
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

Statistical Theory and Related Fields

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

Generalized fiducial methods for testing
quantitative trait locus effects in genetic backcross
studies

Pengcheng Ren, Guanfu Liu, Xiaolong Pu & Yan Li

To cite this article: Pengcheng Ren, Guanfu Liu, Xiaolong Pu & Yan Li (2022) Generalized fiducial
methods for testing quantitative trait locus effects in genetic backcross studies, Statistical Theory
and Related Fields, 6:2, 148-160, DOI: 10.1080/24754269.2021.1984636

To link to this article:  https://doi.org/10.1080/24754269.2021.1984636

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 28 Dec 2021.

Submit your article to this journal 

Article views: 641

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2021.1984636
https://doi.org/10.1080/24754269.2021.1984636
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2021.1984636
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2021.1984636
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2021.1984636&domain=pdf&date_stamp=2021-12-28
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2021.1984636&domain=pdf&date_stamp=2021-12-28


SS

T
A

T
I
S

T
I
C

A
L

 T

H
E

ORY AND
 R

E
L

A
T

E
D

 
F

I
E

L
D

S

STATISTICAL THEORY AND RELATED FIELDS
2022, VOL. 6, NO. 2, 148–160
https://doi.org/10.1080/24754269.2021.1984636

Generalized fiducial methods for testing quantitative trait locus effects in
genetic backcross studies

Pengcheng Ren a, Guanfu Liub, Xiaolong Pua and Yan Lia

aKLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, People’s Republic of China; bSchool of Statistics and
Information, Shanghai University of International Business and Economics, Shanghai, People’s Republic of China

ABSTRACT
In this paper, we propose generalized fiducial methods and construct four generalized p-values
to test the existence of quantitative trait locus effects under phenotype distributions from a
location-scale family. Compared with the likelihood ratio test based on simulation studies, our
methods perform better at controlling type I errors while retaining comparable power in cases
with small or moderate sample sizes. The four generalized fiducial methods support varied sce-
narios: two of them are more aggressive and powerful, whereas the other two appear more
conservative and robust. A real data example involvingmouse bloodpressure is used to illustrate
our proposed methods.
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1. Introduction

In medical and biological genetic research, quantitative
trait locus (QTL)mapping is important in studies of the
traits of all types of organisms. For example, QTLs can
be identified and mapped to analyse the genetic factors
contributing to blood pressure in animals (Sugiyama
et al., 2001) or to the length of rice grains (Huang
et al., 1997; R. Wu et al., 2007). As a standard process
at the beginning of QTL mapping studies, tests for the
existence of QTL effects – that is, whether the gene
related to the traits is on the specified chromosome –
should be deployed.

Interval mapping, proposed by Lander and Bot-
stein (1989), is a popular method for detecting QTLs.
Suppose that a putative QTL, denoted by Q, is located
between the left and right flanking markers, M and N,
in a backcross design. For individuals in the backcross
population, the possible genotypes are MM and Mm
at M, NN and Nn at N, and QQ and Qq at Q. Hence,
the individuals in the backcross population have four
marker genotypes: MM/NN, Mm/NN, MM/Nn, and
Mm/Nn, whereMm/NN andMM/Nn are recombinant
types. For each individual, M and N can be observed
butQ cannot. A testing method based on these data for
detecting a QTL in the interval M–N is referred to the
interval mapping method.

Let r, r1, and r2 be the recombination frequencies
– that is, the proportions of recombinant genotypes –
between M and N, between M and Q, and between
Q and N, respectively. In this paper, we only consider
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backcross designs without double recombination or
interference between two-marker-QTL intervals, i.e.,
r = r1 + r2 (R. Wu et al., 2007). Denote by C the cod-
ing variable for the genotypes at the two markers, with
C = 1, 2, 3, 4 representing the genotypes MM/NN,
Mm/NN,MM/Nn, andMm/Nn, respectively. The prob-
abilities of QTL genotypes are shown in Table 1; see also
Chen and Chen (2005), R. Wu et al. (2007) and Zhang
et al. (2008).

Let f1 and f2 be the phenotype density functions cor-
responding to two QTL genotypes QQ and Qq. Denote
by {Y11, . . . ,Y1n1}, {Y21, . . . ,Y2n2}, {Y31, . . . ,Y3n3}, and
{Y41, . . . ,Y4n4} the phenotype data corresponding to
the marker genotypesMM/NN,Mm/NN,MM/Nn, and
Mm/Nn, respectively. Then, we have the following sta-
tistical model under the considered background:

Y1j ∼ f1(y), j = 1, . . . , n1,

Y2j ∼ θ f1(y) + (1 − θ)f2(y), j = 1, . . . , n2,

Y3j ∼ (1 − θ)f1(y) + θ f2(y), j = 1, . . . , n3,

Y4j ∼ f2(y), j = 1, . . . , n4, (1)

where θ = r1/r and yij are trait values corresponding
to C = i, i = 1, . . . , 4, j = 1, . . . , ni. Here, r is known,
as the two markersM and N are pre-specified, whereas
r1 and r2 are unknown as the location of Q is unknown.
Then, {Y2j, j = 1, . . . , n2} and {Y3j, j = 1, . . . , n3}
are modelled by mixture distributions because of the
recombination of non-sister chromatids in these indi-
viduals. Denoting the total sample size by n = ∑4

i=1 ni,
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Table 1. Probabilities of QTL genotypes.

C Pr(C = i) Pr(QQ | C = i) Pr(Qq | C = i)

MM/NN 1 (1 − r)/2 1 0
Mm/NN 2 r/2 r1/r r2/r
MM/Nn 3 r/2 r2/r r1/r
Mm/Nn 4 (1 − r)/2 0 1

we have ni/n → Pr(C = i) when each ni tends to ∞ at
the same rate (R. Wu et al., 2007).

Undermodel (1), testing the existence of QTL effects
is equivalent to testing the null hypothesis:

H0 : f1 = f2. (2)

The null hypothesis in (2) means that there are no QTL
effects. In the literature, parametric methods are usu-
ally applied by assuming the specific distributions of
f1 and f2. For example, Chen and Chen (2005) and
Zhang et al. (2008) assume that f1 and f2 have nor-
mal distributions with the same variance, although
in fact a QTL effect in variance may be more cru-
cial (Korol et al., 1996; Liu et al., 2020). Recently, Liu
et al. (2020) extended the likelihood ratio (LR) test to
detect QTL effects where f1 and f2 are from a general
location-scale family with unknown locations and/or
scales, i.e., fk(y) = f (y;μk, σk)with f (y;μ, σ) = f ((y −
μ)/σ ; 0, 1)/σ . Here, f (·; 0, 1) is a known probability
density function, and μ and σ are the location and
scale parameters, respectively. Then, the hypothesis test
problem in (2) is transformed into:

H0 : (μ1, σ1) = (μ2, σ2). (3)

In particular, under the assumption that σ1 = σ2 = σ ,
the testing problem in (3) becomes

H0 : μ1 = μ2. (4)

For the null hypotheses (3) and (4), Liu et al. (2020) pro-
posed explicit representations of the limiting distribu-
tion of LR statistics and obtainedmore accurate asymp-
totic p-values than those of Rebai et al. (1994, 1995).
The LR test in Liu et al. (2020) was shown to be
more powerful than the Kolmogorov–Smirnov test and
Anderson–Darling test. However, we found that the LR
test inflated type I errors when the sample size was
small or moderate, as shown in our simulation study
in Section 3.

