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ABSTRACT
Distributed statistical inferences have attractedmore andmore attention in recent yearswith the
emergence of massive data. We are grateful to the authors for the excellent review of the litera-
ture in this active area. Besides the progress mentioned by the authors, we would like to discuss
some additional development in this interesting area. Specifically, we focus on the balance of
communication cost and the statistical efficiency of divide-and-conquer (DC) type estimators in
linear discriminant analysis and hypothesis testing. It is seen that the DC approach has different
behaviours in these problems, which is different from that in estimation problems. Furthermore,
we discuss some issues on the statistical inferences under restricted communication budgets.
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1. Linear discriminant analysis

Linear discriminant analysis (LDA) is a classical clas-
sification method (Anderson, 2003). For simplicity, we
consider the two-sample problem, assuming that

X ∼ Np(μ1,�), Y ∼ Np(μ2,�),

whereμi ∈ R
p, i = 1, 2 are themean vectorswithμ1 �=

μ2 and � ∈ R
p×p is the covariance matrix. Further-

more, assume that observations come either from X
with probability π1 or from Y with probability π2 such
that π1 + π2 = 1. For a new observation Z, Fisher’s
linear discriminant rule is defined as follows:

ψ(Z) = 1{(Z − μa)
��μd > log(π1/π2)}, (1)

where μa = (μ1 + μ2)/2, μd = μ1 − μ2, and � =
�−1 represents the precision matrix, and 1{·} is the
indicator function. Suppose that {Xi, i = 1, . . . ,N1}
and {Yi, i = 1, . . . ,N2} are the independently and iden-
tically distributed copies of X and Y, respectively. Let
N = N1 + N2 be the total sample size and suppose that
N>p. For i = 1, 2, denote μ̂i as the sample means, and
�̂i as the sample covariance using observationsXi’s and
Yi’s, respectively. Then the estimators of μa,μd and �
can be defined respectively as follows

μ̂a = (μ̂1 + μ̂2)/2, μ̂d = μ̂1 − μ̂2,

�̂ = (�̂pool)
−1,

where �̂pool = (N1/N)�̂1 + (N2/N)�̂2 denotes the
pooled sample covariance matrix. Then the empirical

version of ψ(Z), denoted as ψ̂(Z), can be derived by
plugging in the above estimators into (1).

In a distributed setting, one has a central machine
(or hub) and many local machines. Suppose that data
are split randomly and evenly, and are stored at K
local machines. Denote by {X(k)i , i = 1, . . . ,N1/K}
and {Y(k)i , i = 1, . . . ,N2/K} the samples from two
classes on the k-th local machine k = 1, . . . ,K. Tian
and Gu (2017) considered sparse LDA in the high
dimensional regime in the case of π1 = π2 = 1/2,
under the assumption that β = �μd is a sparse
vector. They proposed a one-shot estimator, which
is communication efficient and attains the same
convergence rate as the global estimator if K =
O(
√
N/ log p/max{s, s′}), where s and s′ stand for the

sparsity of some parameters.
Li and Zhao (2021) considered the distributed LDA

without sparsity assumption under the settings where
p/N → 0 and Kp/N → r ∈ [0, 1). Note that to com-
pute �̂−1, one needs to transfer p by p matrices to
the central machine, of which the communication costs
can be expensive. Li and Zhao (2021) proposed a two-
round estimator and a one-shot estimator, defined as
follows.

Denote by μ̂(k)i the estimator of μi with data at the
kth machine, for i = 1, 2, and k = 1, . . . ,K. The one-
shot estimator considers the following decision rule,

ψone(Z) = 1

{
Z�

(
K−1

K∑
k=1

�̂(k)μ̂
(k)
d

)
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−K−1
K∑

k=1

(μ̂(k)a )
��̂(k)μ̂(k)d > log(N1/N2)

}
, (2)

where �̂(k) = (�̂
(k)
poo1)

−1 is the pooled sample covari-

ance matrix using the data at the kth machine, μ̂(k)a =
(μ̂
(k)
1 + μ̂

(k)
2 )/2 and μ̂

(k)
d = μ̂

(k)
1 − μ̂

(k)
2 . Note that

�̂(k) and μ(k)i can be computed with the data only at
the kth machine and that it is sufficient to transmit the
vectors �̂(k)μ̂(k)d ∈ R

p and the scalars (μ̂(k)a )
��̂(k)μ̂(k)d

for all k to the hub. The two-round estimator is an
improved version of ψone(Z), just replacing the local
estimators μ̂(k)a , μ̂(k)d in (2) by the global ones μ̂a, μ̂d
with an additional round of communication. In fact,
by transferring μ̂(k)i ’s to the central hub, we can obtain
μ̂i = K−1∑K

