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First of all, we would like to congratulate Dr Gao et al.
for their excellent paper, which provides a compre-
hensive overview of amounts of existing work on dis-
tributed estimation (learning). Different from related
work Gu et al. (2019); Liu et al. (2021); Verbraeken
etal. (2020) that focus on computing, storage and com-
munication architecture, the current paper leverages
how to guarantee statistical efficiency of a given dis-
tributed method from a statistical viewpoint.

In the following, we divide our discussion into three
parts:

(1) The principle of variance-bias trade off.

(2) The specific difficulty of multivariate-
nonparametric distributed learning.

(3) Robustness problems for various adversarial mod-
els.

1. The principle of variance-bias trade off

In the sequel, we start by general parametric models
which can illustrate the interplay between the variance
and the bias of an estimator.

Let By € R¥ be the true parameter that we want to
learn from all the observations. We denote by # an
estimator generated by a given learning rule. Accord-
ing to the classical variance-bias decomposition, we
informally have

I8 — Boll < Variance(f) + Bias(A). (1)

Variance describes how much a random variable differs
from its expected value, while bias is the amount that
a model’s prediction differs from the target value. The
correct balance of bias and variance is crucial to build-
ing statistical methodologies that create accurate results
from their models.

Under the classical master/workers distributed
framework, all the works with the number m produce
local estimators based on their individual data, and then
the master machine merges all the local estimators into
a global estimator. In the case of linear Lasso estimation,
the j-th worker runs the Lasso estimation to generate a
local linear estimator (Bj), and the master takes a sim-
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ple average (8 = % j'il ,éj) to form a global linear
estimator.

In such an estimation procedure, each ,3]- has a
greater variance than the centralized Lasso estimator,
mainly because of using a smaller sample size. It is
known that the simple average can generate a global
estimator with a small variance. In contrast to the vari-
ance term, the bias of the global estimator cannot be
reduced significantly, since the simple average is an
unbiased estimation. On one hand, this insight tells us
that, the simple average strategy may be feasible for any
less biased distributed estimation. On the other hand,
when the bias term dominates the variance, the global
estimator is no longer applicable under the distributed
framework.

This paper follows the principle of variance-bias
trade off and provides a full overview for classical para-
metric models, high-dimensional models and nonpara-
metric models. In particular, it was shown in Zhang
et al. (2013, Corollary 2) that, under appropriate reg-
ularity conditions for fixed dimensional parametric
models,

|m—mn=%(§)

provided that the local sample size satisfies # > +/N,
where N = nm refers to the total number of sample
size. This means that data splitting has no negative effect
in a minimax senses and also just one-round commu-
nication among machines is enough in sense that the
above divide and conquer strategy is quite commu-
nication efficient. However, these one-shot distributed
learning suffer from the following three issues: (1) the
size constraint 7 3> /N is often so restrictive that local
machines cannot run such an amount data under some
big data setting; (2) some interesting structures (e.g.
sparsity) cannot be reserved well by the simple average;
and (3) the achievable minimax rate is just one angle of
measuring statistics, and some additional indexes such
as asymptotic normality need to be considered as well
in some situations.

To this end, this paper spends much spaces in
reviewing a class of iterative distributed estimation,
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proposed originally by Shamir et al. (2014). This
iterative distrusted learning can be viewed as one
Newton-type approximate optimization, which makes
full use of local high-order information over the master
machine and the first-order information over the work-
ers. Instead of the simple average as mentioned above,
the global estimator is formulated by an objective over
the master machine. Despite of some little loss on com-
munication rounds, this iterative distributed algorithm
can yield satisfactory solutions under suitable condi-
tions, e.g., sparsity reservation and the local sample
size can be taken a far smaller value than +/N. Subse-
quently, this idea motivates the rapid development of
many modern distributed algorithms.

2. The specific difficulty of
multivariate-nonparametric distributed
learning

For genetic multivariate-nonparametric models, devel-
oping good distributed learning algorithm has to face
with some particular challenges, since those classical
spline-base tool or local constant/linear smooth meth-
ods may not be a good choice. Instead, reproducing
kernel methods and neural network ones are two class
of popular tools for high dimensional nonparametric
models.

This paper also reviews some distributed learning
based on kernel methods, such as two representative
work in Lin et al. (2017) and Zhang et al. (2013). Let
K(-,-) be a given reproducing kernel and ]AS be an non-
parametric estimator at the j-th worker. Under kernel-
based framework, jAj based on the local data {x;;, y;}iL,
has the form

n
fix) =) aK(xpx), Vxel,
i=1
where @ = (ayj,..., ) € R" is an estimated vector
parameter. The global nonparametric estimator by the
simple average is expressed as follows:

_ 1 .
fo =— jzzlﬁm.

Although kernel-based distributed algorithm does not
result in any computational issue, the communication
issue in the prediction phase becomes a major barrier
observed from f, where N parameters and all samples
need to be passed to the host. Alternatively, every input
point x is sent to all local workers, and then send back
the result of f}(x). However, this requires that all the
workers always run normally and specially are commu-
nication efficient at any time. In other words, develop-
ing kernel-based distributed learning still has a lot of
space to be explored in the future.

We discuss several related distributed design using
neural networks, which has been regarded as the state

of art in modern artificial intelligence. However, we
observe that neural network function is highly non-
convex, and so the simple average cannot make sure
stationary consistency of the global estimator. On the
other hand, it seems that the iterative approximate
methods mentioned as above still work. Yet, the com-
munication issues become a major bottleneck since typ-
ical neural networks contain too many weight parame-
ters, even its size is far larger than N. Therefore, how to
develop competitive distributed algorithms for neural
network models is an interesting topic.

3. Robustness problems for various
adversarial models

The paper gives some related important works about
distributed learning in Section 4: principal component
analysis, feature screening and Bootstrap. It presents a
comprehensive overview on the three issues. In addi-
tion, robustness is also an important topic in the
distributed inference, especially Byzantine-robust dis-
tributed learning. In distributed learning, data and
computation generally come from individual com-
puter/smartphones or worker machines of units. These
devices can be easily reprogrammed and controlled
by external attackers and thus behave adversarially.
It may also due to crashes, faulty hardware, stalled
computation or unreliable communication channels.
Such worker machines are often unpredictable, which
can incur major degradation in learning performance.
Therefore, it is necessary to develop Byzantine-robust
distributed learning algorithm to cope with adversar-
ial attacks. For statisticians, there are some questions
to consider: what kind of robust learning algorithm
or the adversarial models can confront Byzantine fail-
ures, what is the best achievable statistical performance
while being Byzantine-robust, how to design a learn-
ing algorithm that can achieve this performance and
communication efficiency.

For adversarial models, various Byzantine-robust
distributed algorithms have been considered recently,
for example, Blanchard et al. (2017), Chen et al. (2017),
Ghosh et al. (2020), Su and Vaidya (2016), Tu
et al. (2021), Yin et al. (2018), and Zhou et al. (2021).
Specially, Yin et al. (2018) proposed two robust
distributed gradient descent algorithms based on
coordinate-wise median and coordinate-wise trimmed
mean and established order-optimal statistical error

rates O (\/Lﬁoz + ﬁ) under mild conditions, where «

is the fraction of Byzantine machines. It is a new statisti-
cal result under the robustness framework. Developing
robust distributed learning algorithms cannot sacrifice
the quality of learning, meanwhile pursue the best pos-
sible statistical accuracy in the presence of adversarial
attacks. Robust distributed learning deserves attention
and research in the era of big data.
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