Based on the above discussion, it is desirable to
develop new methods that control type I errors more
accurately while retaining powerful performance with
small or moderate sample sizes. One efficient method
is the generalized fiducial inference developed by Han-
nig et al. (2006) and Hannig (2009), which con-
structs generalized p-values for the null hypotheses (3)
and (4) under a fiducial inference frame introduced by
Fisher (1930). In the literature, the generalized fiducial
inference is widely applied in homogeneous data, i.e.,
assuming that all labels of samples are known. Recent

research includes Lai et al. (2015), Hannig et al. (2016),
Li et al. (2018), Cui and Hannig (2019), and Williams
andHannig (2019).However, generalized fiducial infer-
ence has not received much attention as a means of
testing QTL effects under model (1). In this paper,
generalized fiducial inference is applied by construct-
ing four types of generalized p-values to test the null
hypotheses (3) and (4). Our methods have two advan-
tages. (i) They can control type I errors more accurately
than LR methods, especially for small and moderate
sample sizes, although they may not be optimal in a
conventional sense. (ii) They retain power comparable
with or even greater than that of the LR methods.

The remainder of this article is organized as fol-
lows. In Section 2, four generalized fiducialmethods are
proposed for the null hypothesis (3). In Section 3, we
develop comparisons of these proposed methods with
themethodof Liu et al. (2020) through simulated exam-
ples. In addition, a real genetic dataset is analysed by
applying our methods in Section 4. Finally, Section 5
concludes the article. The proof of Theorem 2.1 and
additional comparisons among some generalized piv-
otal quantities (GPQs) are provided in the supplemen-
tary material.

2. New test

The generalized fiducial inference is one of the most
important ways to construct generalized p-values. In
the following, we explain the general procedure pro-
posed by Li et al. (2007, 2018) for obtaining generalized
p-values based on a data-generating equation (DGE).

Let Y be a random vector following a known distri-
bution Fδ(·), where δ is an unknown parameter vector.
Suppose ξ = ξ(δ) = (ξ1, ξT2 )T, where ξ1 is the parame-
ter of interest and ξ 2 is the nuisance parameter vector.
An observation of Y is denoted by y. Suppose we have
the DGE

Y = G(δ,E),

where E is a random variable that has a known dis-
tribution. The observed version of DGE y = G(δ, e)
has a unique solution for δ, i.e., G−1(y, e). Then, the
random quantities G−1(y,E) and ξ(G−1(y,E)) are the
GPQs of δ and ξ(δ), and the distributions of G−1(y,E)

and ξ(G−1(y,E)) are the fiducial distributions of δ and
ξ(δ). Furthermore, if y = G(δ, e) has a unique solution
for any e and y, ξ1 − ξ1(G−1(y,E)) is a generalized test
variable of ξ1, so that the generalized p-value for the
one-sided hypothesis H0 : ξ1 ≤ ξ10 ↔ H1 : ξ1 > ξ10 is
p = Pr(ξ1(G−1(y,E)) < ξ10).

Denote by Tδ = (Tθ ,Tμ1 ,Tμ2 ,Tσ1 ,Tσ2)
T the GPQ

of the parameter vector δ = (θ ,μ1,μ2, σ1, σ2)T. Based
on the ideas of the abovemethods, ifTδ can be obtained
by fiducial inference, we can find the GPQs of the
parameters of interest ξ1 = μ2 − μ1 and ξ1′ = σ2 −
σ1, denoted by Tξ1 = Tμ2 − Tμ1 and Tξ1′ = Tσ2/Tσ1 .
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Thus, the generalized p-values for the hypotheses μ2 −
μ1 = 0 and σ2/σ1 = 1 are

p1 = 2min{Pr(Tμ2 − Tμ1 < 0), Pr(Tμ2 − Tμ1 > 0)}
(5)

and

p2 = 2min{Pr(Tσ2/Tσ1 < 1), Pr(Tσ2/Tσ1 > 1)}. (6)

According to Theorem 2.1 in Section 2.1, p1 and p2 fol-
low the standard uniform distributionU(0, 1) indepen-
dently. Then, according to Fisher’s combined method
(Fisher, 1932), the generalized p-value for testing the
hypothesis in (3) is

pGV = Pr{χ2
4 > −2 log(p1p2)}. (7)

For a given significance level α, the null hypothesis (3)
is rejected if pGV ≤ α. Similarly, under the condition
σ1 = σ2 = σ , the generalized p-value for the hypoth-
esis test problem in (4) becomes

p̄GV = 2min{Pr(T̄μ2 − T̄μ1 < 0),

Pr(T̄μ2 − T̄μ1 > 0)}, (8)

where T̄μk is the GPQ of μk (k = 1, 2) under same-
scale conditions. The null hypothesis (4) is rejected if
p̄GV ≤ α.

For the mixture distribution frame in (1), the DGEs
for the sample data Y = (Y11, . . . ,Y1n1 ,Y21, . . . ,Y2n2 ,
Y31, . . . ,Y3n3 ,Y41, . . . ,Y4n4)

T are

Y1j = μ1 + σ1Z1j, j = 1, . . . , n1,

Y2j = (μ1 + σ1Z2j)I(0,θ](U2j)

+ (μ2 + σ2Z2j)I(θ ,1)(U2j), j = 1, . . . , n2,

Y3j = (μ1 + σ1Z3j)I(θ ,1](U3j)

+ (μ2 + σ2Z3j)I(0,θ](U3j), j = 1, . . . , n3,

Y4j = μ2 + σ2Z4j, j = 1, . . . , n4, (9)

where Zij ∼ f (·; 0, 1) and Uij ∼ U(0, 1) independently,
for j = 1, . . . , ni, i = 1, 2, 3, 4. The explicit expressions
ofTθ ,Tμ1 ,Tμ2 ,Tσ1 , andTσ2 are difficult to obtain based
on the observed version of (9), as the labels of obser-
vations {y2j, j = 1, . . . , n2} and {y3j, j = 1, . . . , n3} are
missing. Our solution is to introduce a random config-
uration assignment for {y2j, j = 1, . . . , n2} and {y3j, j =
1, . . . , n3}, i.e., to randomly assign {y2j} and {y3j} to
the distribution f1 or f2 (Hannig, 2009). Inspired by
the Bayesian method of McLachlan and Peel (2000)
and Frühwirth-Schnatter (2006), we obtain the GPQs
through a two-block design. Specifically, in the first
step, we find the GPQs conditional on a given config-
uration assignment, which can be obtained much more
easily, and denote them by Rθ , Rμ1 , Rμ2 , Rσ1 , and Rσ2 .
In the second step, the new configuration assignment
can be randomly generated based on Bernoulli random

numbers D2j ∼ Bin(1,Rτ2j), j = 1, . . . , n2, and D3j ∼
Bin(1,Rτ3j), j = 1, . . . , n3, where

Rτ2j = Rθ f (y2j;Rμ1 ,Rσ1)

Rθ f (y2j;Rμ1 ,Rσ1) + (1 − Rθ )f (y2j;Rμ2 ,Rσ2)

(10)
and

Rτ3j = Rθ f (y3j;Rμ2 ,Rσ2)

(1 − Rθ )f (y3j;Rμ1 ,Rσ1) + Rθ f (y3j;Rμ2 ,Rσ2)
.

(11)

For example, we randomly generate D2j from Bin(1,
Rτ2j) and assign y2j according to D2j, that is, we specify
that y2j is generated from the distribution f1 if D2j = 1
or the distribution f2 if D2j = 0, j = 1, . . . , n2. Accord-
ing to {D2j} and {D3j}, wemay update Rθ , Rμ1 , Rμ2 ,Rσ1 ,
andRσ2 . By iterating the steps above, fiveMarkov chains
can be obtained to approximate the distributions of Tθ ,
Tμ1 , Tμ2 , Tσ1 , and Tσ2 . Then, the generalized p-values
in (5), (6), and (7) can be obtained. A similar method
can be applied for the generalized p-value in (8).

Sections 2.1 and 2.2 provide the constructions of
GPQs conditional on the configuration assignment.
The Gibbs algorithm for the computation of the gen-
eralized p-values is explained in Section 2.3.

