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ABSTRACT
For stochastic loss reserving, we propose an individual information model (IIM) which accom-
modates not only individual/micro data consisting of incurring times, reporting developments,
settlement developments as well as payments of individual claims but also heterogeneity
among policies. We give over-dispersed Poisson assumption about the moments of reporting
developments and payments of every individual claims. Model estimation is conducted under
quasi-likelihood theory. Analytic expressions are derived for the expectation and variance of
outstanding liabilities, given historical observations. We utilise conditional mean square error
of prediction (MSEP) to measure the accuracy of loss reserving and also theoretically prove that
when risk portfolio size is large enough, IIM shows a higher prediction accuracy than individ-
ual/micro data model (IDM) in predicting the outstanding liabilities, if the heterogeneity indeed
influences claims developments and otherwise IIM is asymptotically equivalent to IDM. Some
simulations are conducted to investigate the conditional MSEPs for IIM and IDM. A real data
analysis is performed basing on real observations in health insurance.
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1. Introduction

In the background of stochastic reserving, loss reserv-
ing is referred to a procedure to predict incurred out-
standing liabilities in general insurance companies. It
is well known that chain-ladder method proposed by
Mack (1993) and its related versions can be easily per-
formed by using pencil and paper because of the sim-
ple aggregate data structure called run-off triangle and
hence are popular in practice. However, as England
and Verrall (2002) mentioned, the advantages of aggre-
gate data models are at the cost of prediction accuracy
because of information loss caused by simply aggregat-
ing individual or micro data, which records incurring
time, reporting time, settlement time aswell as payment
processes of individual claims. In risk management of
insurance companies, with the modern computer tech-
nology, it is urgent for actuaries to explore the usage of
related information to improve the accuracy in predict-
ing the liabilities, which also attracts increasing inter-
ests of many scholars from actuarial science. Antonio
and Plat (2014), Pigeon et al. (2013, 2014) demon-
strated by an empirical analysis that loss reserving
based on individual data had more prediction accuracy
than aggregate models. Huang, Qiu, Wu, Zhou (2015),
Huang, Qiu, Wu (2015) and Huang et al. (2016)
revealed that individual loss reserving had more accu-
racy than methods using aggregate data in sense that
the former produced a smaller mean square error.

A small stream of earlier literature about IDMs,
for example, Arjas (1989) and Norberg (1993, 1999)
formulated a probabilistic framework for the devel-
opments of individual claims. Most recently, Yu
and He (2016) modelled the individual claim develop-
ment process by marked Cox processes (also known as
double stochastic processes). As we all know, it is chal-
lenging to acquire analytic expressions for themoments
of outstanding liabilities under continuous-time IDMs.
Perhaps partly for this reason, there is a great deal of
work that has been done under discrete-time IDMs,
see, e.g., Pigeon et al. (2013, 2014), Verrall et al. (2010),
Huang, Qiu, Wu, Zhou (2015), Huang, Qiu, Wu (2015)
and Huang et al. (2016). Zhao and Zhou (2010) con-
sidered the R-delays so as to predict the incurred but
not settled outstanding liabilities. Unfortunately, IDMs
also confront information loss caused by neglecting
individual information, i.e., information from policy or
policyholder. It is not clear so far howmuch accuracy in
predicting the outstanding liabilities is sacrificed, when
the individual information is neglected. In the present
paper, we will explore how much improvement in the
accuracy that will be measured by conditional MSEP
can be achieved by incorporating the useful individual
information into modelling under discrete time frame-
work similar as Huang, Qiu, Wu, Zhou (2015), Huang,
Qiu, Wu (2015) and Huang et al. (2016). Besides, we
avoid the strong Poisson distribution assumption for
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the number of individual claims assumed in Huang,
Qiu, Wu, Zhou (2015), Huang, Qiu, Wu (2015) and
Huang et al. (2016) and instead extend to weak assump-
tions about the first two moments so that parameters
estimation can be conducted under quasi-likelihood
theory (cf. McCullagh & Nelder, 1989).

The conditional MSEP is broadly used to com-
pare different models for loss reserving. It is well
known that the conditional MSEP is the sum of pro-
cess variance caused by the randomness of outstand-
ing liabilities and estimation error originating from
uncertainty of parameters estimators. It is theoret-
ically feasible to estimate it by bootstrap method.
There were some examples which discussed the MSEP
under collective models – for instance, Mack (1993),
Mack (2000) (comparing three methods – Benktander,
Bornhuetter–Ferguson and chain-ladder under the cri-
teria of MSEP), Alai et al. (2009, 2010) (Bornhuet-
ter–Ferguson method under generalised linear model)
and Wüthrich and Merz (2008) (comprehensive sum-
mary of the details ofmethods based on aggregate data).
Besides, Lindholm et al. (2020) introduced a semi-
analytic approximation method to estimate the condi-
tional MSEP, where the method is illustrated by loss
reserving based on aggregate data. Examples that have
applied the approximation method are Wahl (2019),
who computed explicit moments of outstanding liabili-
ties by applying discretisation scheme under the frame-
work of Antonio and Plat (2014), andWahl et al. (2019)
whomodelled individual data on aggregate level. In the
present paper, we also use the approximation method
for the MSEP, which is derived under IIM, because of
its simplification.

The paper is organised as follows. In Section 2, we
describe the data structure and display the mathemati-
cal expression of outstanding liabilities caused by a risk
portfolio at a given evaluation date. In Section 3, we
separately model reporting developments, settlement
delays and payments of claims and in each part, we for-
mulate the model assumptions as well as estimation for
themodel parameters. Section 4mainly derives the for-
mulas of loss reserve and conditional variance of out-
standing liabilities given historical observations, and
studies the improvement of accuracy achieved by IIM
with respect to IDM. Section 5 reports some simulation
results and a real data analysis. Section 6 concludes the
paper with a few remarks.

2. Data structure

Claim events incurred by some policy are usually
reported to the insurer in some time periods (report-
ing delays) after their occurrence and the reported
claims are finally settled with some time lags (settle-
ment delays) between their reports and final settle-
ments. Before going further, it is necessary to discuss
the supports of reporting and settlement delays. In

the following assumption, we assume that there exists
maximum reporting delay Dr and settlement delay Ds.
Actually, there are basically two cases for the supports
of the delays: finite and infinite. It would be a known
priori (generally read from the items of the insurance
contracts) if the supports are finite or infinite before
any loss reserving is taken care of. Even for the case the
delays take unrestricted values, if the probability to take
values over certain limits is quite small, one can safely
assume a capped delays by cutting off the tails with
probability small enough. As a result, the assumption
of capped delays is reasonable in many real insurance
businesses, especially for such insurance without very
much high claims payments. An example is the general
health insurance. The assumption of capped delays has
been extensively adopted in such traditionalmethods as
chain-ladder algorithm. If the tails cannot be safely cut
off, however, the models such as the one proposed in
Crevecoeur et al. (2019) or some others would be more
suitable. From the statistical point of view, for their dis-
tributions to be reasonably estimated with observations
over a finite number of years, at least one of the two
assumptions is necessary: they take only a finite num-
ber of values with arbitrary probabilities (but subject
to normalisation) or countably infinitely many values
but with their distribution functions identified by finite
many parameters. Whatever the case, the number of
unknown parameters that need to be estimated must
be finite. Here the former is taken, whereas Crevecoeur
et al. (2019), for example, took the latter.

Then we specify the data structure used in our
model. It is in discrete time version as, e.g., Huang,
Qiu, Wu (2015) did. Typically, the data for modelling
is organised through periods with fixed length such as
1 year, one season or 1 month depending on lines of
business. Conventionally, those periods are referred to
‘(accident) years’. This is also a way widely adopted by
insurers to predict the incurred outstanding liabilities
in practice. Specifically, the whole observation hori-
zon is made of n accident years and loss reserving is
evaluated at the end of nth accident year. In year i,
i = 1, 2, . . . , n, there are mi insurance policies, each of
which is coded by (i, k), k = 1, 2, . . . ,mi.

Every individual (i, k) is associated with a random
risk exposure rik and d-dimensional vector of covariate
xik whose first entry is 1 and other entries indicating
the individual information/features that influence the
developments of individual claims. The developments
of claims incurred by individual (i, k) are detailed as
follows.

(1) The reporting developments of claims are recorded
byNr

iku, u = 0, 1, . . . ,Dr, whereNr
iku is the number

of claims which are incurred in year i and reported
in year i+ u.

