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ABSTRACT
The rapid emergence of massive datasets in various fields poses a serious challenge to tra-
ditional statistical methods. Meanwhile, it provides opportunities for researchers to develop
novel algorithms. Inspired by the idea of divide-and-conquer, various distributed frameworks
for statistical estimation and inference have been proposed. They were developed to deal with
large-scale statistical optimization problems. This paper aims to provide a comprehensive review
for related literature. It includes parametricmodels, nonparametricmodels, and other frequently
used models. Their key ideas and theoretical properties are summarized. The trade-off between
communication cost and estimate precision together with other concerns is discussed.
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1. Introduction

With the rapid development of information technology,
datasets of massive sizes become increasingly available.
E-commerce companies like Amazon have to analyse
billions of transaction data for personalized recommen-
dation. Bioinformatics scientists need to locate relevant
genes corresponding to some specific phenotype or
disease from massive SNPs data. For Internet-related
companies, large amounts of text, image, voice, and
even video data are in urgent need of effective anal-
ysis. Due to the accelerated growth of data sizes, the
computing power and memory of one single computer
are no longer sufficient. Constraint on network band-
width and other privacy or security considerations also
make it difficult to process thewhole data on one central
machine. Accordingly, distributed computing systems
become increasingly popular.

Similar to parallel computing executed on a sin-
gle computer, distributed computing is closely related
to the idea of divide-and-conquer. Simply speaking,
for some statistical problems, we can divide a com-
plicated large task into many small pieces so that
they can be tackled simultaneously on multiple CPUs
or machines. Their outcomes are then aggregated to
obtain the final result. It is conceivable that this proce-
dure can save the computing time substantially if the
algorithm can be executed in a parallel way. The main
difference between a traditional parallel computing sys-
tem and a distributed computing system is the way they

access memory. For parallel computing, different pro-
cessors can share the samememory. Consequently, they
can exchange information with each other in a super-
efficient way. While for distributed computing, distinct
machines are physically separated. They are often con-
nected by a network. Accordingly, each machine can
only access its own memory directly. Therefore, the
inter-machine communication cost in terms of time
spending could be significant and thus should be pru-
dently considered.

The rest of this article is organized as follows.
Section 2 studies parametric models. Section 3 focuses
on nonparametric methods. Section 4 expresses some
other related methods. The article is concluded with a
short discussion in Section 5.

2. Parametric models

Assume a total of N observations denoted as Zi =
(X�

i ,Yi)
� ∈ Rp+1 with 1 ≤ i ≤ N. Here Xi ∈ Rp is

the covariate vector and Yi ∈ R is the correspond-
ing scalar response. Define {Pθ : θ ∈ �} to be a
family of statistical models parameterized by θ ∈
� ⊂ Rp. We further assume that Zi’s are indepen-
dent and identically distributed with the distribution
Pθ∗ , where θ∗ = (θ∗

1 , . . . , θ
∗
p )� is the true parame-

ter. Consider a distributed setting, where N sample
units are allocated randomly and evenly to K local
machinesMk, 1 ≤ k ≤ K, such that each machine has
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n observations. Obviously, we should have N = nK.
Write S = {1, . . . ,N} as the index set of whole sam-
ple. Then, let Sk denote the index set of local sample
onMk withSk1 ∩ Sk2 = ∅ for any k1 	= k2. Other than
the local machines, there also exists a central machine
represented byMcenter. A standard architecture should
haveMcenter to be connected with everyMk.

Let L : � × Rp+1 
→ R be the loss function.
Assume that the true parameter θ∗ minimizes the pop-
ulation risk L∗(θ) = E[L(θ ;Z)], where E stands for
expectation with respect to Pθ∗ . Define the local loss
on the kth machine as Lk(θ) = n−1 ∑

i∈Sk
L(θ ;Zi).

Correspondingly, define the global loss function based
on the whole sample as L(θ) = N−1 ∑

i∈S
L(θ ;Zi) =

K−1 ∑K
k=1Lk(θ), whose minimizer is

θ̂ = argminθ∈�L(θ). In most cases, the whole sample
estimator θ̂ should be

√
N-consistent and asymptoti-

cally normal (Lehmann & Casella, 2006). If N is small
enough so that the whole sample S can be read into the
memory of one single computer, then θ̂ can be easily
computed. The entire computation can be executed in
the memory of this computer. On the other hand, if N
is too large so that the whole sample S cannot be placed
on any single computer, then a distributed systemmust
be used. In this case, the whole sample estimator θ̂ is
no longer computable (or at least very difficult to com-
pute) in practice. Then, how to develop novel statistical
methods for distributed systems becomes a problem of
great importance.

2.1. One-shot approach

To solve the problems, various methods have been pro-
posed. They can be roughly divided into two classes.
The first class contains so-called one-shot methods.
They are to be reviewed in this subsection. The other
class contains various iterative methods. They are to be
reviewed in the next subsection.