2.1. GPQs of location and scale parameters
conditional on assignment

To find the GPQs of (μ1, σ1), we combine the obser-
vations {y1j, j = 1, . . . , n1}, {y2j : y2j = μ1 + σ1z2j, j =
1, . . . , n2}, and {y3j : y3j = μ1 + σ1z3j, j = 1, . . . , n3}
into v = {v1, . . . , vĝ1} = {y11, . . . , y1n1 , y2j1 , . . . , y2js2 ,
y3js3+1 , . . . , y3jn3 }, where ĝ1 = n1 + s2 + n3 − s3, s2,
and s3 are the observed values of S2 = ∑n2

j=1 I(0,θ](U2j)

and S3 = ∑n3
j=1 I(0,θ](U3j). Here, v provides the infor-

mation for (μ1, σ1). Similarly, w = {w1, . . . ,wĝ2} =
{y2js2+1 , . . . , y2jn2 , y3j1 , . . . , y3js3 , y41, . . . , y4n4} contains
the information for (μ2, σ2), where ĝ2 = n4 + s3 +
n2 − s2. In this sense, we make a configuration assign-
ment of the observations into two groups to infer
(μ1, σ1) and (μ2, σ2), respectively. Denote by σ the
common scale of the data. Conditional on this config-
uration assignment, under the null hypothesis (3), we
have the following conditional DGEs:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ̂1 = μ1 + σE11,
μ̂2 = μ2 + σE21,
σ̂ = σE2,
σ̂1 = σ1E12,
σ̂2 = σ2E22,

(12)

where (μ̂1, σ̂1), (μ̂2, σ̂2), and σ̂ are the MLEs deter-
mined by {v1, . . . , vĝ1}, {w1, . . . ,wĝ2}, and their combi-
nation, respectively, and (Ek1,Ek2) and E2 have known
distributions that are, respectively, identical to those of
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the MLEs (μ̃k, σ̃k) and σ̃ , based on a sample of ĝk (k =
1, 2) observations and their combined sample from a
standard location-scale distribution f (·; 0, 1). Hence,
the GPQs of (μk, σk) under the null hypothesis (3)
should be (Nkurunziza & Chen, 2011; Xu & Li, 2006)

Rμk = μ̂obs
k − σ̂ obsEk1

E2
= μ̂obs

k − σ̂ obs μ̂k − μk

σ̂
,

Rσk = σ̂ obs
k
Ek2

= σ̂ obs
k
σ̂k

σk, k = 1, 2, (13)

where μ̂obs
k and σ̂ obs

k are the observed values of μ̂k
and σ̂k. Here, Rμk and Rσk are independent because
of the independence of Ek1, Ek2, and E2. In partic-
ular, in the normal distribution case, Ek1 is the ran-
dom element following N(0, 1/ĝk), and Ek2 and E2
are the random elements following

√
χ2
ĝk−1/ĝk and√

χ2
ĝ1+ĝ2−2/(ĝ1 + ĝ2), respectively. Our method, given

the configuration assignment in the normal distribu-
tion case, is identical to that of Perng and Littell (1976).

Theorem 2.1 indicates the null distributions of p1
and p2. The proof of the theorem is obtained by the dis-
tributions of the conditional GPQs Rμk and Rσk , which
is given in SectionAof the supplementarymaterial with
some simulated results.

Theorem 2.1: The generalized p-values p1 and p2
defined in (5) and (6) follow U(0, 1) independently.

In particular, under σ1 = σ2 = σ , given the config-
uration assignment, the GPQs are

R̄μk = μ̂obs
k − σ̂ obsEk1

E2
= μ̂obs

k − σ̂ obs μ̂k − μk

σ̂
,

R̄σ = σ̂ obs

E2
= σ̂ obs

σ̂
σ , k = 1, 2, (14)

where (μ̂obs
1 , μ̂obs

2 , σ̂ obs) are the observed values of
(μ̂1, μ̂2, σ̂ ), and (E11,E21,E2) have the same distribu-
tions as the MLEs (μ̃1, μ̃2, σ̃ ) based on a combined
sample of observations ĝ1 and ĝ2 from f (·; 0, 1).

2.2. GPQs of themixing proportion conditional on
assignment

The GPQ of the mixing proportion θ given the con-
figuration assignment is not unique. In the literature,
several GPQs have been developed. Among them, three
types of GPQs are popular because they have been
shown to have relatively good properties even for small
and moderate-sized samples.

(1) The mixture-beta generalized variable recom-
mended by Efron (1998) andHannig (2009), called

GVM hereafter, is

RMθ ∼ 0.5Beta(s2 + s3, n2 + n3 − s2 − s3 + 1)

+ 0.5Beta(s2 + s3 + 1, n2 + n3 − s2 − s3).
(15)

(2) Jeffreys’ generalized variable recommended by
Cai (2005) and Krishnamoorthy and Lee (2010),
called GVJ hereafter, is

RJθ ∼ Beta(s2 + s3 + 0.5,

n2 + n3 − s2 − s3 + 0.5). (16)

(3) Wilson’s generalized variable proposed by Li
et al. (2013), called GVW hereafter, is

RWθ = s2 + s3 + Z2/2
n2 + n3 + Z2 − Z

n2 + n3 + Z2

×
{
(s2 + s3)

(
1 − s2 + s3

n2 + n3

)
+ Z2

4

}1/2

,

(17)

where Z ∼ N(0, 1).

Besides the quantities above, we propose a new gen-
eralized variable by modifying the variance-stabilizing
transformation of θ .

W. H. Wu and Hsieh (2014) and Bebu et al. (2016)
constructed a generalized variable with variance-
stabilizing transformation for binomial proportion,
called GVV hereafter. For S2 + S3 ∼ Bin(n2 + n3, θ),
by the asymptotic normality,

2
√
n2 + n3(arcsin

√
θ̂ − arcsin

√
θ)

d−→ N(0, 1), (18)

where θ̂ = S2+S3
n2+n3 . However, if this result is applied

directly to construct the GVV, the result

RVθ = sin2
(
arcsin

√
θ̂obs − Z

2
√
n2 + n3

)

will become inaccurate, as can be seen in the simula-
tion results in Section B of the supplementary mate-
rial, because (18) only holds when n2 + n3 → ∞.

Here, Z ∼ N(0, 1) and d−→ stands for convergence in
distribution.

To avoid the problem of liberality in the Wald confi-
dence interval for the binomial proportion in small or
moderate sample size cases, Agresti and Coull (1998),
Agresti and Caffo (2000), and Schaarschmidt et al.
(2008) considered adding some numbers of pseudo
variables, half of which were ‘successful’ variables.
The frequentist properties of their methods were thus
much better than those of the Wald interval. In fact,
Schaarschmidt et al. (2008) pointed out that this kind
of adjustment was ‘not motivated by statistical theory
but determined on a rather heuristic basis’.
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Motivated by the results above, we consider adding
one or two variables to adjust the GVV of W. H. Wu
and Hsieh (2014) and Bebu et al. (2016) based on
a variance-stabilizing transformation. To compare the
frequentist properties among GVV and its two modifi-
cations, we construct generalized confidence intervals
for the binomial proportion θ ; the coverage probabil-
ities and average lengths are given in Section B of the
supplementarymaterial. The results show that this kind
of adjustment can improve the frequentist properties
of GVV, and the coverage probabilities when adding
one pseudo variable have the smallest oscillations when
the sample size is not more than 15, although its aver-
age lengths are greater than those when two pseudo
variables are added. Therefore, we choose to add one
pseudo variable, containing 0.5 ‘success’ and 0.5 ‘fail-
ure’, which resulting in the following result:

2

√
n2 + n3 + 2 + 1

n2 + n3

×
(
arcsin

√
θ̃ − arcsin

√
θ
)

d−→ N(0, 1),

where θ̃ = S2+S3+0.5
n2+n3+1 . Note that θ̃ is identical to the

Bayesian estimator based on Jeffreys’ prior Beta(0.5,
0.5), and this convergence is identical to (18)whenn2 +
n3 → ∞. This modified variance-stability transforma-
tion generalized variable, called GVMV hereafter, is

RMV
θ = sin2

⎛
⎝ arcsin

√
θ̃obs

− Z

2
√
n2 + n3 + 2 + 1

n2+n3

⎞
⎠ , (19)

where θ̃obs = s2+s3+0.5
n2+n3+1 is the observed value of θ̃ .

