))

is replaced by π(j)(α(j)).
When D0 contains a correctly specified model for E(Y0 | X), say d(1)

0 (γ (1)) without loss of generality, the
consistency of τ̂1,0mr follows from

∑
{i:Ai=0}

ŵmr,iYi =
∑

{i:Ai=0}
ŵmr,i

{
Yi − d(1)

0i (γ̂
(1)

)
}

+ 1∑n
s=1 As

n∑
i=1

Aid
(1)
0i (γ̂

(1)
)

= 1∑n
s=1 (1 − As)

∑
{i:Ai=0}

Yi − d(1)
0i (γ̂

(1)
)

1 + ρ̂
�ĝ i(α̂, γ̂ )

+ E{E(Y0 | X) | A = 1} + op(1)

= E
{

Y0 − E(Y0 | X)

1 + ρ�∗ g∗(α∗, γ ∗)
| A = 0

}
+ E{E(Y0 | X,A = 1) | A = 1} + op(1)

= E
[
E

{
Y0 − E(Y0 | X,A = 0)
1 + ρ�∗ g∗(α∗, γ ∗)

| X,A = 0
}

| A = 0
]

+ E(Y0 | A = 1) + op(1)

= E(Y0 | A = 1) + op(1),

where ρ∗ and g∗(α∗, γ ∗) are the probability limits of ρ̂ and ĝ(α̂, γ̂ ), respectively.
In summary, we have the following result on the multiple robustness property for the proposed estimator of the

ATT.

Proposition: IfP contains a correctly specifiedmodel forπ(X) orD0 contains a correctly specifiedmodel for E{Y0|X},
then 1∑n

i=1 Ai

∑n
i=1 AiYi −

∑
{i:Ai=0} ŵiYi

p−→ E(Y1|A = 1) − E(Y0|A = 1) as n → ∞.

The proposed estimator τ̂1,0mr and the EB estimator τ̂1,0eb are both weighted averages of the observed out-
comes for the control group subjects, and both are calibration-type estimators originally considered in survey
sampling (Deville & Särndal, 1992) that were later extended to missing data analysis and causal inference (e.g.,
Chan & Yam, 2014; S. Chen &Haziza, 2017; Han &Wang, 2013; Kim, 2010; Kim & Park, 2010; Qin & Zhang, 2007;
Tan, 2010; Wu & Sitter, 2001; Zhang et al., 2022). Some of the constraints in (8) based on the h(X) component in
ĝ(α̂, γ̂ ) are actually the constraints (3) used by the EB method, and thus our proposed method achieves the same
degree of covariate balancing between the treatment and the control groups. The other constraints in (8) based on
parametric models are for multiple robustness purpose.

Note that the constraints in (8) are for estimating ATT and are determined by (7), which balance the control
group with the treatment group. This is different from estimating ATE where the constraints balance the control
group with the full sample or the treatment group with the full sample (e.g., Fan et al., 2023). Adding the latter type
of constraints into (8) would not work, since the weight matching control to treatment is different from the weight
matching control to the full sample.

Standard error of the proposed estimator is needed tomake inference, such as constructing confidence intervals.
Due to the presence of multiple models and the lack of knowledge of which one is correct, deriving the asymptotic
distribution of the proposed estimator as an approximation to the finite sample distributions is challenging. There-
fore, we recommend using bootstrap to calculate the standard error. The excellent performance of the bootstrap
method for multiply robust estimators inmissing data context has been demonstrated through comprehensive sim-
ulation studies (e.g., Han, 2014a, 2014b), and its effectiveness for the proposed estimator will be shown in the next
section.

4. Simulation studies

In this section we conduct simulation studies to evaluate the finite sample performance of the proposed multiply
robust estimator of the ATT. The simulation setting mimics that in Han and Wang (2013). The data are gen-
erated in the following way: X ∼ Uniform(−2.5, 2.5), Y0 | X ∼ N{d0(X), 4X2 + 2}, Y1 | X ∼ N{d1(X), 4X2 + 2}
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Table 1. Comparison of different estimators based on 1000 replications and n = 300. Each digit of the four-digit number inside an
estimator’s name, from left to right, indicates if π(1)(α(1)), π(2)(α(2)), d(1)

0 (γ (1)) and d(2)
0 (γ (2)) are used, respectively. The results

have been multiplied by 100.

