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We thank the editor, Professor Jun Shao, for orga-
nizing this stimulating discussion. We are grateful to
all discussants for their insightful comments on our
review article on the distributed statistical inference.
Due to the urgent need to process the datasets with
massive sizes, various distributed computing methods
have been proposed for the large-scale statistical prob-
lems. Meanwhile, some important theoretical results
were established. While we want to give a relatively
comprehensive overview on this hot topic, there are still
some important works that have been missed in our
review written over a year ago. However, we are glad to
see the discussants provide reviews of some new works
and references. We hope that these discussions and our
review would serve as a stimulus for further studies in
this rapidly developing area.

In the following discussions, we focus on somemain
issues raised by the discussants. We refer to Yu and
Cheng as YC, Lv and Zhou as LZ, Guo as G, Lian as
L, and Zhao as Z.

1. Bias-variance trade-off

As commented by Lv and Zhou (LZ), our review
follows the principle of bias-variance trade-off. The
bias-variance trade-off plays an important role in the
modern statistical learning problems. Different from
classical statistical estimation problems, an strictly
unbiased estimator is usually hard to derive in many
learning tasks, such as nonparametric regression and
shrinkage estimation. In these scenarios, an asymp-
totic unbiased estimator is often satisfactory. However,
the order of asymptotic bias usually depends on the
sample size. Consequently, when we use the one-shot
averaging strategy, the order of the bias of the dis-
tributed estimator would depend on the local sample
size n, since simple average does not help in reduc-
ing bias. The situation will be even worse if we divide
the whole sample into too many parts. In this case,

the bias term of the averaging estimator could dom-
inate the estimation error (e.g., mean squared error).
This can lead to significant efficiency loss when com-
pared with the whole sample estimator. Therefore, we
often need a condition to restrict the number of local
machines (e.g., K � √

N), which is also pointed out in
LZ’s discussion. To eliminate the efficiency loss due to
non-negligible bias caused by simple average, several
debiasing techniques were developed, as discussed in
our review. Another line of works adopted the iterative
approach, which allows more information to be com-
municated between different machines. This gives us
more freedom to better balance the bias and variance
of the resulting estimator. Once an efficient estimator
is obtained, some direct inference procedures can be
subsequently conducted (Jordan et al., 2018).

2. Inference

As pointed out by Yu and Cheng (YC), we acknowl-
edge that our review focuses mainly on the distributed
estimation problems, and does not mention much
about the details of the statistical inference. In this
regard, we thank YC and Zhao (Z) for introducing
some interesting works on the distributed inference.
Bootstrap is a useful and flexible tool that applies to
various inference problems. However, the heavy com-
putational cost hampers its wide application in large-
scale tasks. Bag of Little Bootstraps (BLB), which is
briefly introduced in our review, provides a useful dis-
tributed approach to ease the computational burden.
The k-grad and n+k-1-grad bootstrap methods
(Yu et al., 2020, 2021), mentioned by YC, provide a
novel distributed framework for simultaneous infer-
ence and remove the constraint on the number of local
machines. It is worthwhile to note that the two meth-
ods can collaborate well with the CSL method (Jordan
et al., 2018), which can be useful to save the communi-
cation cost in the high-dimensional problems.
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Hypothesis testing of the one sample mean vector is
a classical and basic inference problem. We appreciate
that Z provides some interesting results on this prob-
lem in the distributed framework (Du & Zhao, 2021).
In this regard, they find that data splitting does decrease
the power of the test. As emphasized by Z, the testing
problem could be very different from the estimation
problem in the distributed setting. Another inference
tool mentioned by Z is the linear discriminant analy-
sis (LDA). In the distributed setting, a one-shot and a
two-round methods are proposed in the work that Z
refers to. One of themost interesting findings is that, the
prior probability of the two classes affects the relative
efficiency of the two-round estimator. Beyond LDA,
we think it would be also interesting to investigate the
quadratic discriminant analysis (Cai & Zhang, 2021) in
a distributed framework.

