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ABSTRACT
In a repairable consecutive C(k, n : F) system, after the system operates for a certain time, some
components may fail, some failed components may be repaired and the state of the systemmay
change. Themodels developed in the existing literature usually assume that the state of the sys-
tem varies over time depending on the values of n and k and the state of the system is known.
Since the system reliabilitywill vary over time, it is of great interest to analyse the time-dependent
system reliability. In this paper, we develop a novel and simple method that utilizes the eigen-
values of the transition ratematrix of the system for the computation of time-dependent system
reliability when the system state is known. In addition, the transition performance probabilities
of the system from a known state to the possible states are also analysed. Computational results
are presented to illustrate the applicability and accuracy of the proposed method.
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1. Introduction

In many engineering applications, consecutive-k-out-
of-n systems are encountered and the evaluation of
the system reliability is of interest. For example,
consecutive-k-out-of-n systems appear in telecommu-
nications, microwave relay stations, oil pipeline sys-
tems, vacuum systems in accelerators, computer ring
networks and spacecraft relay stations. These systems
can be classified with respect to the logical or phys-
ical connections among components as either linear
or circular and the functioning principle as either
failed (F) or good (G). A consecutive-k-out-of-n: F
system, or a C(k, n : F) system for short, consists of
an ordered sequence of n components such that the
system fails if and only if at least k consecutive com-
ponents fail. Another special type of system related to
the C(k, n : F) system is the consecutive-k-out-of-n: G
system, or a C(k, n : G) system for short. A C(k, n :
G) system consists of an ordered sequence of n com-
ponents such that the system works if and only if at
least k consecutive components work. Both C(k, n :
F) system and C(k, n : G) system can be either lin-
ear or circular. The first report for these systems was
presented by Kontoleon (1980). Then, much research
work has been done on consecutive-k-out-of-n systems
in the literature since Kontoleon (1980). For further
reference, see, for example, Chiang and Niu (1981),
Bollinger and Salvia (1982), Derman et al. (1982),
Zuo and Kuo (1990), Chang et al. (2000), Kuo
and Zuo (2003), Eryilmaz (2010) and Gökdere and
Gurcan (2016). However, in the aforementioned work,

it was assumed that the components in the system
are non-repairable. If we consider that components are
repairable, then such a system is called a repairable
system.

Repairable C(k, n : F) and C(k, n : G) systems have
also been studied extensively in the literature (see, for
example, Cheng & Zhang, 2001; Eryilmaz, 2014; Guan
& Wu, 2006; Hongda et al., 2019; Lam & Ng, 2001;
Lam & Zhang, 1999, 2000; Wang et al., 2021; Yam
et al., 2003; Yuan & Cui, 2013; Zhang & Lam, 1998;
Zhang & Wang, 1996; Zhang et al., 1998, 2000). In
most of these research papers, it is assumed that the
working time and the repair time of the components
are both exponentially distributed and the repair com-
pletely restores all the properties of failed components.
Moreover, when the system is in a failed state, each
failed component in the system is classified as either
a key component or an ordinary component. A failed
component is called a key component if repairing this
component will return the system to a working state
(Zhang et al., 2000). The key components have a higher
priority in repair than ordinary components. Then, by
using the definition of generalized transition probabil-
ity, for both linear and circular systems, the state tran-
sition rate matrix of the system can be derived. Usually,
the Laplace transformmethod or Runge-Kutta method
is used to obtain the reliability of a consecutive-k-out-
of-n system.