(2) For Nr
iku claims, u = 0, 1, . . . ,Dr, their settle-

ment developments are tracked by Nikuv, v =
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0, 1, . . . ,Ds, where Nikuv is the number of claims
which are reported in year i+ u and settled in year
i+ u+ v.

(3) Payments for each claim are assumed to be paid
for only once at its final settlement. For Nikuv
claims, u = 0, 1, . . . ,Dr, v = 0, 1, . . . ,Ds, we use
Yikuvl, l = 1, 2, . . . ,Nikuv to record corresponding
payments.

Then the randomelement associatedwith individual
(i, k) is denoted by

{rik, xik; {Nr
iku; (Nikuv; (Yikuvl)

Nikuv
l=1 )D

s
v=0}D

r
u=0},

i = 1, . . . , n, k = 1, . . . ,mi, which are i.i.d. from the
population

{r, x; {Nr
u; (Nuv; (Yuvl)

Nuv
l=1)

Ds
v=0}D

r
u=0},

which can be considered as a complete observation of a
representative policy in year i.

Following conventional terms, a claim, which has
been reported to the insurer but not settled, is known as
RBNS claim and a claim, which has been incurred but
not reported to the insurer, is known as IBNR claim.
For accident year i, the individual observed data is as
follows.

(1) The reporting developments of a representative
policy in year i are truncated in sense that we can
only observe F r = {Nr

0,N
r
1, . . . ,N

r
Dr
i
}, where

Dr
i = Dr ∧ (n − i), (1)

represents the largest reporting delays of the
reported claims in accident year i.

(2) For Nr
u reported claims, u = 0, 1, . . . ,Dr

i , their
settlement developments are censored in sense
that we can observe {Nu0,Nu1, . . . ,NuDs

i+u
,Nrbns

u },
where

Ds
i+u = Ds ∧ (n − i − u), (2)

is the largest settlement delays of settled claims
with reporting delay u in accident year i and the
number Nrbns

u :=∑Ds

v=n−i−u+1 Nuv, which is the
number of RBNS claims with reporting delays u.
Note that Nrbns

u = 0 if n − i − u ≥ Ds. Denote by
F s =⋃Dr

i
u=0{Nu0,Nu1, . . . ,NuDs

i+u
,Nrbns

u }.
(3) For Nuv settled claims, u = 0, 1,

. . . ,Dr
i , v = 0, 1, . . . ,Ds

i+u, the observed payments
for them are gathered in set {Yuv1,Yuv2, . . . ,
YuvNuv}. Denote F p =⋃Dr

i
u=0
⋃Ds

i+u
v=0 {Yuv1,Yuv2,

. . . ,YuvNuv}.

Then individual observation F o is the union of
{r, x}, F r, F s and F p, that is

F o = {r, x} ∪ F r ∪ F s ∪ F p

and the historical observations of all policies in the
portfolio, denoted by F uo, is just the union of policy-
specified observation that is F uo =⋃n

i=1
⋃mi

k=1 F o
ik,

where F o
ik is the policy-specified realisations of F o in

year i that is

F o
ik = {rik, xik} ∪ F r

ik ∪ F s
ik ∪ F

p
ik.

It is well known that RBNS and IBNR claims of the
risk portfolio naturally result in outstanding liabilities
to the insurer. Specifically, the total of future payments
for all the RBNS and IBNR claims can be represented as

R :=
n∑
i=1

Rrbnsi +
n∑
i=1

Ribnri , (3)

where

Rrbnsi =
mi∑
k=1

Dr
i∑

u=0

Ds∑
v=n−i−u+1

Nikuv∑
l=1

Yikuvl and

Ribnri =
mi∑
k=1

Dr∑
u=n−i+1

Ds∑
v=0

Nikuv∑
l=1

Yikuvl,

are RBNS and IBNR liabilities incurred in year i, respec-
tively. Thoroughly, we take the convention

∑j2
j=j1 · = 0

if j1 > j2.

3. Model specification

This section separately specifies the models for the
reporting developments, settlement developments and
payments of claims. In each part, we first give model
assumptions and then detail the parameter estimations
under both IIM and IDM. The model assumptions in
this section are all given under the condition that risk
exposure r and covariates x are known.

3.1. Modelling reporting developments of claims

Model assumption for reporting developments of
claims is given as follows. It is mainly about the first
and second moments of reporting developments of
claims. The assumption involves vectors of parameters
β ,π1,π2, . . . ,πDr , which are all d-dimensional vector.

Assumption 3.1: For an individual with (r, x), assume
that Nr

u, u = 0, 1, . . . ,Dr are independent,E[Nr
u | r, x]=

rλu and Var(Nr
u | r, x) = φrλu, where λu = λpu with

λ = exp(x′β) and pu(π ; x) = exp(x′πu)∑Dr
j=0 exp(x′π j)

, π0 = 0 as

well as π ′ = (π ′
1,π

′
2, . . . ,π

′
Dr).

Remark 3.1: In order to make π be reasonably esti-
mated, the condition n > Dr is necessary.

By independence among policies and assumption
above, one can construct the quasi-likelihood function
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of reported claims as follows,

Qr(β ,π) = 1
φ

n∑
i=1

mi∑
k=1

Dr
i∑

u=0
(Nr

iku log λiku − rikλiku),

(4)

where λiku is policy-specified quantities of λu that is

λiku = λikpiku = exp(x′
ikβ) · exp(x′

ikπu)∑Dr

j=0 exp(x
′
ikπ j)

.

One can refer to McCullagh and Nelder (1989) for
more details about quasi-likelihood theory. Similar to
maximum likelihood estimation, parameters (β ,π) can
be estimated by maximising Qr(β ,π) with respect
to the parameters. Denote by λ = vec(rikλiku, i =
1, . . . , n, k = 1, . . . ,mi, u = 0, . . . ,Dr

i ) and stackN
r
ikus

as a vector Nr such that entry Niku is corresponding to
rikλiku in vector λ. The quasi-score function, i.e., partial
derivatives ofQr(β ,π)with respect to the parameters is

∇Qr(β ,π) := ∂Qr(β ,π)

∂(β ′,π ′)′
= 1

φ
Xr′diag(λ)−1(Nr − λ),

(5)

where Xr = ∂λ
∂(β ′,π ′) . To determine the block entries of

Xr, one needs the unit vector δs with 1 at component s
(any positive integer) and δ0 = 0, of which dimensions
can be read from context, and the following partial
derivatives

rik · ∂λiku

∂(β ′,π ′)
= rikλiku

(
1

δu − pik

)′
⊗ x′

ik,

where pik = (pik1, pik2, . . . , pikDr)′ and ⊗ is the Kro-
necker product.

The covariance matrix of ∇Qr(β ,π), which is also
the negative expected value of ∂∇Qr(β ,π)

∂(β ′,π ′) , is

Ir(β ,π) = 1
φ
Xr′diag(λ)−1Xr. (6)

The parameters (β ,π) are estimated by Newton–
Raphson with Fisher scoring starting with initials
(βold,πold) and updating estimated parameters in the
following way:

(βnew′,πnew′)′ = (βold′,πold′)′

+ (Xr′
0 diag(λ0)

−1Xr
0)

−1Xr′
0 diag(λ0)

−1(Nr − λ0),

where Xr
0 and λ0 are obtained by replacing (β ,π) with

(βold,πold). Write the estimated parameters as (β̂ , π̂).
To estimate dispersion parameter φ, we adopt conven-
tional method–moment estimation that is,

φ̂ = 1∑Dr

u=0
∑n−u

i=1 mi − (Dr + 1)p

×
Dr∑
u=0

n−u∑
i=1

mi∑
k=1

(Nr
iku − rikλ̂iku)2

rikλ̂iku
,

where λ̂ikus are plug-in estimates of λiku that is

λ̂iku = exp(x′
ikβ̂) · exp(x′

ikπ̂u)∑Dr

j=0 exp(x
′
ikπ̂ j)

.

IDM considers that policy’s feature information has no
effect on reporting developments that is the coefficients
of x1, x2, . . . , xd−1 are thought to be zero. Obviously,
IDM is a misspecified model if the feature informa-
tion indeed influence those developments. Therefore,
in IDM, λ and pu are thought to keep fixed among all
policies and then λu is same for the policies. By max-
imising function Qr in (4) with respect to λu, one can
obtain that

λ̂u = Ñr
u

r(u)
, u = 0, 1, . . . ,Dr, (7)

where Ñr
u =∑n−u

i=1
∑mi

i=1 N
r
iku representing total num-

ber of reported claims with reporting delay u and r(u) =∑n−u
i=1

∑mi
i=1 rik meaning total exposures in the first

n−u years.