2.3. Gibbs algorithm

According to Gelman et al. (2014), a Markov chain
Monte Carlo method can be used to obtain approxi-
mate distributions to the real ones of the GPQs. For
convenience, we consider the two-block Gibbs sampler
used by McLachlan and Peel (2000) and Frühwirth-
Schnatter (2006). The initial Rτ2j , j = 1, . . . , n2 and
Rτ3j , j = 1, . . . , n3 can be determined by

R(0)
τ2j = θ̌ f (y2j; μ̌1, σ̌1)

θ̌ f (y2j; μ̌1, σ̌1) + (1 − θ̌ )f (y2j; μ̌2, σ̌2)
,

j = 1, . . . , n2,

R(0)
τ3j = θ̌ f (y3j; μ̌2, σ̌2)

(1 − θ̌ )f (y3j; μ̌1, σ̌1) + θ̌ f (y3j; μ̌2, σ̌2)
,

j = 1, . . . , n3,

where (θ̌ , μ̌1, μ̌2, σ̌1, σ̌2) = argmax0≤θ≤1 ln(θ ,μ1,μ2,
σ1, σ2), with

ln(θ ,μ1,μ2, σ1, σ2)

=
n1∑
j=1

log f1(y1j)

+
n2∑
j=1

log
{
θ f1(y2j) + (1 − θ)f2(y2j)

}

+
n3∑
j=1

log
{
(1 − θ)f1(y3j) + θ f2(y3j)

}

+
n4∑
j=1

log f2(y4j).

Then, iterate the following steps for b = 1, . . . ,B.

Step 1. Randomly generate D(b)
2j from Bin(1,R(b−1)

τ2j ),

j = 1, . . . , n2. If D(b)
2j = 1, the correspond-

ing individual from y2j is assigned to Group
1 (v, defined in Section 2.1); otherwise,
it is assigned to Group 2 (w, defined in
Section 2.1). Similarly, generate D(b)

3j from

Bin(1,R(b−1)
τ3j ), j = 1, . . . , n3. If D

(b)
3j = 0, the

corresponding individual from y3j is assigned
to v; otherwise, it is assigned to w. Then, cal-
culate s2 = ∑n2

j=1 D
(b)
2j , s3 = ∑n3

j=1 D
(b)
3j , and

(μ̂k, σ̂k), k = 1, 2 under the current
assignment.

Step 2. Under the random assignment in Step 1, gen-
erate R(b)

μk , R
(b)
σk , and R(b)

θ .
Step 2.1 Obtain (μ̂obs

1 , σ̂ obs
1 ), (μ̂obs

2 , σ̂ obs
2 )

and σ̂ obs from ν, ω, and their com-
bination, respectively, according to
the MLE method.

Step 2.2 Generate a random sample with size
ĝ1 = n1 + s2 + n3 − s3 from f (·; 0,
1), and obtain the MLE (μ̃1, σ̃1).
Let E11 = μ̃1, E12 = σ̃1. Similarly,
(E21,E22) and E2 are also obtained
from randomvariables coming from
f (·; 0, 1). Then, calculate R(b)

μk and
R(b)

σk by (13).
Step 2.3 Generate R(b)

θ , a random observa-
tion from one of the distributions
in (15), (16), (17), or (19).

Step 2.4 Update R(b)
τ2j , j = 1, . . . , n2, and R

(b)
τ3j ,

j = 1, . . . , n3, as (10) and (11) with
the R(b)

μk , R
(b)
σk , and R(b)

θ obtained in
Steps 2.2 and 2.3.

After repeating Step 1 to Step 2 B times, the Markov
chains of the GPQs with size B can be obtained.
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Table 2. Type I errors (%) and standard errors (%) of the five methods.

α = 0.05 d = 5 d = 10 d = 20

n GVJ GVM GVW GVMV LR GVJ GVM GVW GVMV LR GVJ GVM GVW GVMV LR

f1 = f2 = N(0, 1)
30 5.18 4.83 5.12 5.26 7.95 4.78 4.54 4.79 5.07 7.16 5.01 4.82 4.87 5.22 7.57

(0.221) (0.214) (0.220) (0.223) (0.271) (0.213) (0.208) (0.214) (0.219) (0.258) (0.218) (0.214) (0.215) (0.222) (0.265)
50 4.85 4.71 4.90 5.12 6.33 5.38 5.03 5.17 5.49 6.35 4.60 4.43 4.56 4.80 5.81

(0.215) (0.212) (0.216) (0.220) (0.244) (0.226) (0.219) (0.221) (0.228) (0.244) (0.209) (0.206) (0.209) (0.214) (0.234)
100 4.92 4.93 4.93 5.00 5.13 4.98 4.80 4.87 4.95 5.30 5.03 4.97 4.87 5.02 5.43

(0.216) (0.217) (0.217) (0.218) (0.221) (0.218) (0.214) (0.215) (0.217) (0.224) (0.219) (0.217) (0.215) (0.218) (0.227)
200 5.38 5.24 5.24 5.42 5.43 5.05 4.97 5.01 5.05 5.24 5.18 5.06 5.04 5.03 5.31

(0.226) (0.223) (0.223) (0.226) (0.227) (0.219) (0.217) (0.218) (0.219) (0.223) (0.222) (0.219) (0.219) (0.219) (0.224)
300 5.15 5.09 5.21 5.18 5.24 5.16 4.99 4.95 5.05 5.22 5.09 5.05 5.14 5.28 5.24

(0.221) (0.220) (0.222) (0.222) (0.223) (0.221) (0.218) (0.217) (0.219) (0.222) (0.220) (0.219) (0.221) (0.224) (0.223)

f1 = f2 = N(0, 1) under σ1 = σ2 = σ

30 5.11 4.80 4.94 5.35 7.08 4.95 4.57 4.74 5.07 6.63 5.21 4.83 5.15 5.38 7.07
(0.220) (0.214) (0.217) (0.225) (0.257) (0.217) (0.209) (0.213) (0.219) (0.249) (0.222) (0.214) (0.221) (0.226) (0.256)

50 4.94 4.75 4.89 5.09 5.91 5.47 5.27 5.34 5.49 6.33 4.77 4.67 4.72 4.94 5.53
(0.217) (0.213) (0.216) (0.220) (0.236) (0.227) (0.223) (0.221) (0.228) (0.244) (0.213) (0.211) (0.212) (0.217) (0.229)

100 5.19 4.83 4.94 5.06 5.40 5.02 4.86 4.80 4.92 5.17 5.10 5.10 5.10 5.17 5.60
(0.222) (0.214) (0.217) (0.219) (0.227) (0.218) (0.215) (0.214) (0.216) (0.221) (0.220) (0.220) (0.220) (0.221) (0.230)

200 5.30 5.24 5.20 5.20 5.48 5.00 5.02 4.94 5.08 5.07 5.07 4.98 4.97 5.09 5.37
(0.224) (0.223) (0.222) (0.222) (0.228) (0.218) (0.218) (0.217) (0.220) (0.219) (0.219) (0.218) (0.217) (0.220) (0.225)

300 5.15 5.16 5.17 5.27 5.30 5.14 5.06 5.17 5.18 5.14 5.09 5.03 5.18 5.08 5.22
(0.221) (0.221) (0.221) (0.223) (0.224) (0.221) (0.219) (0.221) (0.222) (0.221) (0.220) (0.219) (0.222) (0.220) (0.222)

f1 = f2 = Logis(0, 1)
30 5.34 4.64 5.22 5.31 7.87 4.86 4.53 4.81 4.89 6.68 5.36 5.03 5.34 5.53 7.37