In most of the models for repairable C(k, n : F)

and C(k, n : G) systems in the existing literatures, the
system reliability is calculated by assuming that all
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components are working in the system within a cer-
tain period of time. However, in a repairable sys-
tem, the state of the system may change over time
after the system starts operating. In this paper, we
study the repairable linear and circular C(k, n : F) sys-
tems by assuming that the state of the system is known.
We aim to provide a simple method to determine the
time-dependent system reliability and analyse the tran-
sition performance probabilities of the systemwhen the
system state is known.Wehave firstmodified the transi-
tion rate matrix considered in Cheng and Zhang (2001)
and Yam et al. (2003) and then proposed a novel
method to compute the time-dependent system relia-
bility using the eigenvalues of the transition ratematrix.
The proposed method can be served as a simple alter-
native method to the Laplace transform and the Runge-
Kutta method for the determination of time-dependent
reliability and transition performance probabilities of
the system. Also, it can be applied to both repairable
and irreparable systems. In Section 4.1 and 4.2, to show
the accuracy of our method we consider the case that
the system is irreparable.

This paper is organized as follows. In Section 2, the
preliminary assumptions, the state transition probabil-
ities and the transition rate matrix are presented for the
repairable C(k, n : F) system with n linearly and circu-
larly arranged components. In Section 3, we present the
proposed method for evaluation of the system reliabil-
ity and transition performance probabilities when the
state of the system is known. In Section 4, some numer-
ical examples are provided to illustrate the usefulness
of the proposed method for different linear and circu-
lar repairable C(k, n : F) systems. In Section 5, some
concluding remarks are provided.

2. Repairable C(k,n : F) systems andmodel
assumptions

Here is the list of the model assumptions used through-
out this paper:

Assumption 2.1: The system is a linear or circular
repairable C(k, n : F) system with identical compo-
nents.

Assumption 2.2: At time t = 0, all components are
new and working.

Assumption 2.3: There is a single repairman in the
system and the repair completely restores all properties
of failed components.

Assumption 2.4: The working time and the repair
time of the components are both exponentially dis-
tributed with the parameters λ > 0 and μ > 0, respec-
tively.

Assumption 2.5: While the system is in the failed state,
the components that have not failed will not fail.

Assumption 2.6: The probability that two or more
than two components fail or complete their repairs
simultaneously in a very small time interval is
negligible.

Based on these model assumptions, the state of the
system at time t, denoted by N(t), varies depending on
the values of n and k. For linear and circular repairable
C(k, n : F) systems, the possible states can be expressed
as follows:

N(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if at time t, all components work the
system works,

−1, if at time t, one component fails the
system works,

...

−k, if at time t, k components fail the
system works,

...

−d, if at time t, d components fail the
system works,

1, if at time t, l components fail the
system fails,

where l = k, k + 1, . . . , d + 1 and d takes different val-
ues depending on whether the system is linear or circu-
lar. If the system is linear, d = n − [n/k] and [x] is the
largest integer less than or equal to value x. If the sys-
tem is circular, d = n − �n/k� and �x� is the smallest
integer greater than or equal to value x.

In our proposedmethod, all states (k, k + 1, . . . , d +
1) that caused the system to fail were considered as a
single state. Then, {N(t), t ≥ 0} is a continuous-time
homogeneous Markov process with state space � =
{0,−1, . . . ,−d, 1}. The set of working state is W =
{0,−1, . . . ,−d} and the set of failed states is F = {1}.

According toN(t), the generalized transition proba-
bility from state i to state j in time �t is defined as

pij(�t) = P{N(t + �t) = j | N(t) = i}. (1)

In order to obtain the transition rate matrixQ, we need
to calculate the state transition probabilities of the sys-
tem. These state transition probabilities are presented
as follows (for the detailed derivations, one can refer to
Cheng & Zhang, 2001; Yam et al., 2003):

For i = 0 and j ∈ � in (1), we have

p0j(�t) =
⎧⎨
⎩
1 − nλ�t + o(�t), j = 0,
nλ�t + o(�t), j = −1,
o(�t), for all other j values.

(2)
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For 1 ≤ i ≤ d and j ∈ � in (1), we have

p−ij(�t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ�t + o(�t), j = −(i − 1),

(i + 1)
M−(i+1)

M−i
λ�t + o(�t),

j = −(i + 1),

1 − ((n − i)λ + μ)

�t + o(�t), j = −i,

o(�t), for all other
j values.