The basic idea of the one-shot approach is to cal-
culate some relevant statistics on each local machine.

Subsequently, these statistics are sent to a central
machine, where they are assembled into the final esti-
mator. The most popular and direct way of aggrega-
tion is simple average. Specifically, for each 1 ≤ k ≤
K, machine Mk uses local sample Sk to compute
the local empirical minimizer θ̂k = argminθ∈�Lk(θ).
These local estimates (i.e., θ̂k’s) are then transferred
to the centre machine Mcenter, where they are aver-
aged as θ̄ = K−1 ∑K

k=1 θ̂k. This leads to the final simple
averaging estimator θ̄ (see Figure 1(a)).

Obviously, the one-shot style of distributed frame-
work is highly communication-efficient. Because it
requires only one single round of communication
between each Mk and Mcenter. Hence, the commu-
nication cost is of the order O(Kp), where p is the
dimension of each estimate θ̂ . Theoretical properties
of simple averaging estimator were also studied in the
literature. For example, it was shown in Zhang et al.
(2013, Corollary 2) that, under appropriate regularity
conditions,

E
∥∥θ̄ − θ∗∥∥2

2 ≤ C1

N
+ C2

n2
+ O

(
1
Nn

+ 1
n3

)
, (1)

where C1, C2 are some positive constants. If n is
sufficiently large such that n−2 = o(N−1), then the
dominant term in (1) becomes C1/N, and is of the
order O(N−1). It is the same as that of the whole
sample estimator. This also implies that, in order to
obtain the global convergence rate, we should not
divide the whole sample into too many parts. A further
improved theoretical result was obtained by Rosen-
blatt and Nadler (2016). They showed that the one-
shot estimator is the first order equivalent to the whole
sample estimator. However, the second-order error
terms of θ̄ can be non-negligible for nonlinear mod-
els. Similar observation was also obtained by Huang
and Huo (2015). The work of Duchi et al. (2014)
revealed that the minimal communication budget to
attain the global estimation error for linear regression
is O(Kp) bits up to a logarithmic factor under some

Figure 1. Illustrations of the two different approaches. (a) one-shot approach and (b) iterative approach.
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conditions. This result matches the simple averaging
procedure and confirms the sharpness of the bound
in (1). To further reduce the bias, a novel subsampling
method was developed by Zhang et al. (2013). By this
technique, the error bound is improved to beO(N−1 +
n−3), which relaxes the restriction on the number of
machines.

Instead of the linear combination of local maxi-
mum likelihood estimates (MLEs) as simple average,
Liu and Ihler (2014) proposed a KL-divergence based
combination method. The final estimator is computed
by

θ̂KL = argminθ∈�

K∑
k=1

KL
(
p(x|θ̂k)

∥∥ p(x|θ)
)
,

where p(x|θ) is the probability density ofPθ with respect
to somepropermeasureμ, andKL-divergence is defined
by KL(p(x) ‖ q(x))= ∫

X p(x) log{p(x)/q(x)}dμ(x).
It was shown that θ̂KL is exactly the global MLE
θ̂ if {Pθ : θ ∈ �} is a full exponential family (defined
in their paper). This sheds light on the inference about
generalized linear models (GLMs) based on exponen-
tial likelihood.

In many cases, some local machines might suffer
from data of poor quality. This could lead to abnor-
mal local estimates, which further degrade the sta-
tistical efficiency of the final estimator. To fix the
problem, Minsker (2019) devised a robust assem-
bling method. It leads to an estimator as θ̂ robust =
argminθ∈�

∑K
k=1 ρ(|θ − θ̂k|), where ρ(·) is a robust

loss function satisfying some conditions. For example,
when ρ(u) = u and p = 1 (univariate case), θ̂ robust is
the median of θ̂k’s. It should be more robust against
outliers compared with the simple average. Under some
regularity conditions, they showed that θ̂ robust achieves
the same convergence rate as the whole sample estima-
tor provided K ≤ O(

√
N).

2.2. Iterative approach

Although one-shot approach involves little communi-
cation cost, it suffers from several disadvantages. First,
the local machines need to have sufficient amount
of data (e.g., n � √

N). Otherwise the aggregated
estimator cannot reach the convergence rate as the
global estimator. This prevents us from utilizing many
machines to speed up the computation process (Jor-
dan et al., 2019; Wang et al., 2017). Second, the sim-
ple averaging estimator is often poor in performance
for nonlinear models (Huang & Huo, 2015; Jordan
et al., 2019; Rosenblatt & Nadler, 2016). Last, when p
is diverging with N, the situation could be even worse
(Lee et al., 2017; Rosenblatt & Nadler, 2016). This sug-
gests that carefully designed algorithms allowing a rea-
sonable number of iterations should be useful for a
distributed system.