3.2. Modelling settlement delays

In IIM, the settlement developments of individual
claims after their reporting to the insurer have the
following assumption. The assumption involves vec-
tors of parameters ρ1, ρ2, . . . , ρDr , which are all d-
dimensional vector.

Assumption 3.2: Assume that given Nr
u, (Nu0,Nu1, . . . ,

NuDs) follows multinomial distribution with parameters
Nr
u and (q0, . . . , qDs), where

qv(ρ; x) = exp(x′ρv)∑Ds

j=0 exp(x′ρj)
, v = 0, . . . ,Ds,

with ρ0 = 0, as well as ρ′ = (ρ′
1, ρ

′
2, . . . , ρ

′
Ds) and the

tuples (Nu0,Nu1, . . . ,NuDs), u = 0, . . . ,Dr are indepen-
dent.

Remark 3.2: Similar to the condition in Remark 3.1,
the condition n > Ds is necessary to make ρ be rea-
sonably estimated. Therefore, it is enough to assume
n > max(Dr,Ds).

For Nr
u (u ≤ Dr

i ) reported claims of representative
policy in year i, one can only observe Nu0,Nu1, . . . ,
Nu,Ds

i+u
and Nrbns

u :=∑Ds

v=n−i−u+1 Nuv (the number
of RBNS claims with settlement delays no less than
n−i−u), whereNrbns

u = 0 if u ≤ n − i − Ds. According



118 Z. WANG ET AL.

to the assumption above, the individual log-likelihood
of settlement developments is

Qios(ρ) =
Ds
i∑

v=0

Dr
i+v∑

u=0
Nuv log qv +

Dr
i∑

u=0
Nrbns
u log Q̄n−i−u,

(8)

where Q̄v :=
∑Ds

s=v+1 qs is the tail probability of settle-
ment delays no less than v. Obviously, an alternative
form of term in the last term in the first line of (8) is∑Dr

i
u=(n−i−Ds+1)+ . Further, if we writeN

s
v =∑Dr

i+v
u=0 Nuv,

which means number of settled claims with settlement
delay v, (8) becomes

Qios(ρ) =
Ds
i∑

v=0
Ns
v log qv +

Dr
i∑

u=0
Nrbns
u log Q̄n−i−u. (9)

To estimate ρ byNewton–Raphsonwith Fisher scoring,
we need the identities in the following proposition.

Proposition 3.1: The gradient of Qios(ρ)with respect to
ρ is

∂Qios(ρ)

ρ

=
⎡⎣Ns

i +
Dr
i∑

u=0

Nrbns
u

Q̄n−i−u

(
0

qn−i−u

)
− Nrq

⎤⎦⊗ x,

and conditional expectation of Hessian matrix of Qios(ρ)

given (r, x) is

E

[
∂2Qios(ρ)

∂ρρ′

∣∣∣∣ r, x] = r

⎡⎣n−i−Ds∑
u=0

λu(diag(q) − qq′)

+
(Ds−1)∧(n−i)∑
v=(n−i−Dr)+

λn−i−v

×
⎛⎝ diag(qv) − qvq′

v −qvq
′
v

−qvq′
v

Qv

Q̄v
qvq

′
v

⎞⎠⎤⎦⊗ xx′, (10)

where Ns
i = (Ns

1,N
s
2, . . . ,N

s
Ds
i
)′, Nr =∑Dr

i
u=0 N

r
u and

q = (q1, q2, . . . , qDs)′, qv = (q1, q2, . . . , qv)′,

qv = (qv+1, qv+2, . . . , qDs)′.

We estimate ρ by maximising overall log-likelihood
function Qs(ρ) which is the summation of individual
log-likelihood Qios

ik (ρ), that is ρ̂ is obtained as follows:

ρ̂ = argmax
ρ

Qs(ρ),

where

Qs(ρ) =
Ds∑
v=0

n−v∑
i=1

mi∑
k=1

Ns
ikv log qikv

+
Dr∑
u=0

n−u∑
i=(n−u−Ds)++1

mi∑
k=1

Nrbns
iku log Q̄ik,n−i−u.

To obtain ρ̂, similar as previous section, we use New-
ton–Raphson with Fisher scoring which needs the fol-
lowing gradients ∇Qs(ρ) and its covariance matrix
Is(ρ), where

∇Qs(ρ) := ∂Qs(ρ)

∂ρ
=

n∑
i=1

mi∑
k=1

∂Qios
ik (ρ)

ρ
,

Is(ρ) :=
n∑
i=1

mi∑
k=1

E

[
∂2Qios

ik (ρ)

∂ρρ′

∣∣∣∣∣ rik, xik
]
. (11)

In IDM, similar as λu in the section above, proba-
bilities (q0, . . . , qDs) are thought to keep fixed among
all policies that is (q0, . . . , qDs) is independent of x. By
MLE again, we have

q̂0 = ĥ0 and q̂v = ĥv
v−1∏
s=0

(1 − ĥs), v = 0, 1, . . . ,Ds,

(12)

where ĥv = Ñs
v∑Ds

t=v Ñ
s
t+
∑Ds

t=v+1 Gt
with

Ñs
v =

n−v∑
i=1

mi∑
k=1

Ns
ikv and vGv =

n−v+1∑
i=1

mi∑
k=1

Nrbns
ik,n−i−v+1.

3.3. Modelling claim payments

We give some assumptions about payments of individ-
ual claims as follows. The assumptions involve a (d +
Dr + Ds)-dimensional vector of parameters γ .

Assumption 3.3: Claim payments Yuvl, u = 0, . . . ,Dr,
v = 0, . . . ,Ds, l = 1, . . . ,Nuv are independent, inde-
pendent of Nuv; u = 0, . . . ,Dr, v = 0, . . . ,Ds and also
assume that conditional mean and variance satisfy

E[Yuvl|x] = μuv, Var(Yuvl|x) = φpμuv

with μuv = exp(x′
uvγ ), where xuv = (x′, δ′

u, δ
′
v)

′ is a
(d + Dr + Ds)-dimensional vector of covariates.

Arrange all settled payments of the risk portfolio into
the set {(Yl, x̃l), l = 1, 2, . . . ,Nts}, where x̃l is covari-
ate associated with payments Yl and Nts is the total
number of settled claims. Construct quasi-likelihood by
independence among policies and assumption above,

Qp(γ ) = 1
φp

Nts∑
l=1

(Yl logμl − μl), (13)

where μl = exp(x̃′
lγ ). Denote μ = (μ1, . . . ,μNts)′ and

Y = (Y1, . . . ,YNts)′. The quasi-score function–
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partial derivatives of Qp(γ ) with respect to the param-
eters is

Q̇p(γ ) := ∂Qp(γ )

∂γ
= 1

φp X̃
′(Y − μ), (14)

where X̃ = (x̃1, . . . , x̃Nts)′.
The covariance matrix of Q̇(γ ), which is also the

negative expected value of ∂Q̇(γ )/∂γ ′, is

Ip = 1
φp X̃

′diag(μ)X̃. (15)

The parameters γ are estimated by iteratively re-
weighted least square (IRLS) algorithm, which is as
follows,

(1) Initialise γ̂ = γ 0 such that μ̂l = exp(x̃′
lγ̂ ) and μ̂ =

(μ̂1, μ̂2, . . . , μ̂Nts), where γ 0 is usually zero vector.
(2) Compute adjusted response zl = yl − μ̂l + X̃γ̂ .
(3) Update γ̂ by what follows,

γ̂ = (X̃′diag(μ̂)X̃)−1X̃′diag(μ̂)Z,

where Z = (z1, z2, . . . , zNts), and then μ̂l =
exp(x̃′

lγ̂ ).

To estimate dispersion parameter φp, we also adopt
conventional method–moment estimation that is,

φ̂p = 1
Nts − (p + Dr + Ds)

Nts∑
l=1

(Yl − μ̂l)
2

μ̂l
,

where μ̂l = exp(x̃′
lγ̂ ).