(3)
For an explain (3) with j = −(i + 1), refer to Section 4
of Guan and Wu (2006). In Equation (3), M−i is the
number of different possible cases which the system
under consideration in state −i. We need to find a
formula ofM−i for −i ∈W and i �= 0.

In linear C(k, n : F) systems

M−i = ML
−i =

m∑
r=0

(−1)r
(
n − i + 1

r

)(
n − kr
n − i

)
,

wherem = min(n − i + 1, [i/k]).
In circular C(k, n : F) systems

M−i = MC
−i = ML

−i −
min(i,2(k−1))∑

l=k

(2k − 1 − l)

×
ml∑
r=0

(−1)r
(
n − i − 1

r

)(
n − l − kr − 2
i − l − kr

)
,

whereml = min(n − i + 1, [(i − l)/k]).
For 1 ≤ i ≤ d and j = 1 in (1), we have

p−i1(�t) =
(

(n − i) − (i + 1)
M−(i+1)

M−i

)
λ�t

+ o(�t). (4)

For i = 1 and j ∈ � in (1), we have

p1j(�t) = o(�t). (5)

Using the state transition probabilities in the system
in Equations (2)–(5), we can obtain the transition rate
matrix Q as

Q = (qij),

where

qij = lim
�t−→0

pij(�t)
�t

,

and

qj = lim
�t−→0

1 − pjj(�t)
�t

,

for i, j ∈ � and i �= j. Also, qjj = −qj, j ∈ �. In the fol-
lowing section, we present a novel and simple method
to compute the time-dependent system reliability by
using the eigenvalues of the matrix Q.

3. Proposedmethod

Let ϒ(t) = (�ij(t); i, j ∈ � and t ≥ 0) be a transition
matrix function defining a continuous-time homoge-
neous Markov process, where �ij(t) represents the
time-dependent performance probability of the system
between known state i and possible state j at time t. IfQ
was a finite matrix the solution of

d
dt

ϒ(t) = ϒ(t)Q

could be written down at once in the form

ϒ(t) = eQt =
∞∑
k=0

(Qt)k

k!
, Q0 = I,

where I = (Iij) is the unit matrix for i, j ∈ �.
The abovementionedmatrixQ is a ξ × ξ real square

matrix, where ξ is equal to the number of elements of
the state space �. Then, there exists a singular value
decomposition of Q of the form

Q = U�VT,

where� = diag(σ1, σ2, . . . , σξ−1, σξ ) has diagonal ele-
ments arranged in ascending order of magnitude
and U = (u1, u2, . . . , uξ ) and V = (v1, v2, . . . , vξ ) are
orthogonal. Now, consider the linear transformation of
ξ -dimensional vectors defined bymatrixQ. In this case,
�ij(t) is found to be

�ij(t) = Aij
0 + Aij

1e
σ1t + Aij

2e
σ2t + · · · + Aij

ξ−1e
σξ−1t ,

(6)
where Aij

0,A
ij
1, . . . ,A

ij
ξ−1 are constant coefficients for

i, j ∈ � and σ1, σ2, . . . , σξ−1 are the non-zero eigenval-
ues of Q. To obtain the above constant coefficients, the
following system of differential equations is solved:

d
dt

ϒ(k)(t = 0) = Qk, (7)

for k = 0, 1, 2, . . . , ξ − 1. We can express (7) as

Aij
0 + Aij

1 + Aij
2 + · · · + Aij

ξ−1 = (Iij),

(σ1)A
ij
1 + (σ2)A

ij
2 + . . . + (σξ−1)A

ij
ξ−1 = (qij),

(σ1)
2Aij

1 + (σ2)
2Aij

2 + . . . + (σξ−1)
2Aij

ξ−1 = (qij)2,

...

(σ1)
ξ−1Aij

1 + (σ2)
ξ−1Aij

2 + . . . + (σξ−1)
ξ−1Aij

ξ−1

= (qij)ξ−1.