Inspired by the one-step method in theM-estimator
theory, Huang and Huo (2015) proposed an one-step
refinement of the simple averaging estimator. Let us
recall that θ̄ is the one-shot averaging estimator. To fur-
ther improve its statistical efficiency, it should be broad-
cast to each local machine. Next, local gradient∇Lk(θ̄)

and local Hessian ∇2Lk(θ̄) can be computed on each
Mk. Then, they are reported to Mcenter to form the
whole sample gradient ∇L(θ̄) = K−1 ∑K

k=1 ∇Lk(θ̄)

and Hessian ∇2L(θ̄) = K−1 ∑K
k=1 ∇2Lk(θ̄). Thus an

one-step updated estimator can be constructed on
Mcenter as

θ̂
(1) = θ̄ − [∇2L(θ̄)]−1∇L(θ̄). (2)

Compared with one-shot estimator, θ̂
(1)

involves one
more round of communication cost. Nevertheless, the
statistical efficiency of the resulting estimator could be
well improved. In fact, Huang and Huo (2015) showed
that

E
∥∥θ̂

(1) − θ∗∥∥2
2 ≤ C1

N
+ O

(
1
n4

+ 1
N2

)
,

where C1 > 0 is some constant. Obviously, this is a
lower upper bound of mean squared error than that
in (1). To attain the global convergence rate, the local
sample size needs to satisfy n−4 = o(N−1), which is a
muchmilder condition. Furthermore, they showed that
θ̂

(1)
also has the same asymptotic efficiency as thewhole

sample estimator θ̂ under some regularity conditions.
A natural idea to further extend the one-step esti-

mator is to allow the iteration (2) to be executed many
times. Specifically, let θ̂

(t)
be the estimator of the tth

iteration. Then, we can use (2) by replacing θ̄ with θ̂
(t)

to generate the next step estimator θ̂
(t+1)

(see Figure
1(b)). However, this requires a large number of Hessian
matrices to be computed and transferred. If the param-
eter dimension p is relatively high, this will lead to a sig-
nificant communication cost of the orderO(Kp2). To fix
the problem, Shamir et al. (2014) proposed an approx-
imate Newton method, which conducts Newton-type
iteration distributedly without transferring the Hessian
matrices. Following this strategy, Jordan et al. (2019)
developed an approximate likelihood approach. Their
key idea is to update Hessian matrix on one single
machine (e.g., Mcenter) only. Then, (2) can be revised
to be

θ̂
(t+1) = θ̂

(t) −
[
∇2Lcenter(θ̂

(t)
)
]−1∇L(θ̂

(t)
),

where∇2Lcenter is the Hessianmatrix computed on the
central machine. By doing so, the communication cost
due to transmission of Hessian matrices can be saved.
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Under some conditions, they showed that

‖θ̂ (t+1) − θ̂‖2 ≤ C1√
n
‖θ̂ (t) − θ̂‖2, for t ≥ 0, (3)

holds with high probability, where C1 > 0 is some con-
stant. By the linear convergence formula (3), we can
see that it requires [logK/ log n] iterations to achieve
the

√
N-consistency as the whole sample estimator θ̂ ,

provided θ̂
(0)

is
√
n-consistent. Note that if n = K =√

N, one iteration suffices to attain the optimal con-
vergence rate. However, the satisfactory performance of
this method relies on a good choice of the machine, on
which the Hessian needs to be updated (Fan, Guo et al.,
2019a). To fix the problems, Fan, Guo et al. (2019a)
added an extra regularized term to the approximate
likelihood used in Jordan et al. (2019). With this modi-
fication, the performance of the resulting estimator can
be well improved. Theoretically, they showed a simi-
lar linear convergence rate under some more general
conditions, which require no strict homogeneity of the
local loss functions.

2.3. Shrinkagemethods

We study the shrinkage methods for sparse estimation
in this subsection. For a high-dimensional problem,
especially when the dimension of θ∗ is larger than the
sample size N, it is difficult to estimate θ∗ without any
additional assumptions (Hastie et al., 2015). A popular
constraint for tackling these problems is sparsity, which
assumes only a subset of the entries in θ∗ is non-zero.
The index of non-zero entries is called the support of
θ∗, that is

supp(θ∗) = A∗ =
{
1 ≤ j ≤ p : θ∗

j 	= 0
}
.

To induce a sparse solution, an additional regular-
ization term of θ is often introduced in the loss
function. Specifically, we need to solve the shrinkage
regression problem as minθ∈�{L(θ) + ∑p

j=1 ρλ(|θj|)},
where ρλ(·) is a penalty function with a regularization
parameter λ > 0. Popular choices are LASSO (Tibshi-
rani, 1996), SCAD (Fan & Li, 2001) and others dis-
cussed in Zhang and Zhang (2012). For simplicity, we
consider the LASSO estimator in the framework of
the linear regression problem. Specifically, the whole
sample estimator is computed as