(0.225) (0.216) (0.222) (0.224) (0.269) (0.215) (0.208) (0.214) (0.216) (0.250) (0.225) (0.219) (0.225) (0.229) (0.261)
50 4.87 4.56 4.76 5.06 5.99 5.31 4.87 5.02 5.33 5.85 4.76 4.54 4.56 4.85 5.74

(0.215) (0.209) (0.213) (0.219) (0.237) (0.224) (0.215) (0.218) (0.225) (0.235) (0.213) (0.208) (0.209) (0.215) (0.233)
100 5.12 4.97 5.09 5.29 5.29 5.03 4.81 4.85 5.07 5.33 5.05 5.01 4.93 5.12 5.65

(0.220) (0.217) (0.220) (0.224) (0.224) (0.219) (0.214) (0.215) (0.219) (0.225) (0.219) (0.218) (0.217) (0.220) (0.231)
200 5.00 4.92 4.98 4.90 5.19 4.68 4.70 4.60 4.77 4.88 4.93 4.94 5.09 4.95 5.26

(0.218) (0.216) (0.217) (0.216) (0.222) (0.211) (0.212) (0.209) (0.213) (0.215) (0.217) (0.217) (0.220) (0.217) (0.223)
300 5.23 5.30 5.34 5.20 5.44 4.69 4.65 4.69 4.72 4.87 5.27 5.24 5.25 5.33 5.30

(0.223) (0.224) (0.225) (0.222) (0.227) (0.211) (0.211) (0.211) (0.212) (0.215) (0.223) (0.223) (0.223) (0.225) (0.224)

f1 = f2 = Logis(0, 1) under σ1 = σ2 = σ

30 5.14 4.81 4.97 5.28 7.08 5.03 4.81 4.94 5.15 6.53 5.19 4.86 4.97 5.32 6.57
(0.221) (0.214) (0.217) (0.224) (0.257) (0.219) (0.214) (0.217) (0.221) (0.247) (0.222) (0.215) (0.217) (0.224) (0.248)

50 5.19 4.82 4.96 5.14 5.92 4.80 4.60 4.68 4.83 5.68 4.67 4.40 4.53 4.72 5.43
(0.222) (0.214) (0.217) (0.221) (0.236) (0.214) (0.209) (0.211) (0.214) (0.231) (0.211) (0.205) (0.208) (0.212) (0.227)

100 5.00 4.85 4.90 5.00 5.34 5.00 4.80 4.90 4.92 5.39 5.35 5.39 5.31 5.46 5.84
(0.218) (0.215) (0.216) (0.218) (0.225) (0.218) (0.214) (0.216) (0.216) (0.226) (0.225) (0.226) (0.224) (0.227) (0.235)

200 4.99 4.91 5.05 4.98 4.94 5.12 5.19 5.15 5.19 5.12 5.30 5.08 5.18 5.33 5.53
(0.218) (0.216) (0.219) (0.218) (0.217) (0.220) (0.222) (0.221) (0.222) (0.220) (0.224) (0.220) (0.222) (0.225) (0.229)

300 5.12 5.12 5.10 5.08 5.23 4.74 4.59 4.54 4.56 4.83 4.98 5.13 5.11 5.14 5.17
(0.220) (0.220) (0.220) (0.220) (0.223) (0.213) (0.209) (0.208) (0.209) (0.214) (0.218) (0.221) (0.220) (0.221) (0.221)
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Table 3. Powers (%) of the five methods for Normal mixture model.

n GVJ GVM GVW GVMV LR GVJ GVM GVW GVMV LR GVJ GVM GVW GVMV LR

Case I: f1 = N(0, 1) and f2 = N(0.5, 1)
θ = 0.5 d = 5 d = 10 d = 20

30 17.7 16.7 17.2 17.6 17.0 16.8 15.8 15.8 16.7 16.4 15.2 15.0 15.0 15.8 14.8
50 27.1 26.8 27.1 27.7 28.0 26.3 25.7 25.7 27.1 26.9 25.3 24.7 24.7 25.1 26.3
100 54.1 53.3 53.4 54.5 54.7 52.6 52.1 52.3 53.7 54.2 48.5 48.3 48.4 48.6 48.5
200 86.3 86.0 86.3 86.2 87.2 83.6 83.5 83.8 84.0 84.1 80.7 80.4 80.5 80.4 80.4

θ = 0.7 d = 5 d = 10 d = 20

30 16.6 16.0 16.2 16.9 16.1 16.3 15.5 16.3 16.8 16.3 15.5 15.1 15.2 16.2 14.5
50 29.8 28.6 28.9 29.8 30.6 27.5 26.4 26.4 27.3 26.1 24.7 24.2 24.4 25.5 25.1
100 55.3 54.7 55.3 55.6 57.3 51.1 51.1 51.3 51.5 52.1 49.8 50.1 50.0 50.7 51.2
200 86.0 85.5 85.7 86.2 87.1 84.0 84.1 83.8 84.3 85.6 80.4 80.4 80.2 80.6 81.4

Case II: f1 = N(0, 1) and f2 = N(0, 1.52)
θ = 0.5 d = 5 d = 10 d = 20

30 19.5 19.2 19.5 20.1 19.6 18.7 18.4 18.9 19.5 18.7 17.7 16.9 17.1 17.8 17.2
50 34.7 34.4 34.6 34.9 36.1 32.4 31.6 31.9 32.6 32.2 28.8 27.8 28.2 29.6 29.7
100 67.5 67.0 67.2 67.7 68.4 64.7 64.2 63.9 64.7 64.7 60.2 59.6 59.9 60.3 60.3
200 94.1 94.1 94.1 94.3 95.0 93.5 92.7 92.9 93.0 93.7 90.8 90.7 90.4 91.0 91.1

θ = 0.7 d = 5 d = 10 d = 20

30 18.8 18.4 18.5 19.2 18.5 19.0 18.8 18.5 19.7 19.3 17.0 16.5 16.5 17.4 16.0
50 34.8 34.2 34.3 34.8 35.2 32.4 31.9 32.1 32.7 32.7 30.3 29.7 30.2 30.6 31.5
100 65.8 65.2 65.6 65.9 68.2 63.4 63.0 63.1 63.6 64.3 58.7 58.2 58.7 59.3 59.3
200 94.0 94.2 94.2 94.1 94.9 93.5 93.3 93.5 93.7 93.9 91.6 91.1 91.2 91.7 92.0

Case III: f1 = N(0, 1) and f2 = N(0.5, 1.52)
θ = 0.5 d = 5 d = 10 d = 20

30 29.6 28.7 29.1 29.8 28.3 28.5 27.9 27.8 29.0 27.9 25.0 24.5 24.7 24.9 24.0
50 51.5 50.7 50.7 51.5 50.9 50.8 50.1 50.4 51.1 48.6 49.7 49.0 48.9 50.0 49.0
100 86.0 85.8 85.8 85.9 85.2 84.3 84.2 84.4 84.3 83.6 80.9 80.2 80.1 81.2 80.0
200 99.3 99.3 99.3 99.3 99.3 99.3 99.2 99.3 99.3 99.2 98.3 98.4 98.2 98.3 97.9

θ = 0.7 d = 5 d = 10 d = 20

30 28.4 27.3 28.0 28.7 27.3 28.6 27.7 27.9 28.3 27.9 28.1 27.3 27.7 28.6 27.4
50 51.5 50.9 51.2 52.1 51.5 52.1 51.9 52.3 52.2 50.3 45.6 44.8 45.5 45.7 45.5
100 85.5 85.4 85.2 85.7 84.9 84.7 84.0 84.2 84.9 84.0 81.2 81.1 81.3 81.8 80.5
200 99.6 99.5 99.6 99.6 99.5 99.2 99.3 99.2 99.4 99.3 98.8 98.9 98.8 98.9 98.8

Then, the generalized p-value (7) can be obtained by
calculating

p1 = 2min

[∑B
b=1 1{R(b)

μ2 − R(b)
μ1 < 0}

B
,

∑B
b=1 1{R(b)

μ2 − R(b)
μ1 > 0}

B

]

and

p2 = 2min

[∑B
b=1 1{R(b)

σ2 /R(b)
σ1 < 1}

B
,

∑B
b=1 1{R(b)

σ2 /R(b)
σ1 > 1}

B

]
,

where 1(·) denotes the indicator function.
Similarly, under the condition σ1 = σ2 = σ , the

Markov chains of the GPQs, R̄(b)
μ1 , R̄

(b)
μ2 and R̄(b)

σ , b =
1, . . . ,B, can be produced by the above steps; then, the
generalized p-value (8) can be obtained.