According to the Equation (6) for j = 1, we can obtain
the time-dependent system reliability at time twhen the
state of the system is known as

Ri(t) = 1 − �i1(t), (8)

where i ∈ �.
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In the proposed method, we need to obtain the
eigenvalues of the matrix Q. When μ = 0, the eigen-
values of the Q can be easily calculated based on the
parameter λ. However, obtaining the eigenvalues of the
matrix Q can be difficult and complex in general based
on the parameters λ andμ. In such a case, we overcome
this difficulty by providing the numerical values of the
parameters to simplify the computation. It is notewor-
thy that the existing methods in the literature deal with
the assumption that all components in the system are
working, whereas such an assumption is not needed
in our proposed method. Hence, the proposed method
can be applied to a wider range of situations in system
engineering.

4. Numerical illustrations

In the following, numerical examples in the existing
literature are used to illustrate the proposed method
developed in Section 3.

4.1. A linear repairable C(2, 5 : F) system

In this section, we analyse a linear repairable C(2, 5 :
F) system. First, we focus on obtaining the time-
dependent transition performance probabilities and
the system reliability under the condition that there
is a single failed component in the system at time t.
Then, to show the accuracy of the proposed method,
the situation where μ = 0 is analysed. Based on
the results presented in Section 2, the state space
� = {0,−1,−2,−3, 1}, the set of working state W =
{0,−1,−2,−3} and the set of failed states F = {1} of
the system. The Q-matrix can be obtained as

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

−5λ 5λ 0
μ (−μ + 4λ) 12

5 λ

0 μ −(μ + 3λ)

0 0 μ

0 0 0

0 0
0 8

5λ
1
2λ

5
2λ

−(μ + 2λ) 2λ
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Now consider the Q-matrix for λ = 0.5 and μ = 1.5.
For i = −1 and j ∈ � in (6) we have

�−1j(t) = A−1j
0 + A−1j

1 eσ1t + A−1j
2 eσ2t

+ A−1j
3 eσ3t + A−1j

4 eσ4t , (9)

where A−1j
0 , A−1j

1 , A−1j
2 , A−1j

3 and A−1j
4 are constant

coefficients and σ1 = −5.5045, σ2 = −3.2078, σ3 =
−2.1437 and σ4 = −0.6439 are the non-zero eigenval-
ues of Q. To determine the above constant coefficients,
Equation (7) has to be solved for j ∈ � and k = 0,
1, 2, 3, 4. Finally, we have the following results for
Equation (9).

For j = 0,

�−10(t) = −0.2859e−5.5045t − 0.0545e−3.2078t

+ 0.0295e−2.1437t + 0.3209e−0.6439t . (10)

For j = −1,

�−1−1(t) = 0.5726e−5.5045t + 0.0257e−3.2078t

+ 0.0047e−2.1437t + 0.397e−0.6439t . (11)

For j = −2,

�−1−2(t) = −0.2887e−5.5045t + 0.096e−3.2078t

+ 0.0284e−2.1437t + 0.2212e−0.6439t .
(12)

For j = −3,

�−1−3(t) = 0.024e−5.5045t − 0.0339e−3.2078t

− 0.0199e−2.1437t + 0.0298e−0.6439t .
(13)

For j = 1,

�−11(t) = 1 − 0.022e−5.5045t − 0.0332e−3.2078t

+ 0.0241e−2.1437t − 0.9689e−0.6439t . (14)

Using Equations (10)–(14), for t = 0.5, 1.0, . . . , 5, we
can obtain the time-dependent transition performance
probabilities for the linear repairable C(2, 5 : F) sys-
tem (see, Table 1). Moreover, using Equation (14)
for i = −1 in Equation (8), we can obtain the time-
dependent reliability of the system when a single com-
ponent is in the failed state at time t.