π(1) π(2)

(d(1)
0 , d(1)

1 ) (d(2)
0 , d(2)

1 ) (d(1)
0 , d(1)

1 ) (d(2)
0 , d(2)

1 )

rbias rmse mae rbias rmse mae rbias rmse mae rbias rmse mae

IPW-1000 −6 99 60 −9 79 53 11 38 26 10 38 26
IPW-0100 69 93 64 −42 68 43 −1 44 28 −1 37 24
OR-0010 −8 57 37 −134 99 68 −2 35 23 −25 47 32
OR-0001 224 131 114 −7 51 34 −19 50 34 −2 36 24
AIPW-1010 −9 65 42 −16 80 54 −2 35 23 −34 51 39
AIPW-1001 −3 85 56 −8 65 41 34 53 38 −2 35 23
AIPW-0110 −9 62 40 −69 82 53 −2 35 23 −2 40 25
AIPW-0101 63 84 56 −8 61 39 −1 42 27 −2 35 24
MR-1000 −1 71 46 −10 76 50 14 40 27 12 39 26
MR-0100 51 77 52 −59 73 48 −1 49 32 −1 39 25
MR-0010 −8 57 37 −158 108 80 −2 35 23 −30 49 35
MR-0001 229 134 116 −6 52 34 21 47 32 −2 36 24
MR-1100 −24 76 49 −56 86 52 −3 39 26 −8 41 27
MR-1010 −10 65 42 −17 73 50 −1 35 23 −27 46 32
MR-1001 −1 73 50 −9 65 42 29 51 35 −2 35 23
MR-0110 −10 64 41 −68 80 52 −2 35 24 −2 38 24
MR-0101 60 79 53 −8 61 39 −2 40 26 −2 35 24
MR-0011 −13 83 51 −12 80 43 −2 35 24 −1 38 26
MR-1110 −9 65 42 −22 72 47 −2 36 24 −1 36 25
MR-1101 4 70 46 −9 65 42 −3 38 26 −2 35 24
MR-1011 −11 73 45 −10 73 44 −2 36 24 −2 36 24
MR-0111 −11 77 47 −10 78 48 −1 36 24 −2 35 24
MR-1111 −10 75 46 −10 75 46 −2 36 24 −2 35 24
EB-1 523 282 266 352 194 177 −317 321 311 −275 279 272
EB-2 −11 65 43 −19 71 46 −2 35 23 −31 49 36
MR-1 231 166 128 197 136 107 −318 323 313 −276 280 272
MR-2 −12 91 56 57 99 64 −1 34 23 −36 52 39

π(1) : π(X) = {1 + exp(0.8 + 0.5X − 0.3X2)}−1.
π(2) : π(X) = 1 − exp[− exp{0.5 + 0.5X − 0.3 exp(X)}].
(d(1)

0 , d(1)
1 ): {d0(X), d1(X)} = (1 + 2X + 3X2, 2 + 3X + 3X2).

(d(2)
0 , d(2)

1 ): {d0(X), d1(X)} = {1 + 2X + 3 exp(X), 2 + 3X + 3 exp(X)}.
rbias: relative bias, bias divided by the true value. rmse: root mean square error. mae: median absolute error. IPW: inverse probability weighting. OR: outcome
regression. AIPW: augmented inverse probability weighting. MR: multiply robust. EB: entropy balancing. EB-1: EB with h(X) = X . EB-2: EB with h(X) =
(X , X2). MR-1: MR with h(X) = X and no working models. MR-2: MR with h(X) = (X , X2) and no working models.