In IDM, the coefficients of covariates about individ-
ual features are considered to be zero, i.e., γ1 = · · · =
γd−1 = 0, and μls only depended on reporting and
settlement delays, which means it just needs to esti-
mate γ ID := (γ0, γd, . . . , γd−1+Dr , . . . , γd−1+Dr+Ds)′ by
the similar procedure as stated above. Therefore, esti-
mator γ̂ ID for γ ID is a maximiser of the Qp, which is
the function of γ ID that is under γ1 = · · · = γd−1 = 0,
and μl in Equation (13) is independent of individual
information and only takes one of the following forms:

μID
uv = exp((1, δ′

u, δ
′
v)γ

ID),

u = 0, 1, . . . ,Dr, v = 0, 1, . . . ,Ds. (16)

Then the estimate of μID
uv under IDM is denoted by

μ̂uv := exp((1, δ′
u, δ

′
v)γ̂

ID
), which is a policy-free esti-

mate.

4. Prediction for outstanding liabilities

In this section, the terminologies ‘loss reserve’ and ‘loss
reserving’ are precisely specified,measurement of accu-
racy of loss reserving is then discussed and we also
shows the improvement of accuracy of loss reserving
basing on IIM with respect to IDM.

4.1. Loss reserve and loss reserving

Recalling the total outstanding liability R defined in (3),
by ‘loss reserve’, we refer to the projection

Rm = Rm(θ) = E[R|F uo] (17)

of R on the observations F uo by the evaluation date
n, where the subscript ‘m’ indicates portfolio size, since
loss reserve is based on specific risk portfolio. One can
see that Rm is a function of unknown parameters θ :=
(β ′,π ′, ρ′, γ ′)′ and hence it needs to be estimated.

To derive moments about outstanding liabilities R
and conditional variance of R, the following quanti-
ties are needed. For u = 0, 1, . . . ,Dr, v = 0, 1, . . . ,Ds,
denote by

μ̃uv =
∑Ds

t=v qtμut∑Ds

t=v qt
and μ̃s

uv =
∑Ds

t=v qtμ
2
ut∑Ds

t=v qt
, (18)

where μ̃uv is conditional moment of claim payments
given x, reporting delays u and settlement delays no less
than v, so that corresponding policy-specified quanti-
ties are

μ̃ikuv =
∑Ds

t=v qiktμikut∑Ds

t=v qikt
and μ̃s

ikuv =
∑Ds

t=v qiktμ
2
ikut∑Ds

t=v qikt
.

(19)

Then we derive the following theorem which provides
formulas to compute not only the loss reserve Rm but
also variance of outstanding liabilities R given observa-
tions F uo.

Theorem 4.1: Under the model formulated by
Assumptions 3.1–3.3, the loss reserve is

Rm(θ) =
Ds∑
v=1

Dr
v∑

u=0

mn−v−u+1∑
k=1

Nrbns
(n−v−u+1)kuμ̃(n−v−u+1)kuv

+
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

rikλikuμ̃iku0, (20)

and the variance of R given observations F uo is

Var(R |F uo) =
Ds∑
v=1

Dr
v∑

u=0

mn−v−u+1∑
k=1

Nrbns
(n−v−u+1)ku

×
(

μ̃s
n−v−u+1,kuv

Q̄n−v−u+1,k,v−1

− μ̃2
n−v−u+1,kuv + φpμ̃n−v−u+1,kuv

)

+
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

rikλiku

× (μ̃s
iku0 + (φ − 1)μ̃2

iku0 + φpμ̃iku0).
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It can be clearly seen that loss reserveRm depends on
not only the information fromobserved data in terms of
the number of RBNS claims and policy’s feature infor-
mation but also unknown parameters θ , which results
in the need for estimating Rm. Accordingly, the term
‘loss/claims reserving’ is used for certain reasonable
estimate of the loss reserve. Formally, after getting cer-
tain reasonable estimates θ̂ of the unknown parameters
from the observed data, as, for example, what has been
done in the previous section, we have the following
theorem.

Theorem 4.2: By loss reserving we refer to the (random)
quantity

R̂II =
Ds∑
v=1

Dr
v∑

u=0

mn−v−u+1∑
k=1

Nrbns
(n−v−u+1)ku

ˆ̃μ(n−v−u+1)kuv

+
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

rikλ̂iku ˆ̃μiku0, (21)

where ˆ̃μikuvs and λ̂ikus are obtained by substituting
unknown parameters with their estimates.

According to the theorem above, it is easy to obtain
loss reserving under IDM by simply replacing μ̂ikuvs
and λ̂ikus in (21) with policy-free estimates μ̂uvs and
λ̂us, respectively. Specifically, to distinguish two differ-
ent estimates for reserve, we use symbol R̂ID to indicate
loss reserving under IDM, which is

R̂ID =
Ds∑
v=1

Dr
v∑

u=0
Ñrbns
n−v−u+1,u

ˆ̃μuv +
Dr∑
u=1

r[u]λ̂u ˆ̃μu0, (22)

where Ñrbns
n−v−u+1,u =∑mn−v−u+1

k=1 Nrbns
n−v−u+1,ku, r[u] =∑n

i=n−u+1
∑mi

k=1 rik and ˆ̃μuv =
∑Ds

t=v q̂tμ̂ut∑Ds
t=v q̂t

.

4.2. Measurement of prediction accuracy

It is essential to measure accuracy of loss reserving and
especially accuracy improvement of loss reserving by
considering useful individual information with respect
to the one without this information. To measure the
prediction accuracy of some reserve estimate R̂, which
is F uo measurable, a natural idea is conditional mean
square error of prediction (MSEP) which is defined as

MSEP(R, R̂) = E[(R − R̂)2|F uo]

= Var(R|F uo) + (E[R|F uo] − R̂)2.
(23)

For loss reserving R̂II , which includes individual infor-
mation, and R̂ID without individual information, their

MSEPs are MSEP(R, R̂II) and MSEP(R, R̂ID), respec-
tively. To measure the difference in prediction accuracy
of R̂II and R̂ID, we use the following ratio:

Mr = MSEP(R, R̂II)
MSEP(R, R̂ID)

= Var(R|F uo) + (E[R|F uo] − R̂II)2

Var(R|F uo) + (E[R|F uo] − R̂ID)2
. (24)

It is well known that individual information model
performs better in terms of prediction accuracy than
individual data model, ifMr < 1, but it is hard to com-
puteMr with unknown parameters. Fortunately, we can
compare Mr and number 1 when portfolio size m is
large enough. It is notable that individual data model is
nested in individual information model. Then we have
the following theorem under some regular conditions
(see Van der Vaart, 2000), which illustrates the advan-
tages of individual information model over individual
data model.

Theorem 4.3: When portfolio size m tends to infinity,
Mr P→ 1, where P→ means converging in probability, if
the individual data model is true, that is the coefficients
of x1, x2, . . . , xd−1 are zero. Otherwise,

1
m

(R̂ID − Rm(θ))
P→ �

=
Ds∑
v=1

Dr
v∑

u=0
κn−v−u+1E[rλuQ̄v−1( ˇ̃μuv − μ̃uv)]

+
Dr∑
u=1

n∑
i=n−u+1

κiE[rλu( ˇ̃μu0 − μ̃u0)], (25)

where ˇ̃μuv =∑Ds

s=v q̌sμ̌us/
∑Ds

s=v q̌s with

q̌v = ȟv
v−1∏
s=0

(1 − ȟs),

ȟv =
∑n−v

i=1
∑Dr

i+v
u=0 κiE

[
rλuqv

]
∑n−v

i=1
∑Dr

i+v
u=0 κiE

[
rλuQ̄v−1

] ,
μ̌uv = exp((1, δ′

u, δ
′
v)γ̌

ID
), and

γ̌
ID = Argmax

γ ID

Dr∑
u=0

Ds∑
v=0

n−u−v∑
i=1

κiE

× [rλuqv(μuv logμID
uv − μID

uv)], μID
uv in (16),

(26)

and if the asymptotic bias � 
= 0,Mr P→ 0.

The theorem above shows that IIM is asymptoti-
cally equivalent to IDM, if IDM is true and otherwise
the former has higher prediction accuracy than the
latter when portfolio size is large enough. One can intu-
itively understand that as portfolio size tends to infinity,
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both models can capture all the information included
in observations when IDM holds true, since IIM is a
generalised version of IDM. However, individual data
model fails to capture the effects of policy’s feature
information and thus leads to greater bias when IIM
holds true.