θ̂λ = argminθ∈�

{
1
N

‖Y − Xθ‖22 + λ‖θ‖1
}
,

where Y = (Y1, . . . ,YN)� ∈ RN is the vector of
response, X = (X1, . . . ,XN)� ∈ RN×p is the design
matrix, and ‖θ‖1 = ∑p

j=1 |θj| denotes the l1-norm of θ .
It is known that the LASSO procedure would produce
biased estimators for the large coefficients. This is unde-
sirable for the simple average procedures, since average

cannot eliminate the systematic bias. To reduce bias,
Javanmard andMontanari (2014) proposed a debiasing
technique for the lasso estimator, that is

θ̂
(d)
λ = θ̂λ + 1

N
MX�

(
Y − Xθ̂λ

)
, (4)

where M ∈ Rp×p is an approximation to the inverse
of �̂ = X�X/N. It appears that when �̂ is invert-
ible (e.g., when N � p), settingM = �̂−1 gives θ̂

(d)
λ =

(X�X)−1X�Y , which is the ordinary least squares esti-
mator and obviously unbiased. Hence, procedure (4)
compensates for the bias incurred by �1 regularization
in some sense.

By this debiasing technique, Lee et al. (2017) devel-
oped an one-shot type estimator for the LASSO prob-
lem. Specifically, let θ̂

(d)
k,λ be the debiased LASSO esti-

mator computed onMk. Then an averaging estimator
can be constructed onMcenter as θ̄λ = K−1 ∑K

k=1 θ̂
(d)
k,λ .

Unfortunately, the sparsity level can be seriously
degraded by averaging. For this reason, a hard thresh-
old step often comes as a remedy. It was noticed that the
debiasing step is computationally expensive. Hence an
improved algorithm was also proposed to alleviate the
computational cost of this step. Under certain condi-
tions, they showed that the resulting estimator has the
same convergence rate as the whole sample estimator.
Battey et al. (2018) investigated the same problem with
additional study on hypothesis testing. Furthermore, a
refitted estimation procedure was used to preserve the
global oracle property of the distributed estimator. An
extension to high dimensional GLMs can also be found
in Lee et al. (2017) and Battey et al. (2018). For this
model, Chen and Xie (2014) implemented a majority
voting method to aggregate the regularized local esti-
mates. For the low dimensional sparse problem with
smooth loss function (e.g., GLMs, Cox model), Zhu
et al. (2019) developed a local quadratic approximation
method with an adaptive-LASSO type penalty. They
showed rigorously that the resulting estimator can be
as good as the global oracle estimator.

Intuitively, above one-shot methods may need a
stringent condition on the local sample size to meet the
global convergence rate due to the limited communi-
cation. In fact, the simple averaging estimator requires
n ≥ O(Ks2 log p) to match the oracle rate in the con-
text of sparse linear model (Lee et al., 2017), where
s = |A∗| is the number of non-zero entries of θ∗. For
this problem,Wang et al. (2017) and Jordan et al. (2019)
independently proposed a communication-efficient
iterative algorithm, which constructs a regularized
likelihood by using local Hessian matrix. As demon-
strated by Wang et al. (2017), an one-step estima-
tor θ̂

(1)
suffices to achieve the global convergence

rate if n ≥ O(Ks2 log p) (the condition used in Lee
et al., 2017). Furthermore, if multi-round communica-
tion is allowed, θ̂

(t+1)
(i.e., estimator of the (t + 1)th
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iteration) can match the estimator based on the whole
sample as long as n ≥ O(s2 log p) and t ≥ O(logK),
under some certain conditions.

2.4. Non-smooth loss basedmodels

The methods we described above typically require the
loss function L to be sufficiently smooth, although
a non-smooth regularization term is permitted (see
e.g., Jordan et al., 2019; Wang et al., 2017; Zhang
et al., 2013; Zhu et al., 2019). However, there are also
some useful methods involving non-smooth loss func-
tions, such as quantile regression and support vector
machine. It is then of great interest to develop dis-
tributed methods for these methods.

We first focus on the quantile regression (QR)
model. The QR model has a widespread use in statis-
tics and econometrics, and performs more robustly
against the outliers than the ordinary quadratic loss
(Koenker, 2005). Specifically, a QR model assumes
Yi = X�

i θ∗
τ + εi, i ∈ S, where Xi ∈ Rp is the covari-

ate vector, Yi is the corresponding response, θ∗
τ ∈ Rp

is the true regression coefficient, and εi is the random
noise satisfying P(εi ≤ 0|Xi) = τ , where τ ∈ (0, 1) is a
known quantile level. It is known that θ∗

τ is the mini-
mizer ofE[ρτ (Yi − X�

i θ)]. Here ρτ (u) = u(τ − 1{u ≤
0}) = u(1{u > 0} + τ − 1) is the non-differentiable
check-loss function, where 1{·} is the indicator func-
tion. When data size N is moderate, we can estimate
θ∗

τ by θ̂ τ = minθ∈� N−1 ∑
i∈S

ρτ (Yi − X�
i θ) on one

single machine. However, when N is very large, a dis-
tributed system has to be used. Accordingly, distributed
estimators have to be developed.