and A | X ∼ Bernoulli{π(X)}, where π(X) is either {1 + exp(0.8 + 0.5X − 0.3X2)}−1 or 1 − exp[− exp{0.5 +
0.5X − 0.3 exp(X)}] and {d0(X), d1(X)} is either (1 + 2X + 3X2, 2 + 3X + 3X2) or {1 + 2X + 3 exp(X), 2 + 3X +
3 exp(X)}. Therefore, we have in total four data generating processes. For each of them, we postulate two propensity
score models π(1)(α(1)) = {1 + exp(α(1)

1 + α
(1)
2 X + α

(1)
3 X2)}−1 and π(2)(α(2)) = 1 − exp[− exp{α(2)

1 + α
(2)
2 X +

α
(2)
3 exp(X)}] and two regression models for d0(X), d(1)

0 (γ (1)) = γ
(1)
1 + γ

(1)
2 X + γ

(1)
3 X2 and d(2)

0 (γ (2)) = γ
(2)
1 +

γ
(2)
2 X + γ

(2)
3 exp(X).

Tables 1 and 2 contain some simulation results summarized based on 1000 replications for n = 300 and
n = 800, respectively. To show the flexibility of the proposed procedure in providing a unified framework for
constructing estimators, both our proposed estimators based on each possible combination of models from
{π(1)(α(1)),π(2)(α(2)), d(1)

0 (γ (1)), d(2)
0 (γ (2))} and the corresponding OR, IPW and/or AIPW estimators, when

available, are listed for comparison. Each digit of the four-digit number inside an estimator’s name, from left to right,
indicates if π(1)(α(1)), π(2)(α(2)), d(1)

0 (γ (1)) and d(2)
0 (γ (2)) are used, respectively. For example, MR-1101 denotes

our proposed multiply robust estimator based on models π(1)(α(1)), π(2)(α(2)) and d(2)
0 (γ (2)). Compared to the

OR, IPW and AIPW estimators, our proposed estimators using the same parametric models have similar numer-
ical performance. The multiple robustness property is well demonstrated by the negligible biases, especially with
n = 800, of the proposed estimators MR-1100, MR-0011, MR-1110, MR-1101, MR-1011, MR-0111 and MR-1111,
which are consistent under all four data generating processes. The numerical performance ofMR-1100 with a small
sample size may be occasionally unstable, as shown by the relatively large bias when n = 300 with data generated
based on π(X) = {1 + exp(0.8 + 0.5X − 0.3X2)}−1, due to a high correlation between π(1)(α̂(1)

) and π(2)(α̂(2)
),

but it improves dramatically as the sample size increases to n = 800.
The estimator EB-1 by balancing only the first moment of X has a very large bias under all four data generating

processes. Replacing the exponential tilting with the empirical likelihood, the estimator MR-1 has a significantly
improved performance compared to EB-1 when the data are generated based on π(X) = {1 + exp(0.8 + 0.5X −
0.3X2)}−1. By balancing the first two moments of X, the EB method implicitly fits linear regression models for
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Table 2. Comparison of different estimators based on 1000 replications and n = 800. Each digit of the four-digit number inside an
estimator’s name, from left to right, indicates if π(1)(α(1)), π(2)(α(2)), d(1)

0 (γ (1)) and d(2)
0 (γ (2)) are used, respectively. The results

have been multiplied by 100.

π(1) π(2)

(d(1)
0 , d(1)

1 ) (d(2)
0 , d(2)

1 ) (d(1)
0 , d(1)

1 ) (d(2)
0 , d(2)

1 )