In order to demonstrate the accuracy of ourmethod,
we consider the case that μ = 0 and the system is lin-
ear irreparable C(2, 5 : F) system. The Q-matrix in this
situation becomes

Q̆ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−5λ 5λ 0 0 0
0 −4λ 12

5 λ 0 8
5λ

0 0 −3λ 1
2λ

5
2λ

0 0 0 −2λ 2λ
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Assume that at time t all the five components are work-
ing. To obtain the time-dependent system reliability, let

Table 1. Time-dependent transition performance probabilities
for the linear repairableC(2, 5 : F) systemwhenone component
fails.

t �−10(t) �−1−1(t) �−1−2(t) �−1−3(t) �−11(t)

0.5 0.2100 0.3310 0.1515 0.0095 0.2980
1.0 0.1675 0.2124 0.1156 0.0120 0.4925
1.5 0.1224 0.1517 0.0838 0.0103 0.6319
2.0 0.0887 0.1096 0.0608 0.0079 0.7330
2.5 0.0642 0.0794 0.0441 0.0059 0.8064
3.0 0.0465 0.0575 0.0320 0.0043 0.8596
3.5 0.0337 0.0417 0.0232 0.0031 0.8983
4.0 0.0244 0.0302 0.0168 0.0023 0.9263
4.5 0.0177 0.0219 0.0122 0.0016 0.9466
5.0 0.0128 0.0159 0.0088 0.0012 0.9613
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i = 0 and j = 1 in Equation (6), then

�01(t) = A01
0 + A01

1 eσ1t + A01
2 eσ2t + A01

3 eσ3t+A01
4 eσ4t ,
(15)

where A01
0 , A01

1 , A01
2 , A01

3 and A01
4 are constant coeffi-

cients and σ1 = −5λ, σ2 = −4λ, σ3 = −3λ and σ4 =
−2λ are the non-zero eigenvalues of Q̆. To determine
the constant coefficients, we have to solve the following
system of differential equations:

A01
0 + A01

1 + A01
2 + A01

3 + A01
4 = 0,

(−5λ)A01
1 + (−4λ)A01

2 + (−3λ)A01
3 + (−2λ)A01

4 = 0,

(−5λ)2A01
1 + (−4λ)2A01

2 + (−3λ)2A01
3 + (−2λ)2A01

4

= 8λ2,

(−5λ)3A01
1 + (−4λ)3A01

2 + (−3λ)3A01
3 + (−2λ)3A01

4

= −42λ3,

(−5λ)4A01
1 + (−4λ)4A01

2 + (−3λ)4A01
3 + (−2λ)4A01

4

= 140λ4.

The solutions of the above equations are A01
0 = 1,

A01
1 = −1, A01

2 = 4, A01
3 = −3, A01

4 = −1. Finally,
Equation (15) can be obtained as

�01(t) = 1 − e−5λt + 4e−4λt − 3e−3λt − e−2λt . (16)

Using Equation (16) for i = 0 in Equation (8), we can
obtain the time-dependent reliability of the system as

R0(t) = 1 − �01(t)

= e−2λt + 3e−3λt − 4e−4λt + e−5λt . (17)

Note that Equation (17) is equivalent to Equation (12)
presented in Zhang and Wang (1996).

4.2. A circular repairable C(2, 6 : F) system

In this section the circular repairable C(2, 6 : F) system
is considered. The state space is� = {0,−1,−2,−3, 1},
the set of working state isW = {0,−1,−2,−3} and the
set of failed states is F = {1}. Based on the results in
Section 2, the Q-matrix is

Q =

⎛
⎜⎜⎜⎜⎝

−6λ 6λ 0
μ (−μ + 5λ) 3λ
0 μ −(μ + 4λ)

0 0 μ

0 0 0

0 0
0 2λ
2
3λ

10
3 λ

−(μ + 3λ) 3λ
0 0

⎞
⎟⎟⎟⎟⎠ .