An important issue one concerns is how much pre-
diction accuracy of loss reserving R̂II can be improved,
if IIM holds true, in a fixed risk portfolio that is one
cares about actual value of Mr under true IIM. How-
ever, there are unknown parameters θ in Var(R|F uo)

and E[R|F uo]. An approximation method that comes
to one’s mind is substituting estimated parameters
θ̂ to them, which however needs to further take
estimation error of θ̂ into account. We directly use
the method named semi-analytical approximation for
MSEP(R, R̂) (One can refer to Lindholm et al. (2020)
formore details), which is also discussed inWahl (2019)
under micro data model. Then the approximations for
MSEP(R, R̂II) and MSEP(R, R̂ID) are

M̂SEP(R, R̂II) = Var(R|F uo)(θ̂)

+ ∇Rm(θ̂)′Ĉov(θ̂)∇Rm(θ̂),

M̂SEP(R, R̂ID) = Var(R|F uo)(θ̂)

+ ∇Rm(θ̂)′Ĉov(θ̂)∇Rm(θ̂)

+ (R̂II − R̂ID)2, (27)

so that

M̂r = Var(R |F uo)(θ̂) + ∇Rm(θ̂)′Ĉov(θ̂)∇Rm(θ̂)

Var(R|F uo)(θ̂) + ∇Rm(θ̂)′Ĉov(θ̂)∇Rm(θ̂)

+(R̂II − R̂ID)2

,

(28)

where∇Rm(θ̂) is the gradient of loss reserveRm(θ)with
respect to θ computed at θ̂ and Ĉov(θ̂) is asymptotic
covariance of θ̂ . It is easily known that

Ĉov(θ̂) = diag(φ̂(X̂r′diag(λ̂)−1X̂r)−1, (Is(ρ̂))−1, φ̂p(X̃′X̃)−1),

where X̂r and λ̂ are plug-in estimates and Is(ρ̂) is
obtained by inserting ρ̂ into Is(ρ) in Equation (11). One
can refer to Chapter 9 in McCullagh and Nelder (1989)
for more details.

Proposition 4.4: The gradient of Rm(θ) with respect to
(β ′,π ′)′ is

∂Rm(θ)

∂(β ′,π ′)′

=
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

rikλikuμ̃iku0

(
1

δu − pik

)
⊗ xik,

the gradient of Rm(θ) with respect to ρ is

∂Rm(θ)

∂ρ
=

Ds∑
v=1

Dr
v∑

u=0

miuv∑
k=1

Nrbns
iuvku

Q̄iuvk,v−1

(
0

qmu
iku,v−1

)
⊗ xiuvk

+
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

rikλiku

× [diag(qik)μiku0 − μ̃iku0qik] ⊗ xik,

where iuv = n − v − u + 1,

qmu
ikuv = diag(qikv)μikuv − μ̃iku,v+1qikv,

and μikuv = (μiku,v+1, . . . ,μikuDs)′, and the gradient of
Rm(θ) with respect to γ is

∂Rm(θ)

∂γ
=

Ds∑
v=1

Dr
v∑

u=0

mn−v−u+1∑
k=1

Nrbns
(n−v−u+1)ku

× ˙̃μ(n−v−u+1)kuv

+
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

rikλiku ˙̃μiku0,

where ˙̃μikuv =
∑Ds

t=v qiktμikutxikut∑Ds
t=v qikt

.

5. Simulations and real data analysis

Reported in this section include the results from a few
small simulations conducted to further investigateMr.
A real data in health insurance was also analysed to
show the application of IIM and the accuracy improve-
ment by using IIM with respect to IDM in practice.

5.1. Simulation

In this simulation, the risk exposures associated with
every individuals were drawn from the uniform dis-
tribution on [0, 1], the covariates were produced by
multivariate standard normal distribution and we sim-
ulated the random developments of claims for a fixed
risk portfolio. In each run, we directly compute Mr

according to Equation (24) so that we can know how
much accuracy is improved by using IIM with respect
to IDM under the fixed risk portfolio.

Because there are only assumptions about mean and
variance for reporting developments and payments of
claims, we need additional distributional assumptions
to generate them, which arise as follows. First, for indi-
vidual reporting developmentsNr

us, we generated them
by the additional assumption which says that Nr

u
φ

fol-
lows Poisson distribution with mean rλu

φ
. Second, for

individual payments Yl, similarly, we generated them
by assuming that Yl

φp follows Poisson distribution with
mean μl

φp . Each run in the simulation was conducted
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Figure 1. The simulatedMr over varying coefficients of covariates. (a) Example 5.1 and (b) Example 5.2.

with the setting: n = 5,Dr = 2,Ds = 2, a risk portfolio
size m = (10000, 10, 000, 10, 000, 10, 000, 10, 000), i.e.,
10, 000 policies in each year, and any combination of
parameters which varied according to the setting in the
following two examples.

Example 5.1: Dimension d = 3 and the parameters
varied in an auxiliary parameter t ranging in [−1, 1] by
step 0.01 as

• Parameters for reporting developments:

β = (−0.5,−t, 2t)′,π1 = (1, t, t)′,

π2 = (−1,−t,−2t)′,

and φ = 2.
• Parameters for settlement developments: ρ1 = (0.1,

0.2t,−0.3t)′ and ρ2 = (−0.1,−0.2t, 0.3t)′.
• Parameters for payments: γ = (5, 0.2t, 0.4t, 0.1, 0.6,

0.2, 0.8)′ and φp = 1.5.

Covariates were produced by bivariate standard nor-
mal distribution in this example.

Example 5.2: Dimension d = 4 and parameters varied
over t ranging in [−1, 1] by step 0.01 as

• Parameters for reporting developments:

β = (2, 0.2t,−0.8t, 0.5t)′,

π1 = (2,−t, 3t,−2t)′,π2 = (1, 2t,−t,−2t)′,

and φ = 3.
• Parameters for settlement developments:

ρ1 = (0.3, 0.1t,−0.5t, 0.2t)′,

ρ2 = (−0.2,−0.3t, 0.7t, 0.4t)′.

• Parameters for payments: γ = (3, 0.6t,−0.2t, 0.7t,
0.3, 0.2,−0.5, 0.4)′ and φp = 2.5.

Covariates were produced by ternary standard nor-
mal distribution in this example.

Table 1. The individual information in real data analysis.

Covariate Description Type Levels

x1 Insured’s age Quantitative
x2 Insured’s

gender
Binary female: 1, male: 0

x3 Policy type Binary general health
insurance: 1

serious illness
insurance: 0

x4 − x8 Geographical
location

Categorical regions I-V: one-hot
encoding with

(x4, x5, . . . , x8) so
that

region VI: x4 =
· · · = x8 = 0

In each run, we estimated loss reserve by both IIM
and IDM using the simulated data that is we com-
puted R̂II by Equation (21) as well as R̂ID by (22) and
true parameters were used to compute Var(R |F uo)

and E[R |F uo] according to Theorem 4.1. Then we
computed Mr by inserting the computed R̂II , R̂ID,
Var(R |F uo) and E[R |F uo] into Equation (24). At
last, we plotted the simulated results in Figure 1.

We obtained the results consistent with Theorem 4.3
from the simulations above.

(1) When the coefficients of x1, x2, . . . , xd−1 approach
zero, most Mrs are close to real number 1 that is
loss reserving by IIM almost has the same accuracy
as that by IDM.

(2) When those coefficients are away from zero, Mr

tends to be zero that is the prediction accuracy
of loss reserving by IIM is greatly improved with
respect to IDM.

5.2. Real data analysis

In this section, we analysed a dataset, which was col-
lected by a commercial insurance company in China.
The dataset recordedwriting and expiring dates of poli-
cies, individual information, see Table 1, and devel-
opments of reported claims between 1/1/2019 and
8/31/2019.

To visualise the effects of individual information
on the developments of claims, for example, the his-
tograms of reporting and settlement delaysmeasured in



STATISTICAL THEORY AND RELATED FIELDS 123

Figure 2. Histograms of reporting delays (in days): (a) Female, Region III, age 9–20; (b) Male, Region I, age 45–50; (c) Male, Region
VI, age 20–40; (d) Male, Region III, age > 55.