rbias rmse mae rbias rmse mae rbias rmse mae rbias rmse mae

IPW-1000 2 58 39 1 46 32 14 26 18 13 26 17
IPW-0100 84 66 50 −32 41 28 0 27 18 0 23 15
OR-0010 2 35 25 −127 76 62 0 22 15 −24 34 26
OR-0001 244 126 119 2 32 22 −18 34 23 0 23 15
AIPW-1010 3 40 27 0 46 30 0 22 14 −33 40 33
AIPW-1001 4 52 35 3 40 27 37 44 35 0 22 15
AIPW-0110 3 38 26 −57 52 36 0 22 15 0 25 16
AIPW-0101 75 60 43 3 37 25 0 26 17 0 22 15
MR-1000 5 44 30 1 46 32 16 28 19 15 27 18
MR-0100 63 54 39 −50 46 32 0 30 19 0 24 16
MR-0010 2 35 25 −152 86 75 0 22 14 −28 37 29
MR-0001 246 127 120 2 32 22 24 35 26 0 23 15
MR-1100 −6 46 32 −18 49 32 −1 24 16 −3 24 15
MR-1010 3 40 28 0 43 30 0 22 15 −26 34 26
MR-1001 5 46 31 3 40 28 32 41 32 0 22 15
MR-0110 3 39 28 −56 51 35 0 22 15 0 23 15
MR-0101 73 57 41 3 37 25 0 25 16 0 22 15
MR-0011 5 55 36 8 68 30 0 22 15 1 24 15
MR-1110 3 40 27 −1 42 28 0 22 15 0 22 15
MR-1101 6 44 30 3 40 28 0 24 15 0 22 15
MR-1011 4 42 29 4 42 29 0 22 15 0 22 15
MR-0111 4 46 31 7 61 31 0 22 15 0 22 15
MR-1111 4 42 29 4 42 29 0 22 15 0 22 15
EB-1 564 281 277 383 193 189 −322 316 314 −279 274 271
EB-2 2 40 28 −1 42 29 0 22 15 −30 38 29
MR-1 251 142 126 220 121 112 −323 316 314 −279 274 272
MR-2 2 73 42 92 81 52 0 21 14 −35 41 34

π(1) : π(X) = {1 + exp(0.8 + 0.5X − 0.3X2)}−1.
π(2) : π(X) = 1 − exp[− exp{0.5 + 0.5X − 0.3 exp(X)}].
(d(1)

0 , d(1)
1 ): {d0(X), d1(X)} = (1 + 2X + 3X2, 2 + 3X + 3X2).

(d(2)
0 , d(2)

1 ): {d0(X), d1(X)} = {1 + 2X + 3 exp(X), 2 + 3X + 3 exp(X)}.
rbias: relative bias, bias divided by the true value. rmse: root mean square error. mae: median absolute error.IPW: inverse probability weighting. OR: outcome
regression. AIPW: augmented inverse probability weighting. MR: multiply robust. EB: entropy balancing. EB-1: EB with h(X) = X . EB-2: EB with h(X) =
(X , X2). MR-1: MR with h(X) = X and no working models. MR-2: MR with h(X) = (X , X2) and no working models.

logit{π(X)} and d0(X) with regressors X and X2, and this makes the estimator EB-2 consistent under the first
three data generating processes and inconsistent under the last one where π(X) = 1 − exp[− exp{0.5 + 0.5X −
0.3 exp(X)}] and {d0(X), d1(X)} = {1 + 2X + 3 exp(X), 2 + 3X + 3 exp(X)}. This theoretical conclusion is well
confirmed by inspecting the bias of EB-2. The estimator MR-2 with exponential tilting replaced by empirical
likelihood is inconsistent under all four data generating processes.

Table 3 contains a summary of the performance of the bootstrap method for standard error calculation. Due
to similarity of the performance under different settings, we only include the results for π(X) = {1 + exp(0.8 +
0.5X − 0.3X2)}−1 and {d0(X), d1(X)} = (1 + 2X + 3X2, 2 + 3X + 3X2)with n = 300. The results are summarized
based on 1000 replications with the bootstrap resampling size 200. It is seen that the average of the standard errors
based on boostrap is very close to the empirical standard error. In addition, for the estimators that are consistent
under this data generating process, i.e., MR-1000, MR-0010, MR-1100, MR-1010, MR-1001, MR-0110, MR-0011,
MR-1110, MR-1101, MR-1011, MR-0111 and MR-1111, the coverage percentage of the 95% confidence intervals
constructed based on bootstrap standard errors is close to the nominal level. Both observations show that the
bootstrap method is reliable to calculate the standard errors for the proposed estimators.