Assume that, at time t, two components fail. Let, λ =
0.5 and μ = 1.5, for i = −2 and j ∈ � in Equation (6),
and then we have

�−2j(t) = A−2j
0 + A−2j

1 eσ1t + A−2j
2 eσ2t + A−2j

3 eσ3t

+ A−2j
4 eσ4t , (18)

where A−2j
0 , A−2j

1 , A−2j
2 , A−2j

3 and A−2j
4 are constant

coefficients and σ1 = −6.2507, σ2 = −3.7738, σ3 =
−2.5737 and σ4 = −0.9018 are the non-zero eigenval-
ues ofQ. By applying the proposedmethod in Section 3
in determining the constant coefficients, we can obtain
the following results for Equation (18):

For j = 0,

�−20(t) = 0.1501e−6.2507t − 0.2039e−3.7738t

− 0.13e−2.5737t + 0.1838e−0.9018t . (19)

For j = −1,

�−2−1(t) = −0.3254e−6.2507t + 0.1052e−3.7738t

− 0.037e−2.5737t + 0.2572e−0.9018t . (20)

For j = −2,

�−2−2(t) = 0.1879e−6.2507t + 0.4237e−3.7738t

+ 0.225e−2.5737t + 0.1634e−0.9018t . (21)

For j = −3,

�−2−3(t) = −0.0193e−6.2507t − 0.1825e−3.7738t

+ 0.1758e−2.5737t + 0.026e−0.9018t . (22)

For j = 1,

�−21(t) = 1 + 0.0066e−6.2507t − 0.1425e−3.7738t

− 0.2337e−2.5737t − 0.6305e−0.9018t . (23)

Using Equations (19)–(23), for t = 0.5, 1.0, . . . , 5, the
time-dependent transition performance probabilities
for the circular repairable C(2, 6 : F) system can be
obtained (see, Table 2). In addition, using Equation (23)
for i = −2 in Equation (8), we can obtain the time-
dependent reliability of the system when two compo-
nents failed at time t.

Table 2. Time-dependent transition performance probabili-
ties for the circular repairable C(2,6:F) system when two
components fail.

t �−20(t) �−2−1(t) �−2−2(t) �−2−3(t) �−21(t)

0.5 0.0569 0.1553 0.2387 0.0366 0.5125
1.0 0.0603 0.1033 0.0936 0.0197 0.7230
1.5 0.0441 0.0661 0.0485 0.0098 0.8316
2.0 0.0294 0.0422 0.0284 0.0052 0.8947
2.5 0.0191 0.0269 0.0175 0.0030 0.9335
3.0 0.0123 0.0172 0.0110 0.0018 0.9578
3.5 0.0078 0.0109 0.0070 0.0011 0.9731
4.0 0.0050 0.0069 0.0044 0.0007 0.9829
4.5 0.0032 0.0044 0.0028 0.0005 0.9891
5.0 0.0020 0.0028 0.0018 0.0003 0.9931
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For μ = 0, we have the circular irreparable C(2, 6 :
F) system and the Q-matrix becomes

Q̆ =

⎛
⎜⎜⎜⎜⎝

−6λ 6λ 0 0 0
0 −5λ 3λ 0 2λ
0 0 −4λ 2

3λ
10
3 λ

0 0 0 −3λ 3λ
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Suppose that all the five components are working at
time t, for i = 0 and j = 1 in Equation (6), we have

�01(t) = A01
0 + A01

1 eσ1t + A01
2 eσ2t + A01

3 eσ3t

+ A01
4 eσ4t , (24)

where A01
0 , A01

1 , A01
2 , A01

3 and A01
4 are constant coeffi-

cients and σ1 = −6λ, σ2 = −5λ, σ3 = −4λ and σ4 =
−3λ are the non-zero eigenvalues of Q̆. To determine
the constant coefficients, we have to solve the following
system of differential equations:

A01
0 + A01

1 + A01
2 + A01

3 + A01
4 = 0,

(−6λ)A01
1 + (−5λ)A01

2 + (−4λ)A01
3 + (−3λ)A01

4 = 0,

(−6λ)2A01
1 + (−5λ)2A01

2 + (−4λ)2A01
3 + (−3λ)2A01

4

= 12λ2,

(−6λ)3A01
1 + (−5λ)3A01

2 + (−4λ)3A01
3 + (−3λ)3A01

4

= −72λ3,

(−6λ)4A01
1 + (−5λ)4A01

2 + (−4λ)4A01
3 + (−3λ)4A01

4

= 228λ4.