In this regard, Volgushev et al. (2019) studied the
one-shot averaging type estimator. Specifically, a local
estimator θ̂k,τ is first computed on each local machine
Mk. Then, the averaging estimator is assembled as
θ̄ τ = K−1 ∑K

k=1 θ̂k,τ on the central machine Mcenter.
They further investigated the theoretical properties of
the averaging estimator in detail. It was shown that the
if the number of machines satisfies K = o(

√
N/ logN),

then θ̄ τ should be as efficient as the whole sample
estimator θ̂ τ under some regularity conditions. Chen
and Zhou (2020) proposed an estimating equation
based one-shot approach for the QR problem. The
asymptotic equivalence between the resulting estima-
tor and the whole sample estimator was also established
under K = o(N1/4) and some other conditions. It can
be seen that the performance of one-shot approaches
relies more on the local sample size. In fact, Volgu-
shev et al. (2019) showed that K = o(

√
N) is a neces-

sary condition for the global efficiency of the simple
averaging estimator θ̄ τ . To remove the constraint K =
o(

√
N) on the number of machines, Chen et al. (2019)

proposed an iterative approach. Their key idea is to
approximate the check-loss function by a smooth alter-
native. More specifically, they approximated 1{u > 0}

by a smooth function H(u/h), where H(·) is a smooth
cumulative distribution function and h > 0 is the tun-
ing parameter controlling the approximation goodness
(see Figure 2(a)). With this modification, the algorithm
can update the estimates by

θ̂
(t+1)
τ = [

V(θ̂
(t)
τ )

]−1U(θ̂
(t)
τ ), (5)

whereU(θ) = ∑K
k=1 Uk(θ),V(θ) = ∑K

k=1 Vk(θ), and
Uk ∈ Rp, Vk ∈ Rp×p depend only on the bandwidth
h and local sample Sk. It was shown that a con-
stant number of rounds of iteration suffices to match
the convergence rate of the whole sample estimator.
Thus, the communication cost is roughly of the order
O(Kp2). But this is not applicable when p is very
large. Thus, for the high dimensional QR problem,
Zhao et al. (2014) and Zhao et al. (2019) adopted
an one-shot averaging method based on the debi-
ased local estimates as that in (4). Accordingly, Chen
et al. (2020) proposed a communication-efficientmulti-
round algorithm inspired by the approximate Newton
method (Shamir et al., 2014). This iterative approach
removes the restriction on the number of machines. A
revised divide-and-conquer stochastic gradient descent
method for QR and other models with diverging
dimension can be found in Chen, Liu et al. (2021b).

We next consider the support vector machine
(SVM), which is one of the most successful statistical
learning methods (Vapnik, 2013). The classical SVM
is aimed at the binary classification problem, i.e., the
response variable Yi ∈ {−1, 1}. Formally, a standard
linear SVM solves the problem minθ∈� N−1 ∑

i∈S
(1 −

YiX�
i θ)+ + λ‖θ‖22, where (u)+ = u1(u > 0) is the

hinge loss, andλ > 0 is the regularization parameter. By
the same smooth technique used in Chen et al. (2019),
i.e., replacing the hinge loss with a smooth alternative
(see Figure 2(b)), Wang, Yang et al. (2019) proposed an
iterative algorithm like (5). To reduce the communica-
tion cost incurred by transferringmatrices, they further
employed the approximate Newton method (Shamir
et al., 2014). Theoretically, they showed the asymptotic
normality of the estimator, which can be used to con-
struct confidence interval. For the ultra-high dimen-
sional SVM problem, Lian and Fan (2018) studied the
one-shot averaging method with debiasing procedure
similar to (4).

3. Nonparametric models

Different from parametric models, a nonparametric
model typically involves infinite-dimensional parame-
ters. In this section, we focus mainly on the nonpara-
metric regression problems. Specifically, consider here
a general regression model as Yi = f ∗(Xi) + εi, i ∈ S,
where f ∗(·) is an unknown but sufficiently smooth
function and εi is the random noise with zero mean.
The aim of nonparametric regression is to estimate
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Figure 2. Approximation of two non-smooth loss functions. (a) QR loss with τ = 0.6 and (b) hinge loss.

function f ∗ ∈ F , where F is a given nonparametric
class of functions.

3.1. Local smoothing

One way to estimate f ∗(·) is to fit a locally constant
model by kernel smoothing (Fan&Gijbels, 1996).More
concretely, the whole sample estimator is given by

f̂h(x) =
∑
i∈S

Wh,Xi(x)Yi,

where the Wh,Xi(x) ≥ 0 is the local weight at X =
x satisfying

∑
i∈S

Wh,Xi(x) = 1. Specifically, for a
Nadaraya–Watson kernel estimator, we should have
Wh,Xi(x) = K((Xi − x)/h)/

∑
i′∈S

K((Xi′ − x)/h),
where K(·) is a kernel function and h > 0 is the band-
width. In the univariate case (p = 1), classical theory
stated that the mean squared error of f̂h(x) is of the
order O(h4 + (Nh)−1) (Fan & Gijbels, 1996). Thus, the
optimal rate O(N−4/5) can be achieved by choosing
bandwidth h = O(N−1/5).