5. Discussion

In this paper we have proposed a multiply robust estimator for the causal effect ATT. The estimator provides more
protection on estimation consistency compared to existing doubly robust estimators. It is worth pointing out that,
although the proposed method can simultaneously account for multiple working models, there does not have to be
multiplemodels to apply thismethod. The construction of constraints is very flexible and themethod can be applied
when only a single working model is available. Therefore, the proposed method provides a unified framework as
an alternative to various existing methods, including the IPW and AIPWmethods.

A major difference between the proposed method and the EBmethod is the objective function being optimized.
The EBmethodminimizes the Shannon entropy

∑
{i:Ai=0} wi logwi, or equivalently the exponential tilting function
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Table 3. Performance of the bootstrap method in calculating the standard errors for
the proposed estimators in the setting of π(X) = {1 + exp(0.8 + 0.5X − 0.3X2)}−1 and
{d0(X), d1(X)} = (1 + 2X + 3X2, 2 + 3X + 3X2). Results are summarized based on 1000 repli-
cations with n = 300 and the bootstrap resampling size is 200. Each digit of the four-digit num-
ber inside an estimator’s name, from left to right, indicates if π(1)(α(1)), π(2)(α(2)), d(1)

0 (γ (1))

and d(2)
0 (γ (2)) are used, respectively.

bias se-emp se-bp cp-95%

MR-1000 0.05 0.71 0.67 92.50
MR-0100 0.31 0.72 0.69 89.00
MR-0010 −0.01 0.56 0.58 95.30
MR-0001 1.21 0.65 0.64 52.60
MR-1100 −0.08 0.77 0.74 94.10
MR-1010 0.01 0.64 0.62 93.60
MR-1001 0.05 0.74 0.70 92.40
MR-0110 0.00 0.62 0.61 94.00
MR-0101 0.36 0.74 0.70 87.50
MR-0011 0.03 0.81 0.75 93.30
MR-1110 0.01 0.63 0.61 93.60
MR-1101 0.08 0.70 0.67 92.00
MR-1011 0.03 0.72 0.70 94.40
MR-0111 0.03 0.76 0.73 93.90
MR-1111 0.04 0.76 0.73 94.10

se-emp: empirical standard error. se-bp: averaged bootstrap standard error. cp-95%: coverage percentage of the
95% confidence interval constructed based on the bootstrap standard error. MR: multiply robust.

in the empirical likelihood literature (e.g., Newey & Smith, 2004), whereas we proposed to maximize the empirical
likelihood

∏
{i:Ai=0} wi. The advantage of considering an empirical likelihood is manifold. First, it improves the

robustness of estimation consistency by using constraints based on parametric workingmodels. Although the same
constraints can be used by the EB method as well, a correct model does not make the EB estimator consistent, and
consistency of the EB estimator is achieved only when logit{π(X)} or E(Y0 | X) is a linear model with regressors
h(X). Second, by dividing the constraints into two parts, one based on parametric workingmodels and one based on
moments ofX, the proposedmethod ismore flexible when the dimension ofX is large.Withπ(X) and/or E(Y0 | X)

depending on a high dimensional X, consistency of the EB estimator requires a large number of constraints to
include all the regressors for logit{π(X)} and/or E(Y0 | X), and this may jeopardize the numerical performance
in practice. The proposed method, on the contrary, has a separate model building step where complex working
models can be built and only the ones that are deemed to be close to the truth are used in the constraints. In this
case, the parametric working models help to achieve consistency, and thus the other part of constraints based on
moments ofX can be chosen exclusively for the goal of achieving covariate balancing. Thismay considerably reduce
the number of constraints compared to the EB method and thus improve the numerical performance. Third, it is
well known in the empirical likelihood literature (e.g., Newey & Smith, 2004) that the empirical likelihood has
smaller higher-order bias, which translates to a better numerical performance under a finite sample size, compared
to exponential tilting and other alternatives. As an empirical version of the moment equality (7), the constraints
in (8) are legitimate, at least when the sample size is large. Therefore, the ‘model misspecification’ problem that
typically exists in the empirical likelihood literature under which the performance of empirical likelihood may be
worse than that of the exponential tilting (Schennach, 2007) is not of a concern here.
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