The solutions of the above equations are A01
0 =

1, A01
1 = −2, A01

2 = 6, A01
3 = −3, A01

4 = −2. Then,
Equation (24) can be obtained as

�01(t) = 1 − 2e−6λt + 6e−5λt − 3e−4λt − 2e−3λt .
(25)

Finally, using Equation (25) for i = 0 in Equation (8),
the time-dependent reliability of the system can be
obtained as

R0(t) = 1 − �01(t)

= 2e−3λt + 3e−4λt − 6e−5λt + 2e−6λt . (26)

Note that Equation (26) is equivalent to Equation (42)
in Zhang et al. (2000).

4.3. A linear repairable C(3, 8 : F) system

As another example, supposewehave a linear repairable
C(3, 8 : F) system. In this case the state space is � =
{0,−1,−2,−3,−4,−5,−6, 1}, the set of working state
is W = {0,−1,−2,−3,−4,−5,−6} and the set of

failed states is F = {1}. The Q-matrix is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8λ 8λ 0 0
μ −(μ + 7λ) 7λ 0
0 μ −(μ + 6λ) 75

14λ

0 0 μ −(μ + 5λ)

0 0 0 μ

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 9

14λ
18
5 λ 0 0 7

5λ

−(μ + 4λ) 16
9 λ 0 20

9 λ

μ −(μ + 3λ) 3
8λ

21
8 λ

0 μ − (μ + 2λ) 2λ
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Suppose that all the eight components are working at
time t, if λ and μ are given, we can obtain the time-
dependent reliability of the system by using themethod
proposed in Section 2. Here, we consider three sets of
parameters: (i) λ = 0.5,μ = 1.5; (ii) λ = 0.5,μ = 3.0;
and (iii) λ = 0.25,μ = 1.5.

Let, i = 0 in Equation (8), we have

R0(t) = 1 − �01(t)

= 1 − (A01
0 + A01

1 eσ1t + A01
2 eσ2t + · · ·

+ A01
7 eσ7t), (27)

whereA01
0 ,A01

1 ,. . . ,A01
7 are constant coefficients and σ1,

σ2,. . . , σ7 are the non-zero eigenvalues of Q. Using the
aboveQ-matrix for each parameter sets respectively, the
non-zero eigenvalues of Q are computed and they are
presented in Table 3.

Using eigenvalues as seen inTable 3 andEquation (7)
for k = 0, 1, 2, . . . , 7, we can obtain the constant coeffi-
cients (see, Table 4). Using the constant coefficients in
Tables 3 and 4, we plotted the reliability R0(t) against
time t for the linear repairable C(3, 8 : F) system in
Figure 1 for three different parameter sets.

Table 3. The non-zero eigenvalues of Q for three parameter
sets.

σ λ = 0.5, μ = 1.5 λ = 0.5, μ = 3.0 λ = 0.25, μ = 1.5

σ1 −8.3126 −11.1812 −5.5906
σ2 −6.1101 −8.2729 −4.1365
σ3 −4.4007 −5.9962 −2.9981
σ4 −3.1176 −4.3836 −2.1918
σ5 −2.3398 −3.3967 −1.6938
σ6 −1.5893 −1.9523 −0.9761
σ7 −0.6299 −0.3171 −0.1586
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Table 4. The constant coefficients in Equation (27) for the three
parameter sets.