3. Nonparametric learning

Nonparametric distributed learning is one of the most
mentioned issues by the discussants. We agree with the
difficulties of multivariate-nonparametric distributed
learning pointed out by LZ. It is known that the classical
local smoothing and splinemethods are not very conve-
nient to be used for high-dimensional regression mod-
els. In this regard, reproducing kernel Hilbert space
(RKHS)-based methods seem to be more popular in
the distributed setting. However, as carefully discussed
by LZ, making predictions for newly observed data is
not a trivial task for RKHS-based algorithm, even in
the one-shot averaging manner. Guo (G) also mentions
the problems of distributed regression with general loss
functions and distributed classification in RKHS. For
the former problem, we refer to Xu et al. (2016) as a
valuable work. As mentioned by LZ, the existing works
on nonparametric distributed learning are almost one-
shot methods. Although the pioneering work by Lin
et al. (2020) can be seen as an exception, there still
are some issues (e.g., communication-efficiency) to be
addressed in future works.

Another problem raised by LZ is related to the arti-
ficial neural networks, which are particularly popular
and have achieved many impressive results in recent
years. It is known that the objective function of a neu-
ral network is often highly non-convex (Choromanska
et al., 2015). As LZ’s discussion, the one-shot averaging
strategy cannot guarantee the validity of the final dis-
tributed estimator in this scenario. Hence, an iterative
approach should be adopted. In fact, the so-called fed-
erated learning technique uses the gradients returned
by client machines to update the model parameters
(McMahan et al., 2017). However, modern deep neural
networks often involve millions of trainable parame-
ters. In these cases, even transferring gradients could
lead to a significant communication cost. The issue

of communication cost will be discussed in the next
section.

4. Communication cost

Communication cost is another common issue con-
cerning the discussants. As pointed out in our review,
one major difference between the distributed comput-
ing and the traditional parallel computing is that the
communication cost cannot be ignored in the former
case. To tackle this problem, many communication-
efficient methods have been proposed. One of the most
successful strategy is the approximate Newton-type
method (Shamir et al., 2014), which uses the local high-
order information (e.g., Hessian matrices) to approx-
imate the global one. This inspires a lot of works,
including Wang et al. (2017), Jordan et al. (2018), Bat-
tey et al. (2021), Shi et al. (2021), Zhou et al. (2021),
and many others. In the literature, communication-
efficiency usually means the communication cost is of
the order linear in the parameter dimension p. How-
ever, for the high-dimensional models, e.g., deep neural
networks, the parameter dimension could be extremely
high. In this case, the communication cost should
be carefully budgeted. A more realistic and practical
approach is to let the communication cost come into
play, as discussed by Lian (L) and Z. In this regard, we
fully agree with the comments by L and Z, and hope
there will be more works taking the statistical, compu-
tational, and communicational efficiency into account
as a whole.

In addition, as commented by L, the existing statisti-
cal studies focus mainly on the centralized distributed
framework (i.e., one central machine connected to sev-
eral local machines). In such a framework, the central
machine bears much more communication cost than
the local machines. This is because each local machine
needs to communicate with the central machine. Con-
sequently, the local machines may queue for the com-
munication with the central machine. Furthermore, the
performance of a centralized system depends crucially
on the state of the central machine: the breakdown of
the central machine could lead to collapse of the whole
system.Hence, as suggested by L, it is of great interest to
investigate the decentralized distributed system from a
statistical perspective. Some related works are Ormándi
et al. (2013), Lalitha et al. (2018), Tang et al. (2018), and
those in L’s discussion.

5. Other issues

As pointed out by L, the distributed framework can
also cooperate with some efficient algorithms to further
accelerate the local computation process. This is par-
ticularly useful when the local sample size is still con-
siderable, due to limited computing resources or other
concerns. In addition to the sketching methods (Lian
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et al., 2021) mentioned by L, stochastic optimization
methods (Chen et al., 2021) and subsampling methods
(Yu et al., 2021) can be combined with the distributed
framework as well.

The robustness is another important issue that needs
to be considered in the distributed learning problems.
In practice, it is not unusual that some local machines
send totally wrong data to the central machine due
to, for example, external attacks or unstable networks.
How to cope with these unpredictable consequences
and preserve the efficiency of the resulting estimator
deserves an in-depth study.We sincerely appreciate that
LZ provide a careful review on the Byzantine-robust
distributed learning problems.

Last but not the least, as pointed out by G, many
works on distributed learning assume that the data
are independently and identically distributed (i.i.d.)
among different machines. This is often an unrealistic
assumption. In this regard, Sun and Lin (2020) con-
sider the dependent samples and Pan et al. (2021) con-
sider the non-randomly distributed samples. Moreover,
we think that analysing network data in a distributed
system is also a challenging but meaningful work. A
recent attempt at community detect can be found inWu
et al. (2020).
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