For a distributed kernel smoothing, an one-shot esti-
mator can also be constructed. Let f̂k,h(x) be the local
estimator computed on Mk. Then an averaging esti-
mator can be obtained as f̄h(x) = K−1 ∑K

k=1 f̂k,h(x).
Chang, Lin, Wang (2017) studied the theoretical prop-
erties of f̄h(x) in a specific function space F . They
established the same minimax convergence rate of
f̄h(x) as that of the whole sample estimator. However,
they found that a strict restriction on the number of
machines K is needed to achieve this optimal rate. To
fix the problem, two solutions were provided. They
are, respectively, a date-dependent bandwidth selection
algorithm and an algorithm with a qualication step.

Nearest neighbours method can be regarded as
another local smoothing method. Qiao et al. (2019)
studied the Nearest neighbours classification in a dis-
tributed setting, where the optimal number of neigh-
bours to achieve the optimal rate of convergence was
derived. Li et al. (2013) discussed the problemof density
estimation for scattered datasets. Kaplan (2019) focused
on the choice of bandwidth for nonparametric smooth-
ing techniques. All the works above in this subsection
indicate that the bandwidth (or local smoothing param-
eter) used in the distributed setting should be adjusted
according to the whole sample size N, other than the
local sample size n.

3.2. RKHSmethods

Wenext discuss another popular nonparametric regres-
sion method. This is reproducing kernel Hilbert space
(RKHS) method. An RKHS H can be induced by
a continuous, symmetric and positive semi-definite
kernel function K(·, ·) : Rp × Rp 
→ R. Two typi-
cal examples are: the polynomial kernel K(x1, x2) =
(x�

1 x2 + 1)d with an integer d ≥ 1, and the radi-
cal kernel K(x1, x2) = exp(−γ ‖x1 − x2‖22) with γ >

0. Refer to, for example, Berlinet and Thomas-
Agnan (2011); Wahba (1990) for more details about
RKHS. Then, our target is to find an f̂ ∈ H so that the
following penalized empirical loss can be minimized.
That leads to the whole sample estimator as

f̂λ = argminf∈H

{
1
N

∑
i∈S

(Yi − f (Xi))
2 + λ‖f ‖2H

}
,

(6)
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where ‖ · ‖H is the norm associated with the RKHSH
and λ > 0 is the regularization parameter. This prob-
lem is also known as kernel ridge regression (KRR). By
the representer theorem for the RKHS (Wahba, 1990),
any solution to the problem (6) must have the lin-
ear form as f̂λ(x) = ∑

i∈S
αiK(Xi, x), where αi ∈ R

for each i ∈ S. By this property, we can treat the
KRR as a parametric problem with unknown param-
eter α = (α1, . . . ,αN)� ∈ RN . The error bounds of the
whole sample estimator f̂λ has been well established
in the existing literature (e.g., Steinwart et al., 2009;
Zhang, 2005). However, a standard implementation
of the KRR involves inverting a kernel matrix in
RN×N (Saunders et al., 1998). Therefore, when N is
extremely large, it is time consuming or even compu-
tationally infeasible to process the whole sample on a
single machine. Thus, we should consider a distributed
system.

In this regard, Zhang et al. (2015) studied the
distributed KRR by taking the one-shot averaging
approach. Specifically, each machine Mk computes
local KRR estimate f̂k,λ by (6) based on local sam-
ple Sk. Then the central machine Mcenter averages
them to obtain final estimator f̄λ = K−1 ∑K

k=1 f̂k,λ.
Theoretically, they established the optimal conver-
gence rate of mean squared error for f̄λ with dif-
ferent types of kernel functions, under some regu-
larity conditions. Lin et al. (2017) derived a similar
optimal error bound under some relaxed conditions.
Xu et al. (2016) extended the loss function in (6)
to a further general form. Some related works on
the distributed KRR problem by one-shot averaging
approach can be found in Shang and Cheng (2017), Lin
and Zhou (2018), Guo et al. (2019); Mücke and Blan-
chard (2018) andWang (2019) and many others. It was
noted that these one-shot approaches require the num-
ber of machines diverges in a relative slow speed to
meet the global convergence rate. To fix the problem,
Chang, Lin, Zhou (2017) proposed a semi-supervised
learning framework by utilizing the additional unla-
belled data (i.e., observations without response Yi).
Latest work of Lin et al. (2020) allowed communica-
tion between machines to improve the performance.
In order to choose an optimal tuning parameter λ in
(6), Xu et al. (2018) proposed a distributed generalized
cross-validation method.