A01k λ = 0.5, μ = 1.5 λ = 0.5, μ = 3.0 λ = 0.25, μ = 1.5

A010 1.0000 1.0000 1.0000
A011 −0.0045 −0.0015 −0.0019
A012 0.0026 −0.0015 −0.0015
A013 −0.0251 −0.0069 −0.0069
A014 −0.1525 −0.0162 −0.0162
A015 0.0116 −0.0084 −0.0085
A016 1.1515 0.2937 0.2938
A017 −1.9836 −1.2589 −1.2587

Figure 1. The plot of the reliability R0(t) of the linear repairable
C(3, 8 : F) system against time t.

4.4. A circular repairable C(3, 8 : F) system

In this section, we study a circular repairableC(3, 8 : F)

system. The state space is � = {0,−1,−2,−3,−4,−5,
1}, the set of working state isW = {0,−1,−2,−3,−4,
−5} and the set of failed states is F = {1}. The
Q-matrix is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8λ 8λ 0 0
μ −(μ + 7λ) 7λ 0
0 μ −(μ + 6λ) 75

14λ

0 0 μ −(μ + 5λ)

0 0 0 μ

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 9

14λ
18
5 λ 0 7

5λ

−(μ + 4λ) 16
9 λ 20

9 λ

μ −(μ + 3λ) 21
8 λ

0 μ 2λ
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Suppose that all the eight components are working
at time t, to evaluate the accuracy of the proposed
method, we used the three parameter sets described in
Section 4.3. Let i = 0 in Equation (8), we have

R0(t) = 1 − �01(t)

= 1 − (A01
0 + A01

1 eσ1t + A01
2 eσ2t

+ · · · + A01
6 eσ6t), (28)

whereA01
0 ,A01

1 ,. . . ,A01
6 are constant coefficients and σ1,

σ2,. . . , σ6 are the non-zero eigenvalues of Q. Using the
Q-matrix for each of the three parameter sets, the non-
zero eigenvalues of Q are obtained and presented in
Table 5.

Using the eigenvalues presented in Table 5 for k =
0, 1, 2, . . . , 6, we can obtain the constant coefficients
in Equation (28) (see, Table 6). When the values in
Tables 5 and 6 are used in Equation (28), we plot-
ted the reliability R0(t) against time t for the circular

Table 5. The non-zero eigenvalues of Q for three parameter
sets.

σ λ = 0.5, μ = 1.5 λ = 0.5, μ = 3.0 λ = 0.25, μ = 1.5

σ1 −8.2922 −11.1417 −5.5709
σ2 −6.0051 −8.0973 −4.0486
σ3 −4.2440 −5.7354 −2.8677
σ4 −2.9306 −3.9541 −1.9770
σ5 −1.8225 −2.2057 −1.1028
σ6 −0.7057 −0.3659 −0.1830

Table 6. The constant coefficients in Equation (27) for the three
parameter sets.

A01k λ = 0.5, μ = 1.5 λ = 0.5, μ = 3.0 λ = 0.25, μ = 1.5

A010 1.0000 1.0000 1.0000
A011 −0.0060 −0.0026 −0.0026
A012 0.0051 −0.0025 −0.0025
A013 −0.0890 −0.0165 −0.0165
A014 −0.1391 −0.0212 −0.0212
A015 1.2074 0.3139 0.3140
A016 −1.9784 −1.2712 −1.2710

Figure 2. The plot of the reliability R0(t) of the circular
repairable C(3, 8 : F) system against time t.
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repairable C(3, 8 : F) system in Figure 2 based on the
three parameter sets.

5. Concluding remarks

In this paper, a repairable C(k, n : F) system with n
linearly and circularly arranged components is stud-
ied. A novel and simple method for determining
the time-dependent transition performance probability
and time-dependent reliability of the system when the
state of the system is known within a certain of time
is developed. Some numerical examples are used to
illustrate the usefulness of the proposed method. Com-
puter code written in R Core Team (2019) to compute
the time-dependent transition performance probabil-
ity can be obtained from the authors upon request.
The proposed method can serve as a simple alterna-
tive to the Laplace transform and the Runge-Kutta
method which are commonly used to determine the
time-dependent reliability of the repairable systems.
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