k=1 μ̂
(k)
i and consequently μ̂a = (μ̂1 +

μ̂2)/2 and μ̂d = μ̂1 − μ̂2.
Li andZhao (2021) compared the classification accu-

racy of the global estimator with those of distributed
ones. They showed that when K = o(N/p), both the
two-round estimator and the one-shot estimator can be
as good as the global one under mild conditions. More-
over, they found if Kp/N → r ∈ [0, 1) and π1 = π2,
the two-round estimator can be as good as the global
one, but the one-shot estimator is inferior to the global
one. This is an interesting result, since when Kp/N →
r > 0, �̂(k)pool is not a consistent estimator of � by the
random matrix theory. Therefore, at the price of more
communication cost, the two-round estimator achieves
better statistical efficiency.

2. Hypothesis testing of themean vectors

In this section, we discuss the DC approach in the one-
sample testing problem in the distributed system. We
observe that DC type test statistics always lead to the
loss of power, which is different from that of point esti-
mation where the DC type estimator can be as good as
the global one.

Suppose that X ∈ R
p is a random vector with

E(X) = μ. For a given vector μ0, consider the hypoth-
esis testing problem

H0 : μ = μ0 v.s. H1 : μ �= μ0.

Suppose that X follows the normal distribution
N(μ,�) with unknown covariance matrix �. Let
{Xi, i = 1, . . . , n} are independent and identically dis-
tributed copies of X. In the setting of p<n, the classical
test statistic is Hotelling T2 (Anderson, 2003), defined
as follows,

T2 = (n − 1)(X̄ − μ0)
��̂(X̄ − μ0),

where X̄ denotes the samplemean and �̂ = (�̂)−1 with
�̂ being the sample covariance matrix. In high dimen-
sional cases with p>n, the sample covariance matrix

is singular and the Hotelling T2 test statistic is not
well defined. Many works are developed to extend the
Hotelling T2 to large or high dimensional regimes (Bai
& Saranadasa, 1996; Srivastava &Du, 2008;Wang et al.,
2015, etc.).

Du and Zhao (2021) considered the distributed ver-
sion of these test statistics. Specifically, based on the
DC approach, they extended the Hotelling T2 statistics
under the setting Kp/n → r ∈ [0, 1) and the nonpara-
metric test statistics of Wang et al. (2015) for high
dimensional settings. The ratio of the communication
cost of deriving the global test statistics over that of the
distributed test statistics is of order O(p2) in the case
of Kp/n → r ∈ [0, 1), and O(p) in high dimensional
regimes.

They compared the power of distributed statistics
with those of global ones, showing that the distributed
test statistics are less efficient than those of the global
ones whenever K>1. Denote by βd(n) and βg(n) the
powers of the distributed and global test statistics as the
function of sample size n, respectively, and define ng/nd
such that βd(nd) = βg(ng) as the relative efficiency.
The asymptotic relative efficiencies of distributed test
statistics have the order 1/

√
K.

Hence, the story of the DC approach in the hypoth-
esis problem above is quite different from that of the
point estimation, where the mean square error (MSE)
of the DC estimators can be as good as that of global
ones (Lee et al., 2017; Volgushev et al., 2019; Zhang
et al., 2013, etc.). On the other hand, Shi et al. (2018)
and Banerjee et al. (2019) showed that, in some non-
standard problems, theDC estimators converge at a rate
much faster than the global ones. These results show the
different behaviours of the DC approach in statistical
inferences.

3. Statistical inferences under a restricted
communication budget

As discussed before, it is seen that the DC method is
communication efficient compared with the global one.
But the statistical efficiencies of DC estimators are infe-
rior to the global ones in many cases. To improve the
efficiency of the DC estimators, some iterative meth-
ods are proposed in the literature at the price of more
communication costs. This leads to an interesting prob-
lem of how to implement statistical inferences with the
given communication budgets.

For the distributed mean estimation, Garg et al.
(2014) proved the bounds of the bits in communication
required to achieve the minimax square loss. Zhang
et al. (2013) and Braverman et al. (2016) found the
minimax rate when estimating the mean vector with a
restricted communication cost. Cai andWei (2020) dis-
cussed the estimation of the mean vector of a Gaussian
distribution with the restriction on communication
budget.
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However, how to handle the statistical problemswith
the restricted budget in other settings is an interesting
problem for future work. For example, for the hypoth-
esis testing problem discussed in Section 2, how to
design test statistics that can achieve good statistical
efficiency under a given communication budget needs
further investigation.
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