For semiparametric models, Zhao et al. (2016) con-
sidered a partially linear model with heterogeneous
data in a distributed setting. Specifically, they assumed
the following model

Yi = X�
i θ∗

(k) + f ∗(Wi) + εi, i ∈ Sk, (7)

where Wi ∈ R is an additional covariate, f ∗(·) is the
unknown function, and θ∗

(k) ∈ Rp is the true linear
coefficient associated with the data onMk for 1 ≤ k ≤
K. In other words, the local data on different machines

are assumed to share the same nonparametric part,
but are allowed to have different linear coefficients. To
estimate the unknown function and coefficients, they
extended the classical RKHS theory to cope with the
partially linear function space. Under some regular-
ity conditions, the resulting estimator of the nonpara-
metric part is shown to be as efficient as the whole
sample estimator, provided the number of machines
does not grow too fast. The case with high dimen-
sional linear part was also investigated. For example,
under the homogeneity assumption (i.e., the linear
coefficients θ∗

(k)’s are assumed to be identical to θ∗
across different machines), Lv and Lian (2017) adopted
the one-shot averaging approach with debiasing tech-
nique analogous to (4) to estimate the linear coefficient.
Lian et al. (2019) considered the same heterogeneous
model as in (7), but the linear part is assumed in a
high dimensional setting (i.e., p > N). For this model,
they proposed a novel projection approach to estimate
the common nonparametric part (not in an RKHS
framework). Theoretically, the asymptotic normality
of the one-shot averaging estimator for the nonpara-
metric function was established under some certain
conditions.

4. Other related works

4.1. Principal component analysis

Principal component analysis (PCA) is a common pro-
cedure to reduce the dimension of the data. It is widely
used in the practical data analysis. Unlike the regres-
sion problems, PCA is an unsupervised method, which
does not require a response variable Y. To conduct a
PCA, a covariance matrix �̂ needs to be constructed
as �̂ = N−1 ∑

i∈S
XiX�

i , where Xi’s are assumed to
be centralized already. Next, a standard singular value
decomposition (SVD) is applied to �̂. That leads to
�̂ = V̂D̂V̂�, where D̂ is a diagonal matrix of eigen-
values and V̂ is an orthogonal matrix of eigenvectors.
Then, the columns of V̂ are the principal component
directions that we need.

In a distributed setting, simple average of the eigen-
vectors estimated locally cannot give a valid result. To
solve the problem, Fan, Wang et al. (2019b) devel-
oped a divide-and-conquer algorithm for estimating
eigenspaces. It involves only one single round of com-
munication. This algorithm is quite easy to implement
as well. We state it as follows (Fan, Wang et al., 2019b,
Algorithm 1):

(1) For each k = 1, . . . ,K, machine Mk computes d
leading eigenvectors of the local sample covari-
ance matrix �̂k = n−1 ∑

i∈Sk
XiX�

i , denoted by
v̂1,k, . . . , v̂d,k ∈ Rp. Next, they are arranged by
columns in V̂k = (v̂1,k, . . . , v̂d,k) ∈ Rp×d, which is
then sent to the central machineMcenter.
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(2) The central machineMcenter averagesK local pro-
jection matrices to obtain �̃ = K−1 ∑K

k=1 V̂kV̂�
k .

Then it computes d leading eigenvectors of �̃,
denoted by ṽ1, . . . , ṽd ∈ Rp. ṽ1, . . . , ṽd are the esti-
mators of the first d principal component direc-
tions that we need.

It is noticeable that the communication cost of
above one-shot algorithm is of the order O(Kdp). This
can be considered to be communication-efficient since
d is usually much smaller than p in practice. Fan,
Wang et al. (2019b) showed that, under some appro-
priate conditions, the distributed estimator achieves
the same convergence rate as the global estimator.
The cases with heterogeneous local data were also
investigated in their work. To further remove the
restriction on the number of machines, Chen, Lee
et al. (2021) proposed a communication-efficientmulti-
round algorithm based on the approximate Newton
method (Shamir et al., 2014).

4.2. Feature screening

Massive datasets often involve ultrahigh dimensional
data, for which feature screening is critically important
(Fan&Lv, 2008). Tofix the idea, consider a standard lin-
ear regression model as Yi = X�

i θ∗ + εi, i ∈ S, where
Xi ∈ Rp is the covariate vector, Yi is the corresponding
response, θ∗ ∈ Rp is the true parameter, and εi is the
random noise. To screen for the most promising fea-
tures, the seminalmethod of sure independence screen-
ing (SIS) has been proposed by Fan and Lv (2008).
Specifically, let A∗ = {1 ≤ j ≤ p : θ∗

j 	= 0} be the true
sparsemodel. Letωj be the Pearson correlation between
jth feature and response Y. Then, SIS screens features
by a hard threshold procedure as Âγ = {1 ≤ j ≤ p :
|ω̂j| > γ }, where γ is a prespecified threshold and ω̂j
is the whole sample estimator of ωj. Under some spe-
cific conditions, Fan and Lv (2008) showed the sure
screening property for SIS, that is,

P(A∗ ⊂ Âγ ) → 1 as N → ∞.