Figure 3. Histograms of settlement delays (in days): (a) Female, Region III, age 9–20; (b) Male, Region I, age 45–50; (c) Male, Region
VI, age 20–40; (d) Male, Region III, age > 55.

dayswere provided under a few combinations of covari-
ate values including gender, geographical location and
age, as presented in Figures 2 and 3. It was strongly pro-
posed that the individual information had impacts on
the distributions of reporting and settlement delays.In
the dataset, all the reporting delays were not more than
150 days (5 months). By China Banking and Insurance

Regulatory Commission, the reported claims in health
insurance are generally required to be settled within
2 months if no disagreement exists. It is appropriate
to take 1 month as the time unit (‘accident year’ in
previous sections). Thus the maximum reporting and
settlement delays were safely set to Dr = 5 and Ds = 3
(the real data supported this assumption).

Table 2. Estimated parameters for reporting developments, their standard errors and p-values.

β π1

Estimate Std. error p-value Estimate Std. error p-value

Intercept −4.6083 0.0078 0.0000 0.8135 0.0158 0.0000
x1 0.0307 0.0001 0.0000 0.0044 0.0003 0.0000
x2 0.0979 0.0109 0.0000 −0.0359 0.0221 0.1044
x3 1.2725 0.0114 0.0000 −0.1032 0.0231 0.0000
x4 0.7215 0.0233 0.0000 −0.0277 0.0466 0.5523
x5 0.6734 0.0327 0.0000 −0.1187 0.0654 0.0697
x6 0.5786 0.0121 0.0000 −0.6239 0.0244 0.0000
x7 0.3889 0.0145 0.0000 −0.5281 0.0292 0.0000
x8 0.3114 0.3114 0.0000 −0.3829 0.0532 0.0000

π2 π3

Intercept −0.0198 0.0224 0.3762 −0.8734 0.0358 0.0000
x1 0.0050 0.0005 0.0000 0.0064 0.0008 0.0000
x2 −0.0200 0.0314 0.5239 −0.0716 0.0507 0.1575
x3 0.0011 0.0322 0.9712 −0.0313 0.0515 0.5433
x4 0.0685 0.0581 0.2385 0.0542 0.0917 0.5541
x5 −0.1122 0.0831 0.1769 −0.4597 0.1543 0.0028
x6 −0.8899 0.0361 0.0000 −0.7543 0.0549 0.0000
x7 −0.8522 0.0436 0.0000 −0.8407 0.0703 0.0000
x8 −0.5350 0.0734 0.0000 −0.7509 0.1305 0.0000

π4 π5

Intercept −1.6427 0.0525 0.0000 −2.2198 0.0768 0.0000
x1 0.0057 0.0012 0.0000 0.0090 0.0017 0.0000
x2 −0.0404 0.0739 0.5843 0.1614 0.1028 0.1164
x3 0.0716 0.0734 0.3293 0.0059 0.1096 0.9570
x4 0.4313 0.1220 0.0004 0.1285 0.2004 0.5213
x5 −0.5048 0.2568 0.0494 −0.1750 0.3074 0.5691
x6 −0.5444 0.0801 0.0000 −0.5695 0.1152 0.0000
x7 −0.7191 0.1079 0.0000 −0.8211 0.1620 0.0000
x8 −0.4864 0.1865 0.0091 −0.3980 0.2528 0.1153
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To illustrate the proposed model for loss reserving,
evaluation date was set as 8/31/2019. That is, weworked
with n = 8, Dr = 5 and Ds = 3 (months). There are
four factors organised into eight features x1, . . . , x8, as
shown in Table 1. Besides, reporting and settlement
delays, which were regarded as factors to model claim
payments as Assumption 3.2 formulated, were respec-
tively organised into five features x9, x10, . . . , x13 and
three features x14, x15, x16.

The estimated parameters for the reporting devel-
opments under IIM, their standard errors and p-values
of significance test were displayed in Table 2, while the
corresponding estimated results under IDM, i.e., λ̂u,
u = 0, 1, . . . , 5 in (7) are

(0.0218, 0.0341, 0.0133, 0.0058, 0.0034, 0.0022),

respectively. Besides, the estimated dispersion param-
eter φ̂ = 1.9433. These results in (2) provide obvious
evidence that individual information has effects on the
reporting developments of claims in sense that most
covariates associated with individual information are
significant at significance level 0.05.

Similar results for settlement developments and pay-
ments are listed in Tables 3 and 4. These results also
provide obvious evidence that individual information
has effects on settlement developments and payments
of claims. Besides, the estimated dispersion parameter
φ̂p = 15467.1 and the estimates under IDM are

(q̂0, q̂1, q̂2, q̂3) = (0.6435, 0.3121, 0.0363, 0.0081),

γ̂
ID = (8.3055, 0.4535, 0.5830, 0.6227, 0.58380.4557,

0.4204, 0.6139, 0.8472)′.

In Table 5, the columns with names ‘IBNR’, ‘RBNS’
and ‘Loss reserving’ correspond to estimates of IBNR
reserve, RBNS reserve and total loss reserve, respec-
tively. The square roots of approximated conditional

Table 3. Estimated parameters for settlements developments,
their standard errors and p-values.

ρ1 ρ2

Estimate Std. error p-value Estimate Std. error p-value

Intercept −0.9013 0.0124 0.0000 −2.2347 0.0354 0.0000
x1 0.0046 0.0002 0.0000 0.0041 0.0008 0.0000
x2 −0.0307 0.0174 0.0783 −0.1307 0.0510 0.0104
x3 −0.0246 0.0182 0.1765 0.4631 0.0461 0.0000
x4 0.0475 0.0368 0.1971 −0.9837 0.1058 0.0000
x5 0.0230 0.0511 0.6529 −1.2136 0.1596 0.0000
x6 0.0414 0.0192 0.0311 −0.8547 0.0509 0.0000
x7 −0.0353 0.0232 0.1281 −1.2330 0.0749 0.0000
x8 0.0831 0.0412 0.0439 −1.3182 0.1414 0.0000

ρ3
Intercept −4.8241 0.0809 0.0000
x1 0.0011 0.0019 0.5482
x2 −0.1864 0.1202 0.1210
x3 −0.3856 0.1295 0.0029
x4 0.8514 0.2535 0.0007
x5 −1.7351 0.9992 0.0824
x6 1.0403 0.1047 0.0000
x7 0.3729 0.1047 0.0222
x8 −0.2783 0.4388 0.5259

Table 4. Estimated parameters γ̂ for payments, their standard
errors and p-values.

Estimate Std. error p-value

Intercept 9.3727 0.0088 0.0000
x1 −0.0030 0.0002 0.0000
x2 −0.1756 0.0132 0.0000
x3 −2.0128 0.0311 0.0000
x4 −0.0642 0.0233 0.0058
x5 −0.6621 0.0409 0.0000
x6 −0.4123 0.0150 0.0000
x7 −0.2496 0.0151 0.0000
x8 −0.3536 0.0306 0.0000
x9 0.2062 0.0135 0.0000
x10 0.7433 0.0183 0.0000
x11 0.7745 0.0311 0.0000
x12 0.6025 0.0529 0.0000
x13 0.2796 0.0950 0.0032
x14 0.3586 0.0155 0.0000
x15 0.5814 0.0461 0.0000
x16 0.5057 0.1174 0.0000

Table 5. Reserving, accuracy of prediction and accuracy
improvement of IIM with respect to IDM.

Model IBNR RBNS Loss reserving
√

̂MSEP M̂r

IIM 56393880 24858086 81251966 2784005 0.2237
IDM 58017529 28420566 86438096 5886139

MSEPs under IIM and IDM are in the fourth col-
umn of Table 5. The rightmost column in this table
showed the computed M̂r by (28). We can see that
loss reserving by IIM provides more stable predic-
tion of outstanding liabilities than that by IDM since
the former has smaller conditional MSEP and after
incorporating useful individual information into loss
reserving, the prediction accuracy is greatly increased
by 77.63%.

6. Conclusion

This paper explored the improvement of accuracy in
predicting outstanding liabilities, which are incurred by
general insurance companies, by incorporating useful
individual information into modelling. The reporting
developments and payments of individual claims were
given weak assumptions about their first two moments
and modelled under quasi-likelihood theory, while set-
tlement delays were modelled by multinomial logis-
tic regression. Based on the model specification, loss
reserve and conditional variance of outstanding liabili-
ties were derived, which were further used to compute
loss reserving and conditional MSEP. It was theoret-
ically proved that loss reserving incorporating useful
individual information shows higher accuracy than that
under IDM,where the accuracy ismeasured by the con-
ditional MSEP, when portfolio size is large enough. The
conclusion is also supported by the simulations and real
data analysis.