3. Simulations

In this section, we compare the generalized p-values (7)
and (8) of the hypothesis test problem (3) with the p-
values of the LR methods proposed in Liu et al. (2020)
via Monte Carlo simulation. As the four generalized
fiducial methods differ only in their mixing propor-
tions, we use the abbreviations GVJ, GVM, GVW, and
GVMV to represent the generalized fiducial methods.
Suppose the significance level is α = 0.05. Consider the
total sample sizes n to be 30, 50, 100, 200, and 300.
The recombination frequency r is determined by the
Haldane map r = 0.5(1 − exp(−2d/100)), where d is
the map distance defined as ‘the expected number of
crossovers occurring between them on a single chro-
matid duringmeiosis’ and ismeasured in centiMorgans
(R. Wu et al., 2007). As the value of d is usually not
large in practice (Zhang et al., 2008), we set d to 5,
10, or 20 according to Liu et al. (2020), with the cor-
responding values of r being 0.048, 0.091, and 0.165.
The four sample sizes (n1, n2, n3, n4) are generated from
Multi(n; 1−r

2 , r2 ,
r
2 ,

1−r
2 ).

First, the type I errors of the five approaches are
compared underN = 10,000 repeated simulations, and
the data are generated from standard normal and
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Table 4. Powers (%) of the five methods for Logistic mixture model.

n GVJ GVM GVW GVMV LR GVJ GVM GVW GVMV LR GVJ GVM GVW GVMV LR

Case IV: f1 = Logis(0, 1) and f2 = Logis(0.5, 1)
θ = 0.5 d = 5 d = 10 d = 20

30 9.80 9.30 9.40 10.2 9.10 9.45 9.05 9.05 9.35 9.70 7.70 7.20 7.05 7.90 7.10
50 12.9 12.5 12.9 13.2 12.9 11.8 11.6 11.9 12.1 12.2 11.5 11.4 11.3 11.8 12.0
100 21.1 20.5 20.9 21.2 20.5 20.6 20.5 20.5 20.9 20.6 19.0 18.5 18.5 18.9 17.5
200 40.6 40.4 40.2 40.6 40.8 40.8 40.0 40.5 40.7 41.3 36.5 36.7 37.4 37.4 37.3

θ = 0.7 d = 5 d = 10 d = 20

30 8.10 7.70 8.10 8.25 8.35 8.55 8.25 8.75 8.90 9.10 7.85 7.20 7.55 7.90 7.45
50 12.6 12.2 12.3 12.3 13.2 12.8 12.2 12.3 12.8 12.5 10.3 9.85 10.3 10.5 11.1
100 21.4 20.9 21.4 21.5 21.4 19.4 18.9 19.3 19.3 19.5 18.4 18.0 17.6 18.6 16.6
200 40.4 40.1 40.3 40.7 40.1 39.4 39.0 39.5 39.5 40.8 34.6 34.4 34.4 35.3 34.6

Case V: f1 = Logis(0, 1) and f2 = Logis(0, 1.5)
θ = 0.5 d = 5 d = 10 d = 20

30 14.3 13.9 14.7 14.7 14.2 17.0 16.3 16.8 17.0 17.8 15.8 15.0 15.5 16.0 14.1
50 26.9 26.2 26.7 27.3 28.8 27.8 26.7 27.0 27.6 27.9 23.0 22.8 23.2 23.5 24.5
100 51.2 50.8 51.7 51.5 51.6 49.5 49.1 49.4 49.9 50.2 47.1 46.2 46.4 47.1 47.0
200 84.0 83.9 83.5 83.7 83.9 81.6 81.4 81.1 81.5 82.2 77.2 76.9 77.2 77.4 76.8

θ = 0.7 d = 5 d = 10 d = 20

30 15.5 15.0 15.2 15.8 15.4 15.7 15.1 15.5 16.2 16.6 15.8 14.5 15.4 15.7 14.4
50 25.9 25.7 26.1 26.7 26.6 25.1 24.4 24.9 25.1 25.3 24.8 24.1 24.1 25.3 26.0
100 52.3 51.9 51.8 52.2 52.5 49.4 49.2 49.4 50.0 51.0 47.3 46.7 46.7 47.5 46.6
200 83.3 83.0 83.4 83.1 83.7 81.9 81.6 81.8 81.8 83.8 79.1 79.9 79.5 79.3 79.3

Case VI: f1 = Logis(0, 1) and f2 = Logis(0.5, 1.5)
θ = 0.5 d = 5 d = 10 d = 20

30 20.6 20.1 20.3 20.6 19.2 18.4 17.5 18.0 18.9 19.1 17.1 16.9 17.3 17.9 15.9
50 33.4 32.3 33.1 33.6 33.6 31.8 30.9 31.5 31.1 30.5 30.4 30.1 29.7 31.0 30.1
100 63.3 62.8 62.6 62.7 61.5 61.9 61.9 61.8 62.3 61.5 55.5 54.9 55.3 55.7 53.3
200 91.8 91.8 91.7 91.6 91.5 90.2 89.9 90.2 90.1 90.0 87.7 87.5 87.6 88.0 86.1

θ = 0.7 d = 5 d = 10 d = 20

30 19.3 18.2 18.8 19.0 18.8 17.5 16.6 17.0 17.8 17.2 17.7 16.9 17.6 18.2 16.5
50 32.3 31.9 32.5 32.5 32.2 33.4 32.4 32.6 33.4 32.7 28.9 28.6 29.0 29.7 29.8
100 64.3 64.0 64.2 64.6 63.8 61.1 60.2 60.6 61.0 60.2 56.8 56.5 56.4 57.4 54.2
200 92.8 92.5 92.5 92.7 92.5 90.0 90.0 90.2 90.0 89.9 87.2 87.2 87.2 87.5 86.4

logistic distributions, i.e., f1 = f2 = N(0, 1) and f1 =
f2 = Logis(0, 1). Under the nominal significance level
α = 0.05, the standard error of this Monte Carlo simu-
lation is

√
0.05 × 0.95/10, 000 ≈ 0.218%. The distribu-

tions of the GPQs are approximated by Markov chains
with size B = 5000 as described in Section 2.3, whereas
those of the two LR statistics are approximated by gen-
erating M = 100,000 simulated quantities from Equa-
tions (6) and (7) in Liu et al. (2020). The type I errors
and their standard errors (%) are shown in Table 2.
The sizes of the generalized p-values proposed here are
more conservative than those of the LRmethod. In large
sample size cases, the type I errors of the five methods
are close to the significance level. As the total sample
size n decreases, the LR method becomes more liberal
and can no longer well control type I errors when n ≤
100. On the contrary, the generalized p-values become
more conservative as the sample size n decreases. GVJ
and GVMV give generalized p-values relatively close to
the nominal level, whereas GVM and GVW are more
conservative.

Further, we compare the power of these methods. To
control the type I errors of the LR method successfully,
we take the above 10,000 LR quantities of each settings
under n and d as the empirical distributions of the LR

method under hypotheses (3) and (4). After correction,
the p-values of the LR method are close to the nominal
level. The four types of generalized p-values are calcu-
lated by generating B = 5000 simulated quantities. As
the type I errors of the four generalized p-values are
controlled successfully, no corrections are required for
these methods. For θ = 0.5 and 0.7, the powers of these
tests are obtained by N = 2000 repetitions from each
of the six mixture distributions below, using settings
similar to those of Liu et al. (2020).