However, the estimator ω̂j is usually biased for many
correlation measures. This indicates that a direct one-
shot averaging approach is unlikely to be the best prac-
tice for the distributed system. To fix the problem, Li
et al. (2020) proposed a novel debiasing technique.
They found that many correlation measures can be
expressed as ωj = g(ν1, . . . , νs), including Pearson cor-
relation used above, Kendall τ rank correlation, SIRS
correlation (Zhu et al., 2011), etc. Therefore, they used
U-statistics to estimate the components νq, 1 ≤ q ≤ s
on local machines. Then, these unbiased estimators of
νq’s given by local machines are averaged on the central
machineMcenter. Consequently,Mcenter can construct
distributed estimator ω̃j by the averaging estimators of

the components in the known function g. Finally, they
showed the sure screening property of Âγ based on
the distributed estimators under some regularity con-
ditions. When the feature dimension is much larger
than the sample size (i.e., p � N), another distributed
computing strategy is to partition thewhole data by fea-
tures, other than by samples. Refer to, for example, Song
and Liang (2015); Yang et al. (2016) for more details.

4.3. Bootstrap

Bootstrap and related resampling techniques provide
a general and easily implemented procedure for auto-
matically statistical inference. However, these methods
are usually computationally expensive. Especially when
sample size N is very large, it would be even practi-
cally infeasible to conduct. To mitigate this computing
issue, various alternative methods have been proposed,
such as subsamping approach (Politis et al., 1999) and
‘m-out-of-n’ bootstrap (Bickel et al., 2012). Their key
idea is to reduce the resample size. However, due to the
difference between the size of whole sample and resam-
ple, an additional correction step is generally required
to rescale the result. This makes these methods less
automatic.

To solve this problem, Kleiner et al. (2014) proposed
the bag of little bootstraps (BLB) method. It integrates
the idea of subsampling and can be computed distribut-
edly without a correction step. Suppose that N sample
units have been randomly and evenly partitioned to K
machines. Consider that we want to assess the accuracy
of the point estimator for some parameter θ . Then we
summarize their algorithm as follows.

(1) For each 1 ≤ k ≤ K, machineMk draws r samples
of size N (instead of n) from Sk with replace-
ment. Then it computes r estimates of θ based on
the r resamples drawn above, respectively. After
that, each Mk computes some accuracy measure
(e.g., variance, confidence region) by the r esti-
mates above, denoted by ξ̂k. Finally, all of the local
machines send ξ̂k’s to the centralmachineMcenter.

(2) The central machineMcenter aggregates these ξ̂k’s
by ξ̄ = K−1 ∑K

k=1 ξ̂k. And ξ̄ is the final accuracy
measure that we need.

It is remarkable that one does not need to process
datasets of size N on local machines actually, although
the nominal size of resample is N. This is because each
machine contains at most n sample units. In fact, ran-
domly generating some certain weight vectors of length
n suffices to approximate the resampling process.

5. Future study

To conclude the article, we would like to discuss here
a number of interesting topics for future study. First,
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for datasets with massive sizes, a distributed system is
definitely needed. Obviously, there could be no place
to store the data. On the other hand, for datasets with
sufficiently small sizes, traditional memory based sta-
tistical methods can be immediately used. Then, there
leaves a big gap between the big and small datasets.
Those middle-sized data are often of sizes much larger
than the computer memory but smaller than the hard
drive. Consequently, they can be comfortably placed
on a personal computer, but can hardly be processed
by memory as a whole. For those datasets, their sizes
are not large enough to justify an expensive distributed
system. They are also not small enough to be han-
dled by traditional statistical methods. How to anal-
yse datasets of this size seems to be a topic worth
studying. Second, when the whole data are allocated
to local machines randomly and evenly, the data on
different machines are independent and identically dis-
tributed and balanced. Then, all of the methods dis-
cussed above can be safely implemented. However,
when the data on different machines are collected
from (for example) different regions, the homogene-
ity of the local data would normally be hard to sat-
isfy. The situation could be even worse if the sam-
ple sizes allocated to different local machines are very
different. How to cope with these heterogeneous and
unbalanced local data is a problem of great impor-
tance (Wang et al., 2020). The idea of meta analysis
may be applicable to these situations (Liu et al., 2015;
Xu & Shao, 2020; Zhou & Song, 2017). Finally, in the
era of big data, personal privacy is under unprece-
dented threat. How to protect users’ private infor-
mation during the learning process deserves urgent
attention. In this regard, differential privacy (DP) pro-
vides a theoretical approach for privacy-preserving data
analysis (Dwork, 2008). Some related works associ-
ated with distributed learning are Agarwal et al. (2018),
Truex et al. (2019) and Wang, Ishii et al. (2019)
and many others. Although it is a hot research area
recently, there are still many open challenges. Thus,
it is of great interest to study the privacy-preserving
distributed statistical learning problems practically and
theoretically.
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