While the proposed model is basically a paramet-
ric model in statistical context, some one may be
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concerned with the limitation that the model is sub-
jective and thus question its robustness in practical
applications. Regarding this aspect, a possible next
step is to study this problem under a nonparametric
framework. Especially, it is more interesting to model
the dependence of claims development on individ-
ual information by machine learning (including deep
learning).

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Funding

This work was supported by the Natural Science Foundation
ofChina (71771089), the Shanghai Philosophy and Social Sci-
ence Foundation (2015BGL001), the National Social Science
Foundation Key Program of China (17ZDA091) and China
Scholarship Council (201906140045).

Notes on contributors

Zhigao Wang is a Ph.D. candidate in Statistics at East China
Normal University.

Xianyi Wu is a professor in School of Statistics at East China
Normal University.

Chunjuan Qiu is an associate professor in School of Statistics
at East China Normal University.

References

Alai, D. H.,Merz,M., &Wüthrich,M. V. (2009).Mean square
error of prediction in the Bornhuetter–Ferguson claims
reserving method. Annals of Actuarial Science, 4(1), 7–31.
https://doi.org/10.1017/S1748499500000580

Alai, D. H., Merz, M., & Wüthrich, M. V. (2010). Prediction
uncertainty in the Bornhuetter–Ferguson claims reserving
method: Revisited. Annals of Actuarial Science, 5(1), 7–7.
https://doi.org/10.1017/S1748499510000023

Antonio, K., & Plat, R. (2014). Micro-level stochastic loss
reserving for general insurance. Scandinavian Actuarial
Journal, 2014(7), 649–669. https://doi.org/10.1080/034612
38.2012.755938

Arjas, E. (1989). The claims reserving problem in non-life
insurance: Some structural ideas. ASTIN Bulletin: The
Journal of the IAA, 19(2), 139–152. https://doi.org/10.
2143/AST.19.2.2014905

Crevecoeur, J., Antonio, K., & Verbelen, R. (2019). Model-
ing the number of hidden events subject to observation
delay. European Journal of Operational Research, 277(3),
930–944. https://doi.org/10.1016/j.ejor.2019.02.044

England, P. D., & Verrall, R. J. (2002). Stochastic claims
reserving in general insurance. British Actuarial Journal,
8(3), 443–544. https://doi.org/10.1017/S135732170000
3809

Huang, J., Qiu, C., & Wu, X. (2015). Stochastic loss reserv-
ing in discrete time: Individual vs. aggregate data models.
Communications in Statistics-Theory and Methods, 44(10),
2180–2206. https://doi.org/10.1080/03610926.2014.97
6473

Huang, J., Qiu, C., Wu, X., & Zhou, X. (2015). An individ-
ual loss reserving model with independent reporting and
settlement. Insurance: Mathematics and Economics, 64(1),
232–245. https://doi.org/10.1016/j.insmatheco.2015.
05.010

Huang, J., Wu, X., & Zhou, X. (2016). Asymptotic behav-
iors of stochastic reserving: Aggregate versus individ-
ual models. European Journal of Operational Research,
249(2), 657–666. https://doi.org/10.1016/j.ejor.2015.
09.039

Lindholm, M., Lindskog, F., & Wahl, F. (2020). Estimation of
conditional mean squared error of prediction for claims
reserving. Annals of Actuarial Science, 14(1), 93–128.
https://doi.org/10.1017/S174849951900
006X

Mack, T. (1993). Distribution-free calculation of the standard
error of chain ladder reserve estimates. ASTIN Bulletin:
The Journal of the IAA, 23(2), 213–225. https://doi.org/10.
2143/AST.23.2.2005092

Mack, T. (2000). Credible claims reserves: The Benktander
method. ASTIN Bulletin: The Journal of the IAA, 30(2),
333–347. https://doi.org/10.2143/AST.30.2.504639

McCullagh, P., & Nelder, J. A. (1989). Generalized linear
models (2nd ed). Chapman and Hall.

Norberg, R. (1993). Prediction of outstanding liabilities
in non-life insurance 1. ASTIN Bulletin: The Journal of
the IAA, 23(1), 95–115. https://doi.org/10.2143/AST.23.1.
2005103

Norberg, R. (1999). Prediction of outstanding liabilities II.
Model variations and extensions.ASTINBulletin: The Jour-
nal of the IAA, 29(1), 5–25. https://doi.org/10.2143/AST.
29.1.504603

Pigeon, M., Antonio, K., & Denuit, M. (2013). Individual loss
reserving with the multivariate skew normal framework.
ASTIN Bulletin: The Journal of the IAA, 43(3), 399–428.
https://doi.org/10.1017/asb.2013.20

Pigeon, M., Antonio, K., & Denuit, M. (2014). Individual loss
reserving using paid-incurred data. Insurance: Mathemat-
ics andEconomics, 58(2), 121–131. https://doi.org/10.1016/
j.insmatheco.2014.06.012

Van der Vaart, A.W. (2000).Asymptotic Statistics. Cambridge
University Press.

Verrall, R. J., Nielsen, J. P., & Jessen, A. H. (2010).
Prediction of RBNS and IBNR claims using claim
amounts and claim counts. Astin Bulletin, 40(2), 871–887.
https://doi.org/10.2143/AST.40.2.2061139

Wahl, F. (2019). Explicit moments for a class ofmicro-models
in non-life insurance. Insurance: Mathematics and Eco-
nomics, 89(7), 140–156. https://doi.org/10.1016/j.insmath
eco.2019.10.001

Wahl, F., Lindholm, M., & Verrall, R. (2019). The collective
reserving model. Insurance: Mathematics and Economics,
87(7), 34–50. https://doi.org/10.1016/j.insmatheco.2019.
04.003

Wüthrich, M. V., & Merz, M. (2008). Stochastic Claims
Reserving Methods in Insurance. John Wiley and Sons.

Yu, X., & He, R. (2016). Individual claims reserving
models based on marked Cox processes. Chinese Jour-
nal of Applied Probability and Statistics 32(2), 201-219.
http://aps.ecnu.edu.cn/EN/Y2016/V32/I2/201

Zhao, X., & Zhou, X. (2010). Applying copula models to indi-
vidual claim loss reservingmethods. Insurance:Mathemat-
ics andEconomics, 46(2), 290–299. https://doi.org/10.1016/
j.insmatheco.2009.11.001

https://doi.org/10.1017/S1748499500000580
https://doi.org/10.1017/S1748499510000023
https://doi.org/10.1080/03461238.2012.755938
https://doi.org/10.2143/AST.19.2.2014905
https://doi.org/10.1016/j.ejor.2019.02.044
https://doi.org/10.1017/S1357321700003809
https://doi.org/10.1080/03610926.2014.976473
https://doi.org/10.1016/j.insmatheco.2015.05.010
https://doi.org/10.1016/j.ejor.2015.09.039
https://doi.org/10.1017/S174849951900006X
https://doi.org/10.2143/AST.23.2.2005092
https://doi.org/10.2143/AST.30.2.504639
https://doi.org/10.2143/AST.23.1.2005103
https://doi.org/10.2143/AST.29.1.504603
https://doi.org/10.1017/asb.2013.20
https://doi.org/10.1016/j.insmatheco.2014.06.012
https://doi.org/10.2143/AST.40.2.2061139
https://doi.org/10.1016/j.insmatheco.2019.10.001
https://doi.org/10.1016/j.insmatheco.2019.04.003
https://doi.org/http://aps.ecnu.edu.cn/EN/Y2016/V32/I2/201
https://doi.org/10.1016/j.insmatheco.2009.11.001


126 Z. WANG ET AL.

Appendix

Proof of Proposition 3.1: To derive the following gradient
and Hessian matrix, we need the identities ∂qv

∂ρ
= qv(δv −

q) ⊗ x, which gives that

∂q′

∂ρ
= (diag(q) − qq′) ⊗ x,

∂ log q′

∂ρ
= (IDs − q1′

Ds) ⊗ x.

Then we have the following gradient according to formulas
above, which is

∇Qios(ρ)

=
⎡⎣ Ds

i∑
v=0

Ns
v(δv − q)+

Dr
i∑

u=0
Nrbns
u

(
(0, q′

n−i−u)
′

Q̄n−i−u
−q
)⎤⎦⊗ x

=
⎡⎣Ns

i +
Dr
i∑

u=0

Nrbns
u

Q̄n−i−u

(
0

qn−i−u

)

−
⎛⎝ Ds

i∑
v=0

Ns
v +

Dr
i∑

u=0
Nrbns
u

⎞⎠ q

⎤⎦⊗ x.