Case I: f1 = N(0, 1) and f2 = N(0.5, 1);
Case II: f1 = N(0, 1) and f2 = N(0, 1.52);
Case III: f1 = N(0, 1) and f2 = N(0.5, 1.52);
Case IV : f1 = Logis(0, 1) and f2 = Logis(0.5, 1);
Case V : f1 = Logis(0, 1) and f2 = Logis(0, 1.5);
Case VI: f1 = Logis(0, 1) and f2 = Logis(0.5, 1.5).
Note that in Cases II and V, f1 and f2 differ only in

their scale parameters; therefore, all of the test meth-
ods are insignificant. Thus, these two cases are not
compared when σ1 = σ2 = σ .

As shown in Tables 3–5, as the sample size increases,
the power of the five types of methods also increases.
The power is very similar in most cases. Under condi-
tion σ1 = σ2 = σ , the four generalized fiducial meth-
ods are slightly more powerful than the LR method.
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Table 5. Powers (%) of the five methods for mixture model under σ1 = σ2 = σ .

n GVJ GVM GVW GVMV LR GVJ GVM GVW GVMV LR GVJ GVM GVW GVMV LR

Case I: f1 = N(0, 1) and f2 = N(0.5, 1)
θ = 0.5 d = 5 d = 10 d = 20

30 23.0 22.4 22.7 23.4 22.2 23.5 22.4 22.8 24.1 22.8 21.4 21.0 21.0 21.5 19.6
50 37.7 36.4 37.1 38.1 37.2 36.7 36.3 36.7 37.2 33.8 34.0 33.2 33.3 34.0 34.1
100 66.9 66.5 66.8 67.0 65.9 65.4 65.3 65.1 65.8 63.6 61.3 60.9 60.9 61.6 59.6
200 93.5 93.4 93.5 93.5 93.3 91.3 91.0 91.1 91.1 90.8 88.5 88.2 88.2 88.5 87.1

θ = 0.7 d = 5 d = 10 d = 20

30 21.3 20.9 21.5 22.1 20.8 21.9 21.8 21.8 22.4 21.4 21.9 20.6 21.5 22.1 19.4
50 39.9 39.3 39.6 40.1 38.7 36.6 35.9 36.7 37.2 34.7 32.8 32.7 32.9 33.6 33.2
100 67.3 67.1 67.2 67.7 66.8 64.4 64.3 64.3 64.7 63.0 61.6 61.2 61.3 61.8 60.7
200 92.9 92.8 92.8 92.7 92.6 91.7 91.6 91.4 91.6 91.4 89.5 89.3 89.1 89.8 88.4

Case III: f1 = N(0, 1) and f2 = N(0.5, 1.52)
θ = 0.5 d = 5 d = 10 d = 20

30 17.4 17.0 17.3 17.8 16.6 15.9 14.9 15.6 16.3 15.3 13.4 13.0 13.4 13.8 12.4
50 25.3 24.6 24.9 25.5 24.2 25.7 25.4 25.5 26.1 23.7 26.7 26.4 26.1 27.0 26.7
100 46.2 45.9 45.9 46.4 45.3 45.7 45.3 45.5 45.7 44.5 41.4 41.4 41.4 41.7 40.4
200 76.8 76.7 76.7 77.0 76.0 74.6 74.5 74.3 74.7 73.3 70.0 69.6 69.6 70.0 68.3

θ = 0.7 d = 5 d = 10 d = 20

30 16.5 15.8 16.2 16.7 15.8 15.4 15.1 15.4 16.0 15.1 16.0 15.1 15.8 16.2 14.7
50 25.6 25.1 25.5 26.0 25.4 25.1 24.6 24.6 25.3 23.2 22.8 22.3 23.0 23.1 22.8
100 49.8 49.6 49.9 49.8 49.4 46.1 45.2 45.4 46.3 45.4 42.8 42.3 42.3 43.0 41.0
200 77.0 76.9 77.2 77.0 76.5 74.6 74.3 74.4 74.4 74.2 76.8 76.7 76.7 77.0 76.0

Case IV: f1 = Logis(0, 1) and f2 = Logis(0.5, 1)
θ = 0.5 d = 5 d = 10 d = 20

30 11.7 11.2 11.8 12.0 11.8 11.9 11.6 11.8 12.3 11.5 10.0 9.20 9.80 10.4 9.00
50 17.1 16.8 17.4 17.3 16.4 14.3 14.3 14.0 14.7 13.9 15.2 15.2 15.3 15.9 15.1
100 27.7 27.9 28.4 28.4 27.8 26.7 26.3 26.4 26.6 26.3 24.5 24.2 24.4 24.9 22.9
200 51.0 50.7 51.5 51.6 51.1 50.6 51.0 50.7 50.7 49.3 45.5 45.6 45.7 45.9 43.7

θ = 0.7 d = 5 d = 10 d = 20

30 11.9 11.8 12.0 12.1 11.9 11.2 10.4 10.7 11.3 10.6 11.4 10.9 11.2 11.3 11.1
50 16.0 15.9 15.8 16.1 15.5 16.2 15.4 16.1 16.6 15.6 15.2 14.7 14.6 15.2 14.9
100 27.6 27.2 27.2 27.5 26.9 27.1 26.7 27.2 26.9 26.4 23.8 23.7 23.6 23.9 22.1
200 50.5 50.8 51.1 50.9 50.5 49.8 49.3 49.7 49.8 48.0 45.6 45.2 45.0 45.6 43.0

Case VI: f1 = Logis(0, 1) and f2 = Logis(0.5, 1.5)
θ = 0.5 d = 5 d = 10 d = 20

30 9.45 9.45 9.45 9.80 9.30 8.95 8.40 8.65 8.75 8.85 9.45 8.85 8.90 9.25 8.35
50 12.4 11.9 12.6 12.6 12.2 11.7 11.5 11.9 12.0 11.0 11.7 11.3 11.5 11.8 11.3
100 21.6 21.5 21.5 22.0 21.0 19.6 19.4 19.6 19.8 19.6 18.0 17.9 17.7 17.9 16.7
200 36.8 36.3 36.3 36.6 35.9 33.4 33.5 33.4 33.3 32.2 31.5 30.9 31.4 31.3 28.7

θ = 0.7 d = 5 d = 10 d = 20

30 9.50 9.25 9.70 9.85 9.50 8.55 8.35 8.40 8.80 8.30 9.10 8.85 9.00 9.35 8.85
50 12.3 12.2 12.5 12.6 11.6 12.5 12.1 12.4 12.7 12.4 12.2 12.0 12.1 12.3 12.8
100 20.0 19.5 19.6 20.0 19.8 18.8 18.5 18.6 19.0 18.4 18.2 17.9 18.3 18.5 16.7
200 35.8 35.6 35.9 35.9 35.5 33.9 33.9 33.7 33.9 33.7 29.5 29.4 29.5 29.8 27.2

Table 6. p-values of Shapiro–Wilk test.

Interval D1Mit156-D1Mit178 D1Mit7-D1Mit46 D1Mit46-D1Mit132 D1Mit132-D1Mit334 D1Mit94-D1Mit218

y1 0.3646 0.6656 0.7135 0.1150 0.1797
y4 0.2191 0.1619 0.2498 0.3240 0.3778
Interval D1Mit218-D1Mit100 D1Mit14-D1Mit105 D1Mit105-D1Mit159 D1Mit159-D1Mit267 D1Mit267-D1Mit15
y1 0.5102 0.1747 0.2287 0.2990 0.3924
y4 0.7499 0.3630 0.8381 0.2519 0.1183

Comparing the four generalized fiducial methods,
GVMVhas the greatest power, althoughGVJ andGVW
are typically very close to GVMV.

In summary, the LR method becomes liberal in the
case of small and moderate sample sizes (n ≤ 100),
whereas GVM and GVWbecome slightly conservative,
and GVMV and GVJ show better performance.

4. Real example

In this section, we apply the generalized fiducial meth-
ods to a real QTL analysis and further develop a com-
parison with the LR method.

Sugiyama et al. (2001) performed a QTL analysis on
malemice from a reciprocal backcross between the salt-
sensitive C57BL/6J (B6) and the normotensive A/J (A)
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Table 7. Sample sizes of 10 intervals.

Interval D1Mit156-D1Mit178 D1Mit7-D1Mit46 D1Mit46-D1Mit132 D1Mit132-D1Mit334 D1Mit94-D1Mit218

Total 49 26 26 25 37
y1 17 16 13 11 8
y2 2 2 3 3 8
y3 10 0 2 2 4
y4 20 8 8 9 17

Interval D1Mit218-D1Mit100 D1Mit14-D1Mit105 D1Mit105-D1Mit159 D1Mit159-D1Mit267 D1Mit267-D1Mit15

Total 37 250 35 35 35
y1 7 137 19 20 15
y2 5 4 0 0 11
y3 4 5 1 6 1
y4 11 104 15 9 8

Figure 1. The trace plot of Markov chains of the four generalized p-values methods for D1Mit156-D1Mit178.

inbred strains after they had been provided with water
containing 1% salt for 2 weeks. They were mainly con-
cerned with the genetic control of salt-induced hyper-
tension. Here, we use the five methods to analyse blood
pressure data in the 250 male backcross mice typed
at 174 markers; the data are available in R package
‘qtl’ with the name ‘hyper’ or can be downloaded from
https://phenome.jax.org/projects/Sugiyama2. The deta-
iled process of the experiment can be found in
Sugiyama et al. (2001). In this example, we only focus
on the QTL locations, not the QTL–QTL interac-
tions, in chromosome 1. This chromosome is divided

by 22 markers, where each of the 21 intervals corre-
sponds to four groups of data. For {y1j, j = 1, . . . , n1}
and {y4j, j = 1, . . . , n4} in each interval, we apply the
Shapiro–Wilk test to determine whether the observa-
tions are from the normal distributions. The results
show that the f1s and f2s in 10 of the 21 intervals are nor-
mal distributions; their p-values from the Shapiro–Wilk
test are listed in Table 6. Then, QTL detection in these
10 intervals can be modelled by Equation (1) under
normal distributions.

Table 7 provides the sample sizes of the 10 inter-
vals. Nine of them have small or moderate sample

https://phenome.jax.org/projects/Sugiyama2
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sizes (n<50). The asymptotic distributions of the LR
method are approximated by M = 100,000 simulated
realizations (Liu et al., 2020), and the lengths of the
Markov chains of the four GPQs are set to B = 5000.
Taking the interval D1Mit156–D1Mit178 as an exam-
ple, we can obtain the recombination proportion θ̌ ≈
0.4006, the locations μ̌1 ≈ 100.1 and μ̌2 ≈ 103.4, and
the scales σ̌1 ≈ 4.645 and σ̌2 ≈ 6.274. The observed
value of the LR statistic is 4.867 and its p-value is
0.1678. The trace plots of Markov chains for the four
generalized p-value methods are shown in Figure 1;
the p-values for GVJ, GVM, GVW, and GVMV are
0.1039, 0.1078, 0.1033, and 0.1009, respectively. There-
fore, under a significance level of α = 0.05, the null
hypothesis (3) cannot be rejected by the five methods
and the existence of QTL effects cannot be confirmed
in this interval.

Similarly, the results for the remaining nine inter-
vals are shown in Tables 8 and 9. The four gen-
eralized fiducial methods lead to the same con-
clusions as the LR method. The QTL effect exists
in the D1Mit14–D1Mit105 interval at least with
respect to the mean. The D1Mit105–D1Mit159 and
D1Mit159–D1Mit267 intervals contain QTLs that
affect the variance but not the mean. Note that in the
interval D1Mit267–D1Mit15, without the equal-scale
assumption, the p-value (0.0673) of the LR method is
much smaller than those of the four generalized fidu-
cial methods. When the significance level is 0.1, the
LR method declares that a QTL effect exists in the
variance but not in the mean. However, as shown in
Figure 2, {y1j, j = 1, . . . , n1} and {y4j, j = 1, . . . , n4}

Figure 2. The boxplot of {y1j , j = 1, . . . , n1} and {y4j , j =
1, . . . , n4} for D1Mit267-D1Mit15.

are distributed closely, and the p-value of the F-test
for comparing the variances of {y1j, j = 1, . . . , n1} and
{y4j, j = 1, . . . , n4} is 0.3982, much larger than the
nominal significance level 0.05. From this perspective,
the results of the four generalized p-value methods are
more reliable, whereas the LR test method is liberal to
some degree.

5. Conclusion

In this paper, we propose four generalized fiducial
methods to test the existence of QTL effects between
two flanking markers. Based on the simulation results,
we find that the generalized fiducial methods can con-
trol type I errors fairly well even when sample sizes are
less than 50. These four generalized fiducial methods

Table 8. Five kinds of p-values in 10 intervals.

Interval D1Mit156-D1Mit178 D1Mit7-D1Mit46 D1Mit46-D1Mit132 D1Mit132-D1Mit334 D1Mit94-D1Mit218

LR 0.1678 0.3309 0.2524 0.7606 0.3088
GVJ 0.1039 0.2627 0.6578 0.7792 0.3849
GVM 0.1078 0.2847 0.7427 0.7688 0.3996
GVW 0.1033 0.2607 0.6013 0.7554 0.4274
GVMV 0.1009 0.2779 0.6304 0.7604 0.3676

Interval D1Mit218-D1Mit100 D1Mit14-D1Mit105 D1Mit105-D1Mit159 D1Mit159-D1Mit267 D1Mit267-D1Mit15

LR 0.7951 0.0001 0.0060 0.0088 0.0673
GVJ 0.6339 0 0.0085 0.0081 0.9175
GVM 0.6704 0 0.0104 0.0115 0.8219
GVW 0.6408 0 0.0091 0.0130 0.9872
GVMV 0.6290 0 0.0090 0.0178 0.9407

Table 9. Five kinds of p-values in 10 intervals under σ1 = σ2 = σ assumption.

Interval D1Mit156-D1Mit178 D1Mit7-D1Mit46 D1Mit46-D1Mit132 D1Mit132-D1Mit334 D1Mit94-D1Mit218

LR 0.1699 0.9728 0.7918 0.4872 0.5442
GVJ 0.1208 0.9596 0.6928 0.4708 0.4100
GVM 0.1272 0.9764 0.7124 0.5216 0.4032
GVW 0.1268 0.9396 0.6988 0.5168 0.4092
GVMV 0.1120 0.9460 0.6796 0.5124 0.3980

Interval D1Mit218-D1Mit100 D1Mit14-D1Mit105 D1Mit105-D1Mit159 D1Mit159-D1Mit267 D1Mit267-D1Mit15

LR 0.5022 0.0001 0.1267 0.1706 0.1313
GVJ 0.4132 0 0.1476 0.1756 0.5536
GVM 0.4316 0 0.1380 0.1852 0.4140
GVW 0.3772 0 0.1464 0.1732 0.5820
GVMV 0.4228 0 0.1384 0.1784 0.4456
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have almost the same power as the LR method under
a fair comparison, and they are slightly more power-
ful than the LR method when σ1 = σ2 = σ . The four
methods can be extended to test the existence of QTL
effects with occurring double recombination, where the
data from each of the four groups are from a mix-
ture distribution in both location and scale.Meanwhile,
more efficient algorithms should be explored, as our
two-block algorithm is somewhat time-consuming.We
leave these as directions for future research.
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