By some algebraic computation, it follows that

∂2Qios(ρ)

∂ρρ′

= −
⎡⎣⎛⎝ Ds

i∑
v=0

Ns
v +

Dr
i∑

u=0
Nrbns
u

⎞⎠ (diag(q) − qq′)

+
Dr
i∑

u=0
Nrbns
u

×
⎛⎝ 0 0

0 diag(qn−i−u) − qn−i−uq
′
n−i−u

Q̄n−i−u

⎞⎠⎤⎦⊗ xx′.

Because
∑Ds

i
v=0 N

s
v +∑Dr

i
u=0 N

rbns
u is just the number of those

reported claims incurred in accident year i,

E

⎡⎣ Ds
i∑

v=0
Ns
v +

Dr
i∑

u=0
Nrbns
u

∣∣∣∣∣∣ r, x
⎤⎦ = r

Dr
i∑

u=0
λu.

Observe further that Nrbns
u = 0 for i ≤ n − Ds and 0 ≤ u ≤

n − i − Ds. Therefore,

E

[
∂2Qios(ρ)

∂ρρ′

∣∣∣∣ r, x]

= −r

⎡⎣ Dr
i∑

u=0
λu(diag(q) − qq′)

−
Dr
i∑

u=(n−i−Ds+1)+

λu

×
⎛⎝ 0 0

0 diag(qn−i−u) − qn−i−uq
′
n−i−u

Q̄n−i−u

⎞⎠⎤⎦⊗ xx′.

(A1)

Let v = n−i−u and note that

diag(q) − qq′ −
⎛⎝ 0 0

0 diag(qv) − qvq
′
v

Q̄v

⎞⎠

=
⎛⎝ diag(qv) − qvq′

v −qvq
′
v

−qvq′
v

Qv

Q̄v
qvq

′
v

⎞⎠ .

Then, Equation (A1) gives rise to the desired result. �

Proof of Theorem 4.1: By (3), the loss reserve can be com-
puted as

E(R |F uo) = E[Rrbns |F uo] + E[Ribnr |F uo].

According to Assumption 3.2, for a representative pol-
icy in year i, given Nrbns

u with n − i − Ds + 1 ≤ u ≤
Dr
i , (Nu,n−i−u+1, . . . ,NuDs) follows multinomial distribution

with parameters Nrbns
u and 1

Q̄n−i−u
(qn−i−u+1, . . . , qDs). Then

by Assumption 3.3, the RBNS loss reserve is

E[Rrbns |F uo]

=
n∑

i=1

mi∑
k=1

Dr
i∑

u=(n−i−Ds+1)+

E

⎡⎣ Ds∑
v=n−i−u+1

Nikuv∑
l=1

Yikuvl|F uo

⎤⎦
=

n∑
i=1

mi∑
k=1

Dr
i∑

u=(n−i−Ds+1)+

Nrbns
iku

∑Ds

v=n−i−u+1 qikvμikuv

Q̄ik,n−i−u

=
Ds∑
v=1

Dr
v∑

u=0

mn−v−u+1∑
k=1

Nrbns
(n−v−u+1)kuμ̃(n−v−u+1)kuv.

It can be easily proved that IBNR claims are independent of
historical observation F uo by Assumption 3.1–3.3. Hence,
IBNR loss reserve is computed by

E
[
Ribnr |F uo

]
= E

⎡⎣ n∑
i=1

mi∑
k=1

Dr∑
u=n−i+1

Ds∑
v=0

Nikuv∑
l=1

Yikuvl |F uo

⎤⎦
=

n∑
i=n−Dr+1

mi∑
k=1

Dr∑
u=n−i+1

Ds∑
v=0

E

[Nikuv∑
l=1

Yikuvl

]

=
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

pikurik exp(x′
ikβ)μ̃iku0.

According to independence assumptions in
Assumptions 3.1–3.3, the developments of RBNS claims are
independent of developments of IBNR claims, which results
in the independence between Rrbns and Ribnr . Then the vari-
ance of R given F uo is

Var(R |F uo) = Var(Rrbns |F uo) + Var(Ribnr |F uo).

First, for v ≥ n − i − u + 1, we compute

Var

(Nuv∑
l=1

Yuvl |Eo
)

= Var

(
E

[Nuv∑
l=1

Yuvl |Nuv,Eo
])

+ E

[
Var

(Nuv∑
l=1

Yuvl |Nuv,Eo
)]

= μ2
uvVar(Nuv |F o) + φpμuvE[Nuv |F o]

= Nrbns
u

[
μ2
uv
qv(1 − qv)
Q̄2
n−i−u

+ φpμuv
qv

Q̄n−i−u

]
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For v1, v2 ≥ n − i − u + 1, compute Cov(
∑Nuv1

l=1 Yuv1l,∑Nuv2
l=1 Yuv2l |F o) which is equal to

Cov

⎛⎝E

⎡⎣Nuv1∑
l=1

Yuv1l |Nuv1 ,Nuv2 ,F
o

⎤⎦ ,

E
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⎤⎦⎞⎠
+ E
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which can be computed as follows:

Cov

⎛⎝Nuv1∑
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Yuv2l |F o

⎞⎠
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= −Nrbns
u μuv1μuv2

qv1qv2
Q̄2
n−i−u

.

Then by independence among policies and Assumptions 3.2
and 3.3, the variance of RBNS loss reserve given F uo is

Var(Rrbns |F uo)

=
n∑
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mi∑
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Var
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.

Because IBNR claims are independent of historical obser-
vation F uo, variance of IBNR loss reserve given F uo is
computed by

Var(Ribnr |F uo)

= Var
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�

Proof of Theorem 4.3: Expand Rm(θ̂) about true parameters
θ by Taylor expansion. Then we have

1
m

(R̂II − Rm) = 1
m

∂Rm(θ))

∂θ ′ (θ̂ − θ) + op

(
‖θ̂ − θ‖

m

)
.

One knows that μ̇uv := ∂μuv
∂γ

= μuvxuv.Writeμuv = (μu,v+1,

μu,v+2, . . . ,μu,Ds)′ and μ̇uv = ∂μ′
uv

∂γ
, u = 0, 1, . . . ,Dr and v =

0, . . . ,Ds − 1. To compute the partial derivative in the Taylor
expansion above, we need the following partial derivatives:
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By the law of large numbers, it can be proved that
1
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′
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It is well known that θ̂
P→ θ under some regular conditions

and hence 1
m (R̂II − Rm)

P→ 0. Besides,

Var(R |F uo)

m
a.s.→ VR

=
Ds∑
v=1

Dr
v∑

u=0
κn−v−u+1

× E

[
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]
.

If individual data model hold true, one can similarly prove
that 1

m (R̂ID − Rm)
P→ 0. Therefore, Mr P→ 1 in this case. If

individual information model holds true, we can easily prove
that R̂ID−Rm

m is asymptotically biased, which results from
the following arguments. The law of large numbers readily
gives ĥv

a.s.→ ȟv and μ̂uv
a.s.→ μ̌uv. Further, we have q̂v

a.s.→ q̌v :=
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m

+ ŘID − Rm
m

,

where ŘID =∑Ds

v=1
∑Dr

v
u=0
∑mn−u−v+1

k=1 Nrbns
n−u−v+1,ku

ˇ̃μuv +∑Dr

u=1
∑n

i=n−u+1
∑mi

k=1 rikλ̌u ˇ̃μu0 and then

ŘID − Rm

=
Ds∑
v=1

Dr
v∑

u=0

mn−u−v+1∑
k=1

Nrbns
n−u−v+1,ku(

ˇ̃μuv − μ̃n−u−v+1,kuv)

+
Dr∑
u=1

n∑
i=n−u+1

mi∑
k=1

(rikλ̌u ˇ̃μu0 − rikλikuμ̃iku0).

Apparently, R̂ID−ŘID
m

a.s.→ 0 and by the lawof large numbers and
some simple algebra operations, we show that

1
m

(ŘID − Rm)
a.s.→ �

=
Ds∑
v=1

Dr
v∑

u=0
κn−v−u+1E[rλuQ̄v−1( ˇ̃μuv − μ̃uv)]

+
Dr∑
u=1

n∑
i=n−u+1

κiE[rλu( ˇ̃μu0 − μ̃u0)].

Therefore, if asymptotic bias� is not zero,Mr P→ 0. Then we
complete the proof. �
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